
Foundations of Cryptography 
Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 
Indian Institute of Technology-Bengaluru 

 

Lecture-23 

Message Authentication for Long Messages Part I 

 

Hello everyone, welcome to lecture 22 just to recap , in the last lecture we started discussing 

about the problems of message authentication and message integrity, where the goal of the 

receiver is to verify whether the message that is receiving is coming from the right sender or 

not. And to detect whether the message that is received by the receiver is indeed the correct 

message or not. 

 

And we introduced a cryptographic primitive called message authentication code and we have 

seen the security definitions of messages authentication code. And we also discussed how to 

construct message authentication code for fixed length messages using pseudo random 

functions. So in this lecture, we will continue the discussion on message authentication codes. 

(Refer Slide Time: 01:12) 

 

And what we will do is we will discuss how to construct message authentication codes for 

arbitrary bit strings. So we will begin with discussing how to construct as a message 

authentication code for string of blocks and this will be further done in 2 stages. We will first 



see how to construct prefix free secure pseudo random functions for string of blocks. And then 

we will see how to convert any prefix free secure pseudo random function per string of blocks 

to fully secure PRF for string of blocks. 

 

And once we have fully secure PRF for string of blocks, we will see how to construct pseudo 

random functions for arbitrary length input can be arbitrary but strings which will eventually 

give us message authentic code for arbitrary bit strings. So that is the plan for this lecture. 

(Refer Slide Time: 02:04) 

 

So just to recall, in the last lecture, we have seen how to construct a message authentication 

code for fixed length messages using pseudo random functions. So assume you are given a 

secure pseudo random function with n bit key little l bit block length and big L bit output size. 

Then using the pseudo random function we have seen how to construct a secure map where the 

key space is the set of n bit strings message space set of all little l bit strings and tag space is a 

set of big L bit strings. 

 

And construction is as follows the key generation algorithm outputs key for the pseudo random 

function which is used to authenticate the message by computing the value of the pseudo 

random function under the key k with the message being the input block. And that is the tag and 

to verify the tag for the message m. The tag is recomputing the value of the keyed function F k 

on the input m. 



 

And matching whether the recomputed tag matches the received tag or not. If the match 

happens then the output is 1, otherwise the output is 0. Now our goal is to construct secure max 

for arbitrary long messages, because in practice there is no restriction that the message size 

should be of big L bit, it could be less than big L bit, it could be larger than big L bits and so on. 

(Refer Slide Time: 03:29) 

 

And it turns out that unlike CPA secure encryption schemes, where if we have a CPA secure 

encryption scheme for encrypting big L bit messages. And if we want to achieve CPA security 

for encrypting arbitrary long messages, then we had seen that it is suffice to divide the larger 

message into several blocks of big L bits, and encrypt each block of big L bits using an in 

instance of the fixed length encryption process. 

 

But that process of dividing the message and authenticating each block using this fixed sized 

MAC is not going to give you a secure MAC construction. Specifically assume that you have a 

message m right consisting of 2 blocks of big L bits. And you divide the message m into blocks 

m 1 and m 2 and say you authenticate m 1 using this fixed length MAC procedure and you 

authenticate independently and to using the same key k under the or using this fixed length 

MAC procedure. 

 



Then an adversary who has seen the tag t 1 comma t 2 for a message m can easily produce a 

MAC for a new message m dash consisting of block m 2 followed by m 1 right. And that will 

be a forgery from the viewpoint of the adversary. So it is not straightforward to just take this 

MAC construction for fixed length messages and use it to construct a MAC for authenticating 

arbitrary long messages. 

(Refer Slide Time: 04:49) 

 

The construction is really going to be a challenging task. So the idea behind constructing 

message authentication codes for arbitrary long messages is to look for, it should design secure 

pseudo random functions with arbitrary long bit strings, but fixed size output. Because if we 

can construct pseudo random functions, which can support any arbitrary long bit string as an 

input and gives a fixed size output. 

 

Then using such a pseudo random function, we can easily construct a MAC for arbitrary long 

messages, what you basically have to do is you just have to invoke that pseudo random function 

on the message, which could be of any length to produce the tag. And as per the idea that we 

had used for constructing the pseudo MAC for a fixed length message, the corresponding 

construction will be a secure construction. 

 

So the whole problem of designing a secure MAC for arbitrary long messages down to the 

problem of how to construct pseudo random functions for arbitrary long bit strings. And that is 



what will be the focus of this discussion. So the reference material for today's discussion will be 

the chapter from the book draft of by and (()) (06:09) and the most of the proofs for the 

constructions that we are going to discuss in today's lecture will be scared because the proofs 

are really advanced. 

 

We will be just giving, we will be just discussing the overview of the high level ideas behind 

the security proofs of the constructions that we are going to discuss in this lecture. But if you 

are interested to see that exact proofs then you can refer to the lecture given in the book draft by 

(()) (06:35) right. 

(Refer Slide Time: 06:36) 

 

So let us start with the construction of a PRF for arbitrary size inputs from a PRF fixed size 

input. So what you are given is assume you are given as PRF, whose block length is n bits and 

output is also of n bits. And using this, your goal is to basically construct another keyed PRF 

which I denote as F star. And which can support input of any length up to l times n bits. And it 

will give you a fixed output of size little n bits. 

 

So as you can see that the output of the keyed PRF F star which we are interested to construct is 

independent of the value l right. So it does not matter whether your little l is 1, little l is 2 and 

so on the output size is always fixed, namely little n bits. So our goal is how to construct this F 



star given this keyed pseudo random function F. And we will design F star from F using a 3 

stage approach. 

 

In stage 1 what we will do is, we will first construct a PRF which would not be operating on 

arbitrary length input, but it will be operating on arbitrary sequence of blocks. Namely it can 

compute the output for any number of up to l number of blocks, where each block will consist 

of n bit of input. And it always gives you an output of n bit and we call this PRF as block wise 

prefix free secure PRF. 

 

It will be clear very soon what exactly we mean by the term prefix free secure PRF. But 

important thing is that it does not support inputs of arbitrary length, but rather it supports input 

which are actually parsed as sequence of several blocks. And it can support inputs consisting of 

up to l blocks, where each block further consist of n bits of string. So that is denoted by this 

notation. 

 

That means each block is of size little n bits and there can be up to little l such blocks. So the 

stage 1 will be how to go from this fixed size PRF F to this prefix free secure PRF PF. Then 

once we have the construction PF, which is block wise prefix free secure PRF. In stage 2, we 

take this prefix free secure PF and we construct a fully secure PRF, but which is still block 

wise. That means it can take inputs consisting of up 2 little l blocks, where each block is of size 

little n bits and the output is of size n bits. 

 

And then finally in stage 3, once we have the construction F dash, we construct the actual PRF 

F star which we are interested to construct, which can take any input any arbitrary bit string as 

input of length of up to little l n bits. So remember there, so notice that there is a difference 

between the notation where this notation and the notation where binary string up to length little 

l n bits. 

 

So when I say input of the form 01 rise to power less than equal to less l n that means the input 

is an arbitrary bits string whose length is l n. But when I say that I have an input of this form, 

that means my input consist of several blocks, namely, up to little l blocks, where each block is 



exactly of size n bits. So there is a difference between this notation and this notation. So that is 

the 3 stage approach that we are going to follow to construct our required PRF F star from the 

fixed length PRF F right. 

 

And each of the stages is really interesting and settle and we will be skipping the proves as I 

said earlier, if you want to see the proof, you can see the chapter in the book draft by (()) 

(10:36). 

(Refer Slide Time: 10:37) 

 

So let us begin with the construction of prefix free secure PRF and for that, let me first define 

what exactly we mean by prefix-free set. So a set Q which is a subset of set of all blocks, up to 

which is a subset of sequence of blocks up to size l blocks, where each block is consisting of n 

bits is called a prefix-free set. If the following conditions hold, first of all the set Q should be 

non empty. 

 

And the second property is that no element in the set Q should be a proper prefix of any other 

element of the set Q, what this mean is that if we have an input remember in the set Q say the 

sequence a 1 comma a 2 where a 1 is 1 block and a 2 is another block each of size n bits. Then 

we cannot have the input a 1 present in the set Q, because the block input a 1 is a proper subset 

of the sequence of block inputs a 1, a 2. However, we can have the input a 2 present in the 

block Q because a 2 is not a prefix of the block sequence a 1 comma a 2. 



 

So that is the definition of a prefix preset, right. So now what exactly we mean by a block wise 

prefix free-secure PRF. So on a very high level it is a PRF right which take inputs as a block 

sequence and there could be up to little l number of such blocks. And that PRF will be secure 

against a weaker adversary which we call us prefix free adversary. Namely, it will be secure 

against an adversary or a distinguisher whose queries are restricted to a prefix free-set. 

 

So what exactly we mean by that, so syntactically block wise prefix free PRF will be a keyed 

function and it will take a key of size say little n bits. And it takes a sequence of blocks as 

inputs, so it can take up to little l blocks here, where each block is a fixed set size namely little 

n bits. And it gives you a fixed set size output say little n bit out little n bit and a security 

property that we want from this block wise prefix-free secure PRF is that. 

 

If you consider a truly random function which also takes input a sequence of blocks say up to 

little l blocks, where each block is of size exactly little n bits. And gives you an output of size 

little n bits such that the function little f is a truly random function right, it is a unkeyed 

function. Then what we mean by a prefix free secure PRF is that the behavior of this keyed PRF 

should be indistinguishable from the behavior of this truly random function little f against a 

distinguisher, who is restricted to make queries only from a prefix free-set. 

 

That means this distinguisher cannot ask for the value of the function on block sequence input a 

1 comma a 2 as well as a 1 that means whatever queries this distinguisher is going to ask. In the 

PRF indistinguishability game, if we denoted by Q, then the set Q of queries for the 

distinguisher should constitute a prefix-free set. So that is why this distinguisher is a weaker 

distinguisher or a weaker adversary. 

 

Because in the actual PRF security definition, there is absolutely no restriction put on the nature 

of queries which are distinguisher can ask during the game. It could be a prefix-free set, it may 

not be a prefix-free set. But when I say we are designing a prefix-free secure PRF then it will be 

secure only against an adversary, whose queries constitute a prefix preset right. 

(Refer Slide Time: 14:23) 



 

So that is the definition of block wise PRF which is prefix-free secure and now let us see a 

candidate construction which we call a CBC prefix free secure PRF. And the construction is as 

follows. So we are given a keyed PRF of fixed size input and fixed size output. And using that 

our goal is to construct a PRF which is a prefix-free secure PRF right which can take a 

sequence of blocks as input say up to little l blocks each of size n bits and gives you a fixed size 

output. 

 

And a way we do it is using this CBC mode of encryption that we had seen earlier with some 

differences. So let me demonstrate how exactly this CBC prefix-free secure PRF operates. For 

demonstration purpose, assume that you have a message m consisting of up to 3 blocks right. 

Now to compute the output of the CBC prefix-free secure PRF for this input, what we do is the 

following since we have 3 blocks. 

 

We need to invoke the fixed size PRF 3 times with the same key k. And the first invocation of 

the PRF will be with m 1 as the input and whatever is the output that serves as the input for the 

next invocation, where it is XORed with the next block input, namely m 2 and a XOR of the m 

2 and the previous output of the PRF is fed as the block input for the second invocation, and 

then we continue the chaining process. 

 



And finally, the outcome of the last invocation of the fixed length PRF F is treated as the output 

of the prefix-free CBC secure PRF for the message m. That is a way, this CBC prefix-free 

secure PRF operates ok. 

(Refer Slide Time: 16:14) 

 

So there are certain differences between the CBC PRF that we have designed just now and 

CBC mode of encryption that we had discussed in one of our earlier lectures. So on your left 

hand side, you have the CBC PRF mode and on your right hand side you have the CBC mode 

of encryption right. For comparison purpose, what I am considering is I am considering a 

message block consisting of 3 blocks and how the output of the prefix- free c CBC PRF will be 

computed on that message. 

 

And on the right hand side part I have the same message and I have demonstrating how exactly 

the CBC mode of encryption will be operated on the same message right. So the differences 

between these 2 primitives are as follows. First of all, when we see the CBC PRF, then the 

intermediate values they are not output at all right, it is only the outcome of the final invocation 

of F, which is output as the overall output of the CBC PRF. 

 

Whereas in the CBC mode of encryption, each of the intermediate outcomes of the F are also 

part of the overall output. This is because in the CBC mode of encryption, the goal is to encrypt 

each of the individual blocks. So that is why we need to definitely output the intermediate 



outputs of the PRF. But when we consider the CBC PRF, our goal is to compute a fixed size 

output for the overall message. So that is why it is not necessary to output of the intermediate 

invocations of the PRF, so that is the first difference. 

 

The second difference is that if we consider the CBC PRF then it uses a fixed IV, namely in the 

picture there is no IV at all. But you can always imagine that the IV is set to all 0s which is 

publicly known. But when it comes to a CBC mode of encryption, then there is an IV and 

which is randomly selected for each instance of the CBC mode of encryption. So you can 

imagine that CBC PRF uses a deterministic IV, which is always fixed for every message. 

 

But when it comes to the CBC mode of encryption, IV is selected independently for each 

invocation. 

(Refer Slide Time: 18:28) 

 

So these are the 2 differences and it turns out that if you actually modified a CBC PRF by also 

outputting the intermediate outputs of the PRF, then the overall PRF is not a secure PRF. Also 

instead of using a fixed IV, if you start using a random IV, there is no guarantee that overall the 

CBC PRF is a indeed a prefix free secure PRF right. So that is how the CBC PRF operates and I 

would not be going into the security proof that why exactly this CBC PRF is indeed a prefix-

free PRF. 

 



But let me give you an intuition that why it may become insecure if we do not restrict our 

adversary from making queries which constitute a prefix-free set right. So what I am going to 

do is I am going to demonstrate the insecurity of the CBC prefix-free secure PRF against an 

adversary which can make queries which does not constitute a prefix-free set. So imagine that 

adversary, there is an adversary which queries for an block input a 1 and gets the output y under 

an unknown key k which is not known to the tag right. 

 

So the way output y would have been computed is as follows. Since we have only one block, 

basically we would have evaluated the fixed length PRF F on the input a 1 with the key k and 

that is how the output y would be computed. Now imagine adversary has a new block new 

input consisting of 2 blocks, say block a 1 followed by a block a 2, where a 2 is a special block 

here, a 2 is related to the block a 1 and the output y which is the value of the prefix-free PRF on 

the block input a 1. 

 

And now let us ask what exactly will be the value of this prefix-free CBC PRF on the input a 1 

comma a 2 right. So this is how the output of the CBC PRF on the input a 1 comma a 2 will be 

computed right. We will have 2 invocations of the fixed length PRF, we will do the chaining 

and the final output will be this. Now what exactly is the outcome of the first invocation of the 

PRF F here it is y, because that is what is the structure right. 

 

So you can see that if I just focus on this part here, this part is nothing but the computation of 

the CBC PRF on a different input consisting of just a block a 1. And we know that is nothing 

but y and now this y is fed is acting is fed as the input for the second invocation, where this y is 

XORed with the next block here. And the next block is a 1 XOR y, so the effect of this y and y 

cancels out. 

 

And what basically we are doing here is we are actually invoking the fixed length PRF on the 

input a 1.And adversary already knows that the value of this PRF under the unknown key k but 

with the known input a 1 is going to give you the output y. 

(Refer Slide Time: 21:48) 



 

So adversary already knows that the output of the CBC PRF on the input sequence a 1 comma a 

2 will give you y if thus block a 2 satisfies this relationship. And that gives him an advantage or 

a strategy to distinguish this CBC PRF from a truly random function right. So what the 

adversary basically can do is, it can first ask for the function output on the block input a 1. And 

then it can ask for the function output on the block sequence of block inputs a 1 comma a 2. 

 

And it can compare it with y, if it sees the output of the function input on the sequence a 1 

comma a 2 to be y. Then it knows that it is interacting with a prefix-free c CBC PRF and if the 

output is not y that it means that it is interacting with a truly random function. And it can be 

formally proved that the distinguish advantage of the distinguisher is significant right. So that 

means if we are allowing adversary as to query if the set of queries which the adversary can ask 

does not constitute a prefix-free set. 

(Refer Slide Time: 22:48) 



 

Then definitely the construction that we have seen now is not secure right. Because in this 

particular example he is asked to query for a 1 and then he is asked to query for also the input a 

1 comma a 2. And clearly a 1 is a prefix of the set a 1 comma a 2 but the definition of prefix-

free secure PRF is that it is secure only against an adversary who cannot query for both a 1 as 

well as the input sequence a 1 comma a2 right. 

 

So that is the basic intuition that why this chaining PRF is a secure against a prefix free 

adversary. If we do not put that restriction then definitely it is distinguishable from a truly 

random function. 

(Refer Slide Time: 23:34) 

 



So now we have a candidate block wise prefix-free secure PRF. And what we do is now we will 

go to the stage 2, where we will convert this block wise prefix-free secure PRF to get a fully 

secure PRF, where there is no restriction whatsoever on the queries which the distinguisher can 

make in the PRF indistinguishability k right. So you are given this we have already seen a 

candidate for this namely the CBC PRF block wise. 

 

And our goal is to construct a fully secure block wise PRF, which can take sequence of blocks 

as inputs, say up to little l blocks where each block is of fixed size, say little n bits. And the 

output is fixed size output of size little n bits. And there are several approaches for doing this, 

there are several approaches from going to this prefix-free secure PRF to a fully secure PRF and 

each approach has a different trade off. 

 

So the first approach is an encrypted CBC PRF and a remaining 2 approaches are deterministic 

prefix-free encoding under or by randomize prefix encoding. So what is the last 2 method what 

it does is basically it encodes the input of your block wise prefix-free secure PRF, in such a way 

that the resultant encoded inputs constitute a prefix-free set, whereas the encrypted CBC uses 2 

keys., where using the first key we operate the prefix-free PRF. And then the output is again 

encrypted using the second key which ensures that adversary is confused. 

(Refer Slide Time: 25:12) 

 



So let us go deeper into the different approaches, so let us first see how we construct the block 

wise prefix-free secure CBC to a fully secure CBC using encryption. And the idea here is to use 

2 independent keys, where using the first key we operate the prefix-free block wise CBC and 

using the second key we encrypt the output of the block wise CBC. More specifically what we 

are going to do is, we are going to construct a new PRF which I denote as F CBC which is fully 

secure. 

 

There is no restriction on the distinguisher it can make queries which maybe prefix-free set or 

which may not constitute a prefix-free set and so on. So the construction is going to take 2 keys 

and the PRF can support a sequence of blocks, say up to little l blocks. Each block consisting of 

fixed n bits and I stress that here throughout this discussion this little l is some polynomial 

function of your security parameter. 

 

And the output of this block wise PRF is going to be of little n bits right. So how exactly the 

operation will happen here, since the key is of size 2 n bits, we parse it as sequence of 2 blocks 

of n bits each and we call the first part of the key to be k 1. And with k 1, we actually first run 

the prefix-free CBC right which operates block wise and this will be the output of the prefix-

free CBC PRF with respect to the key k 1. 

 

And once we obtain the output, we use the remaining part of the key which is also of n bits and 

independent of k 1. And we use this key to again encrypt the output that we have obtained from 

the prefix-free CBC PRF and that will be the overall outcome of this fully secure CBC PRF 

with respect to the key k 1 comma k 2 right. 

(Refer Slide Time: 27:14) 



 

So there are several advantages as well as disadvantages for this block wise encrypted CBC 

PRF. The advantage here is that this PRF constitute what we call as a streaming PRF and which 

further gives us what we call as a streaming MAC. So remember, our goal is to basically 

construct PRF supporting arbitrary block size input is our goal is to construct PRF, which can 

take inputs of arbitrary size. 

 

Right now what we are aiming is to construct PRS which can take sequence of blocks as input 

and gives you a fixed size output. And once we have such PRS, we can always use those PRF 

to obtain the corresponding secure MACs. Namely a MAC which can take inputs which can 

take sequence of blocks as input and give you a fixed size tag. So the advantage of this 

encrypted CBC PRF is that it constitute what we call us a streaming MAC. 

 

Namely in this construction the length of the message need not be known in advance right. That 

means imagine a scenario where a sender is continuously sending message packets to the 

receiver. And it does not know exactly what is going to be the length of the message m that 

means it does not know well in advance up to how many blocks of little l bits will be there in 

the message m, what it knows is that maximum number of blocks that can be there in the 

message m is l, where l is publicly known. 

 



But apart from that it has no knowledge whatsoever about the exact number of blocks. So if you 

see the way this encrypted CBC PRF is operating, the length of the message is not at all useful 

here. So as and when new blocks are coming right the what a sender can do is basically it can 

compute the corresponding output of the says prefix-free CBC PRF. 

 

And once the message is over, that means once the last block of the message is coming to the 

sender, it can compute a final invocation of the PRF with respect to the key k 2. So that is why 

it is constitutes what we call as a streaming MAC because the length of the message need not 

be known in advance here. The disadvantage in this construction is that we now need to operate 

with 2 keys. 

 

That means the overall key for the CBC block wise PRF actually consists of 2 chunks of 2 

independent chunks of n bits. And we also need an additional PRF invocation namely the final 

PRF invocation apart from the number of PRF invocations which we are invoking internally as 

part of the prefix-free CBC PRF. So these are the 2 disadvantages, and we also have a 

advantage here right. 

 

So you have the trade off here. If you want a streaming MAC, then this really is a very good 

construction. But you need to pay something for that namely you need to operate with 2 keys 

and you should be willing to have an additional PRF invocation here right. I hope you enjoyed 

this lecture, thank you. 


