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Hello everyone, welcome to lecture 23. Just to recap, in the last lecture, we have seen how to 

construct message authentication codes for arbitrary long messages, basically we had seen 

how to construct pseudorandom functions for arbitrary long inputs and we have seen that 

once we have a pseudorandom functions for arbitrary length inputs, we can directly plug in 

them to construct secure MACs for arbitrary length messages, right. However, the 

constructions that we had seen in the last lecture are computationally secure, namely they are 

secured only against an adversary whose running time is polynomially bounded. 

 

An interesting question is can we design message authentication codes which are secure even 

against an adversary who are computationally unbounded right because that is a natural 

question that one can ask. Remember in the context of encryption process, we had seen that it 

is indeed possible to achieve the notion of perfect secrecy namely we can design perfectly 

secure encryption schemes which are secure even against a computationally unbounded 

adversary. 

(Refer Slide Time: 00:31) 

 

So at today's lecture, the focus will be how to construct secure MACs which are secure even 

against an adversary which is computationally unbounded and the plan for this lecture is as 



follows. We will give the definition of one-time information-theoretic MACs and we will see 

a candidate construction for one-time information theoretically secure MAC, right. 

(Refer Slide Time: 01:15) 

 

So what are exactly information-theoretic secure or IT secure MAC. So basically, they are 

MACs which are secured against a computationally unbounded adversary and it is indeed 

possible to construct such MAC but with certain restrictions. Namely first of all, you cannot 

expect to design information theoretically secure MAC which prevents forgeability which 

gives you complete unforgeability right. That means there is always possible for an adversary 

to come up with a valid forgery, but what we could expect from the construction is that that 

the probability of coming up with a valid forgery should be very less right. 

 

So in the context of information-theoretic MAC, we cannot expect or achieve to obtain 

perfect unforgeability because there always exists an adversarial strategy where adversary 

can guess the value of a tag on a message which has which was never communicated by the 

sender, right. So this is unlike the perfectly secure encryption process where we had seen that 

indeed it is possible to design schemes where adversary obtains no additional information 

about the underlying message by seeing the ciphertext.  

 

That means, adversary's advantage of learning the underlying message by seeing the 

ciphertext was absolutely 0, but similar guarantees we cannot achieve in the context of 

information-theoretic secure MAC because there always exist in guessing adversarial 

strategy. The second restriction that is imposed by information-theoretic secure MAC is 

similar to what was imposed by information theoretically secure encryption process. 



 

So remember in the context of information theoretically secure encryption schemes or 

perfectly secure encryption schemes, one of the key restrictions was that we cannot reuse the 

same key to encrypt arbitrary large number of messages. One key can be used at most for one 

instance of encryption. So, the same restriction carryover in the domain of information 

theoretically secure MAC, namely we can formally prove that if we are designing an 

information theoretically secure MAC, then we cannot authenticate arbitrary or unbounded 

number of messages using the same key.  

 

So, the key reusability is again a restriction imposed by MAC in the information theoretic 

world, right. So in this lecture we will consider a very basic information-theoretic secure 

MAC, namely we will construct what we call as one-time information-theoretic secure MAC, 

that means it provides you unforgeability guarantee only if a key is used for authenticating a 

single message and whatever discussion we are going to make today that naturally 

generalizes to the case where you can define what we call as l-time information-theoretic 

secure MAC. 

 

Namely message authentication code which is information-theoretic secure and where a key 

could be used to authenticate l number of messages, right. 

(Refer Slide Time: 04:49) 

 

So, let us begin with the discussion on one-time information-theoretic secure MAC. So as I 

said earlier, they are special type of MACs which can be used to authenticate only a single 

message and the security requirement here is that it should be difficult for a computationally 



unbounded adversary to come up with a forgery based on a single previously seen 

authentication, right. So pictorially what exactly the security property that is achieved well by 

this primitive is as follows. 

 

So imagine that we have an one-time information-theoretic secure MAC where the tag 

generation algorithm is Tag-Gen and the tag verification algorithm is Tag-Ver and imagine 

that we have a shared key which is uniformly random selected from the key domain of the 

underlying MAC and pre-shared between the sender and the receiver and for simplicity we 

assume that the message authentication code is a deterministic MAC. 

 

So, imagine sender has authenticated one message and sent the message comma tag over the 

insecure channel and say there is a malicious adversary which has seen the message comma 

Tag-Ver and the goal of the adversary is to come up with a forgery, namely by seeing the 

message, Tag-Ver where the tag is generated with an unknown key k not known to the 

adversary. The goal of the adversary is to come up with a new message m star and a 

corresponding tag t star and forwarded to the receiver such that the verification of the 

message m star with respect to the tag t star is successful at the receiving end. 

 

If this is the case if this is possible, then the adversary is able to do a forgery. So basically, 

the goal of the one-time information-theoretic secure MAC is to prevent this from happening, 

that means it should not be possible for an adversary to successfully come up with the 

message, Tag-Ver m star, t star by seeing a previously authenticated message, Tag-Ver even 

if the adversary is computationally unbounded. So this requirement we formalized by 

modified CMA game where the adversary is restricted to just make a single query, right. 

(Refer Slide Time: 07:00) 



 

So recall the CMA security game that we had seen in the context of message authentication 

code, right. So the game basically consists of a training phase where the adversary can ask for 

the MAC tag on several messages of his choice and based on the MAC, Tag-Ver that it has 

seen, the goal of the adversaries to come up with a forgery, but now we are making some 

modifications in that experiment because we want to model the security of a one-time 

information-theoretic secure MAC. 

 

So the changes that we have made in this experiment are as follows. The first change is that 

that instead of saying that adversary is computationally bounded, we allow a computationally 

unbounded adversary to participate in this game and the second restriction is that since we 

want to model security only against one-time authentication, the adversary can ask tag for a 

single message of its choice. We do not give the adversary to ask tag for arbitrary or 

polynomial number of messages because we are interested in only one-time authentication.  

 

So, the adversary can ask for tag on any message of its choice and to respond to the 

adversary's query, the experiment of the verifier has the key generation algorithm, obtains a 

key and computes the tag on the message for which the adversary has asked for the tag and 

the tag is sent back to the adversary. So this basically models that adversary sitting between 

the sender and the receiver has seen a message, Tag-Ver and now the goal of the adversary is 

to come up with a forgery.  

 

That means based on the knowledge of m, t and without knowing the key k, the goal of the 

adversary is to come up with a pair m star, t star and we say that the output of the experiment 



is 1 or we say which is interpreted as adversary has won the experiment if the following 2 

conditions hold. First the message m star should be different from m and the tag verification 

of the message m star with the tag part t star under the unknown key k should be equal to 1. 

 

That means if the adversary has successfully produced a forgery, m star, t star such that m 

star is different from m, then we say that adversary has won the experiment and our security 

definition is we say that this publicly known message authentication code pi is information-

theoretic one-time epsilon secure if for every adversary A, right. I stress for every adversary, 

not only polynomially bounded adversary, but it could be even an adversary whose running 

time is computationally unbounded.  

 

So the security definition is we say that the scheme pi is information-theoretic one-time 

epsilon secure if the probability that adversary participating in this experiment is successfully 

able to come up with a forgery is upper bounded by the quantity epsilon, right, where the 

probability is taken over the random coins of the experiment, namely the randomness of the 

key generation algorithm and over the randomness of the message which has been queried by 

this way.  

 

So that is our definition of one-time information-theoretic secure MAC. If we want to model 

the security of anytime information-theoretic secure MAC, then basically the modification 

here will be that adversary is now allowed to query for tag 1 up to l number of messages 

right, so but for this lecture, we keep our discussion simple and we just focus on the one-time 

information-theoretic secure MAC. 

(Refer Slide Time: 10:26) 



 

So now we have the definition of what exactly we want to construct, namely we want to 

construct a one-time information-theoretic secure MAC and now let us see a generic 

construction of one-time information-theoretic secure MAC from another interesting 

cryptographic primitive, which we call as strongly universal function or SUF, right. So what 

exactly is an SUF? So it is a keyed function, so it takes a key from the key space where the 

key will be selected uniformly randomly and it will take a message as an input and it will 

produce a keyed output right. 

 

So the SUF f is denoted by little h which is a two input function, but once we fix the key, 

then the input is m and the output of the keyed function on the input m is denoted as t and the 

output little t belongs to a bigger space which is called as the tag-space. So, syntactically this 

is same as the syntag of pseudo keyed pseudorandom function where we have a key as an 

input, block as an input and block output and output and one possible output, but proper 

device this SUF has different properties and security requirements compared to 

pseudorandom function.  

\ 

So let us see the security requirements that we expect from this SUF. So the main property 

that we require from this SUF or the security property that we expect from this SUF is the 

pair-wise independence and what exactly we mean by pair-wise independence is that we 

require that for any message pair m, m dash from the message space which are distinct and 

for any key k from the key space little k, the tag value or the function value on input m and 

on input m dash should be uniformly and independently distributed over the tag-space. 

 



That means the value of hk of m should be completely independent of hk m dash and both hk 

of m and hk of m dash would take any value from the tag-space with equal probability. Stated 

differently what it means is that for any Tag-Ver t, t dash from the tag-space, the probability 

that hk of m takes the value t and hk of m dash take the value t dash is equal to 1 over the 

square of the tag-space because if hk of m and hk of m dash are uniformly and independently 

distributed over the tag-space. 

 

Then the probability that hk of m takes the value t right will be 1 over tag-space and in the 

same way the probability that hk of m sash takes the value t dash will also be 1 over tag-

space. So jointly the probability that hk of m takes the value t and hk of m dash takes the 

value t dash will be 1 over tag-space multiplied by 1 over tag-space which is same as 1 over 

the square of the tag-space. So that is what the security requirement from SUF okay. 

(Refer Slide Time: 13:32) 

 

So for the moment, assume that we have an SUF right, we will soon see a candidate 

construction for SUF, but assume for the moment that you have an SUF whose description is 

publicly available, then using SUF we see how to construct generically one-time information-

theoretic secure MAC right. So you have the public description of SUF and what we will 

construct is an information-theoretic secure MAC where the success probability of forgery 

for an adversary who is computationally unbounded is 1 tag-space right.  

 

So the property of the MAC that we are going to construct is as follows. The key space will 

be the same as the keys space of SUF. The message space of the MAC, namely the messages 

which could be authenticated by the MAC that we are going to construct will be the same as 



the message space of the SUF and the tag-space will be the tag-space of the output space of 

our SUF. So the key generation, the tag generation, and the tag verification algorithm of the 

MAC that we are going to construct is as follows. 

 

The key generation algorithm outputs a uniformly random k little k from the key space and 

the tag generation algorithm is a deterministic algorithm where to compute a tag on a 

message little m with a key k, we basically compute the value of the SUF namely h with the 

key k and m as the input and that is the tag for the message m under the key little k and the 

tag verification algorithm is canonical in the sense that if you are given a message, Tag-Ver 

as input, then to verify a message, Tag-Ver with respect to a key k, what you do basically is 

you re-compute the value of the tag under the key k for the message. 

 

Namely you evaluate or you compute the value of the SUF on the message as the input with 

respect to the key k and verify whether the recomputed tag matches the tag that you have 

seen in your input. If that is the case, then the verification is successful and the output is 1, 

otherwise the output is 0. So that is the generic construction of one-time information-theoretic 

secure MAC from SUF. Now we want to prove that if the candidate h function that you are 

taking here is an SUF. 

 

Then the MAC that we have constructed is information-theoretic secure for authenticating a 

single message where the success probability of forgery is 1 over the size of the tag-space. 

That means an adversary who has seen a single message, Tag-Ver authenticated as per the tag 

generation algorithm, then by seeing one message, Tag-Ver, the probability that an adversary 

could come up with a successful for forgery is upper bounded by 1 over the size of the tag-

space. 

 

The basic proof idea here is that imagine there is an adversary who is computationally 

unbounded and who has seen an authentication of a message m, that means say it has queried 

for the tag on a message m and it has seen the tag t and it knows that as per the construction 

the tag t that it has seen is the value of the SUF on the message m, but under the unknown 

key k. So the key is not known to the adversary and from the viewpoint of the adversary, the 

key is a uniformly random element from the key space and now the goal of the adversary is to 

come up with a forgery. 

 



Basically, now it has a new message m star and its goal is to compute a tag on this new 

message m star with respect to the unknown key k and for that basically the adversary has to 

compute the value of hk of m star, but since hk of m and hk of m star are independent of each 

other right, that is a security property guaranteed from the underlying SUF since hk of m and 

hk of m star are independent and uniformly distributed over the tag-space, the probability that 

a computationally unbounded adversary without knowing the key k could successfully come 

up with the output of the SUF on the input m star is of course 1 over the tag-space. 

 

So that is the success probability with which a computationally unbounded adversary could 

come up with a forgery, so that is a proof idea. I am leaving the full formal details here, but 

you can very easily formalize the proof idea that we have discussed here intuitively. 

(Refer Slide Time: 18:03) 

 

So now we have a generic construction of one-time information-theoretic secure MAC given 

that you are having a SUF. So now the question is how do we construct a the candidate SUF, 

and there could be several possibilities to construct an SUF. What we are going to do is now 

we will see a candidate construction based on group theory and finite field arithmetic. So let 

us see the definition of abelian group first. So what exactly is an abelian group? 

 

So a group basically consists of a set which could be either finite or infinite, it has certain 

number of elements and along with that set you have an operation o and we say that the set G 

along with the operation o constitutes a group if the following properties are satisfied. The 

first property is the closure property which states that if you take any two elements from the 



group, say little a and little b and perform the group operation o those two elements, then the 

result should again be a member of the group and that is why the name closure property. 

 

That means by performing the operation little o on any two group elements, you would not go 

outside or you would not get an element which is outside the group. You will still get an 

element which belongs to the group. So that is why the name closure property. The second 

property that we require from the set G and operation o is as follows. It is called associativity 

property and which basically demands that if you take any 3 elements a, b, c from the group 

right, then it does not matter whether you perform the group operation on a and b and then 

following by performing the group operation on c. 

 

You will get the same answer if you first perform the group operation on b and c and then 

you perform the group operation on the result on the element a. That means the operation o 

satisfies the associativity property. The third property that we require is the existence of 

identity element, namely there should exist a unique element which we denote as say little e 

belonging to the set G which satisfy a magical property. 

 

Namely it should satisfies the condition that if you take any element a from the group G and 

if you perform the group operation or the operation little o on the element a and on the 

element e, then you should get back the element a and that is why we call that special element 

e as the identity element. That means you perform that operation o with e and any element a 

from the group, you will end up getting back the element a. The next property that we require 

from the set G and operation o is as follows. 

 

We require that there should exist for every element a from the set G, there should exist a 

special element which we denote as a inverse or a raise to power -1 such that if you perform 

the operation little o on the element a and this element a power -1, you should get back the 

identity element. So I stress that even though we are using the notation a raise to power minus 

-1, numerically it is not equal to 1 over a because we are constructing where we are actually 

treating the set G in an abstract terms. 

 

That means your set G could consist of any type of element, it need not be numbers or 

integers or so on, it could be consisting of say vectors, matrices and so on. So do not get 

confused that a to the power -1 stands for the numeric 1 over a, it is just a notation. What we 



are basically demanding here is that if you take any candidate element a from the set G, then 

corresponding to that you should also have a candidate element from the set G itself which I 

am denoting by this notation a power -1 such that if you perform the operation little o on the 

element a and on this special element a power -1, you should get back the identity element, 

right.  

 

So if my set G along with operation o satisfies these 4 properties, then I say that G, o is a 

group and on top of these 4 properties if my set G along with the operation o satisfies an 

additional condition namely that of commutativity property which requires that for any pair 

of elements a, b from the set G, it does not matter whether you perform the operation on a 

and b or on b and a, you get back the same answer, then that special group is called as an 

abelian group.  

 

So in the absence of commutative property, what we obtain is a group, but on top of that if 

the group also satisfies the commutativity property, then the group is called as an abelian 

group, right. So that is the definition of an abstract abelian group. Now let us see some 

candidate examples for abelian billion group. So if you consider a set of integers which I 

denote by Z which is an infinite set and if I take the operation plus namely the integer 

addition. 

 

So my operation o in this case is plus and my set G is nothing but Z, then the set of integers 

along with the integer addition satisfies the closure property, associativity property, existence 

of identity, existence of inverse and commutative property. You can verify that, right. So let 

us verify the closure property. If you take any two integers and add them numerically, you 

will again obtain an integer, so closure is satisfied. It is easy to verify that the operation 

integer addition satisfies the associativity property  

 

Because it does not matter that whether you add a and b first and followed by adding c, you 

get the same answer which you have by performing the addition of b and c first and then 

adding the answer to a, so the associativity property is satisfied. The element 0 belonging to 

the set of integers constitutes your identity element because a+0 for every integer a is going 

to give you back the element a and for every element a or for every integer a, you have the 

corresponding integer -a also belonging to the set of integers such that a + -a is going to give 

you the identity element namely 0. 



 

it is easy to verify that for any two integers a and b, a+b is same as b+a, so the commutativity 

property is also satisfied. That means the set of integers Z along with the operation plus 

satisfies all the 5 axioms that I require from an abelian group and that is why the set of 

integers along with the integer addition operation constitutes a candidate abelian group okay 

right. So we have seen an example of an billion group. Now let us see whether the set of 

natural numbers which I denote by n along with the operation plus constitutes a group or not. 

 

So it satisfies the closure property, if you take any two natural numbers and add it, you will 

get a natural number, the addition operation satisfies the associativity property over the set of 

natural numbers. The problem here is that you do not have the identity element right because 

you do not have the element 0 present in the set and so this axiom is not satisfied and it turns 

out that every natural number does not have an inverse in the set of natural numbers. So if 

you take for instance the element 2, its inverse should be ideally -2. 

 

So first of all the identity element is not at all there, so the inverse is not at all well defined, 

so this axiom is also not satisfied. So since two of the axioms are not satisfied, the set of 

natural numbers along with the operation plus does not constitute a group. In the same way if 

we take the set of nonzero real numbers right, so it constitutes a group with respect to the 

multiplication operation. So if you take any 2 nonzero real numbers, multiply it, you again 

obtain a nonzero real number, multiplication satisfies associativity property.  

 

The element one will constitute the identity element and for every element a belonging to the 

real number you have a corresponding real number 1 over a present in the set of real numbers 

such that 1 over a multiplied by a will give you the identity element 1, right and 1 over a is 

indeed well defined because my a cannot be 0 because I am considering the set of elements 

which consists of all the real numbers except 0, so a cannot be 0. 

 

So the inverse element is also well defined and of course multiplication operation satisfies the 

commutativity property and that proves that the set of nonzero real numbers constitute a 

group with respect to the multiplication operation. So that is the definition of group right. I 

hope you enjoyed this lecture. Thank you. 


