
Foundations of Cryptography 

Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 

Indian Institute of Technology-Bengaluru 

 

Lecture-02 

Symmetric Key Encryption 

 

Hello everyone, welcome to the second lecture. The plan for this lecture is as follows. 

(Refer Slide Time: 00:36) 

 

We will discuss the fundamental problems addressed by cryptography namely the key agreement 

problem and a secure communication problem. Then we will discuss the various types of 

cryptographic primitives namely the symmetric a primitives and asymmetric key primitives. And 

then we will start our discussion on symmetric key primitives where we will see the syntax of 

symmetric encryption mechanism and informal security definition and then we will finish the 

lecture with Kerckhoffs’ principle right. 

(Refer Slide Time: 01:05) 



 

So, if you remember in the last lecture we discussed that the central problem addressed by 

cryptography is that of secure communication. And in it turns out that secure communication is 

actually solved by solving 2 core problems and the first core problem is that of key agreement. 

So, in the key agreement problem, the scenario is the following we have 2 entities a sender and 

the receiver who do not know each other and who do not have any kind of pre shared 

information. 

 

And they are meeting for the first time and the requirement for agreement protocol is is that as 

for the protocol the sender and the receiver should talk to each other over a public channel and it 

should be guaranteed to the sender that indeed it is talking to the Ram receiver and vice versa. 

And at the end of the protocol both sender and receiver should output a common key k. The 

security requirement from the key agreement protocol is that even though the sender and the 

receiver are talking publicly. 

 

And if there is a third party who is actually eavesdropping the communication or noting down 

the entire communication which is happening between the sender and the receiver, then the third 

party should not be able to figure out what exactly is the key which sender and receiver are going 

to output at the end of the protocol. So, it is like saying the following that if I consider a class 

and the key agreement protocol should require that if I want to agree upon a key with a particular 

student, then using the key agreement protocol, I should shout something in the class. 



 

And in response that particular student should reach out back something to me and using 

whatever I communicated to him and whatever he communicated back to me, both of us should 

be able to compute a common key and no one else in the class who have actually seen the actual 

messages that I have communicated to that particular student and that student has communicated 

to me should not be able to figure out what exactly is the key that myself and that particular 

student are going to output. 

 

That is the first core problem addressed by cryptography. And this will be the theme of the 

second half of the course, where we will see how using public key cryptography which we can 

solve this key agreement problem. 

(Refer Slide Time: 03:19) 

 

The second core problem which is addressed by cryptography is that of secure communication. 

And here the setting is as follows. We imagine that sender and receiver now have a secret key k 

which has been agreed upon by some magical mean in this context, actually, by running a key 

exchange protocols. So we imagine that sender and receiver have executed a secure key 

exchange protocol, and as a result, they have a common key already available with them. 

 

Now using the common key, the goal of the sender and the receiver is to talk over a public 

channel such that the confidentiality of the communication and integrity of the communication is 



ensured. By confidentiality I mean any third party who do not have the knowledge of the key 

should not be able to figure out what exactly are the contents, which sender and receiver are 

exchanging to each other. 

 

And by integrity, I mean that if there is a third party who actually intercept some of the 

communication and tries to change the contents of the messages, then it should be detectable at 

both ends. So that is the second problem addressed by cryptography and this will be the theme of 

the first half of the course, namely symmetric cryptography, where we will assume that somehow 

the sender and the receiver have already agreed upon the key and our goal will be to solve the 

problems of confidentiality and integrity. 

(Refer Slide Time: 04:39) 

 

So, roughly in cryptography, we use 2 kinds of primitives. The first kind of primitives are the 

symmetric primitives, which are also called as private key primitives. And here the same key is 

going to be used by both the sender as well as the receiver. That is why the name symmetric key 

primitives or private key cryptography. Symmetric because it is symmetric in nature. The same 

key is getting used at both the centers and as well as the receivers end. 

 

And the name private key cryptography because the key k which is common to both the sender 

and the receiver is going to be private, it would not be available in the public domain. Now, there 

are both pros and cons of these kinds of primitive. The good side of these primitives is that they 



are computationally very efficient in practice. And the downside of these primitives is that the 

key agreement is going to be a big issue. 

 

That this all these primitives works under the assumption that the common key has been already 

agreed upon by some magical mechanism, and which is a big assumption. So ensuring that both 

sender and receiver have the same key is the challenging task. That is a downside of these 

primitives. The second kind of primitives are called us asymmetrical primitives or public key 

cryptography primitives where the primitive is operated with 2 keys. One of the keys which is 

the public the key will be available in the public domain. 

 

Whereas the other key namely, the secret key will be available only to one of the entities or in 

the context of encryption scheme, it will be available only with the receiver. That means this has 

asymmetry nature. That is why the name is asymmetric key primitive. And the reason it is called 

public key primitive is that one of the keys is available in the public domain. Again, it has these 

kinds of primitives have both plus as well as the downside. 

 

The good side about these primitives is that you do not read any kind of key agreement. That 

means if I take and public encryption scheme for instance, then there is no requirement to do any 

kind of key agreement. Whoever wants to encrypt a message for me, it can take my public key 

which will be available in the public domain. So I do not need to explicitly agree upon a key with 

that particular center. 

 

The downside of these kind of primitives is that they are computationally inefficient that means 

the amount of computation which are involved in this kind of primitive is of several orders of 

magnitude compared to the computation required in the symmetric key primitives, in practice, 

we use a combination of both. So when we will be winding up our course and we will be 

discussing the real world protocols such as SSL. We will see that how we combine both these 2 

primitives to get the best of the both one. 

(Refer Slide Time: 07:19) 



 

So now let us start our discussion on private key or symmetric encryption schemes. So, on a very 

high level, the goal is to following. The setting is as follows, we have a sender and the receiver 

and by some magical mechanism, we assume that a random key has been shared up agreed upon 

between the sender and the receiver. So I denote the key as key which is actually going to be a 

bit string. Now sender is interested to send some message m, which is again going to be a bit 

string, and in the cryptography jargon, we call this string m to be the plaintext. 

 

Now using the key center is going to use an encryption algorithm, which takes the message and 

the key as input. And it produces another bit string denoted as C, which is the ciphertext or the 

scramble text, which is going to be communicated over a public channel to the receiver at the 

receiving end receiver is going to take the ciphertext which is a bit string, and the key which is 

the same key with which the center has operated the encryption process. 

 

And it is going to operate a decryption algorithm. Now so the decryption algorithm is going to 

take the scramble test and the key and it is going to output the plain text which sender has 

actually encrypted using the encryption algorithm. So the reason this encryption mechanism is 

called symmetric encryption mechanism is that we have a symmetry that the same key is getting 

used both for the encryption as well as the decryption. 

(Refer Slide Time: 08:51) 



 

So before going into the formal description of a symmetric encryption process, let us first try to 

understand the difference between deterministic and a randomized algorithm. So a deterministic 

algorithm, in a deterministic algorithm, the output is a deterministic function of the input. That 

means, if we consider the straight transition inside the algorithm, then the flow from the input to 

the output is always a deterministic function. 

 

What I mean by this is, if I run a deterministic algorithm on an input x 100 times, I am going to 

get the same output y 100 times I would not get different output that means the output Y is a 

deterministic function of the input x. Whereas in a randomized algorithm, the flow from the 

input to output is non deterministic. And the flow is going to be decided by the value of random 

bits strings which are going to be generated inside the algorithm as part of the algorithm. 

 

That means, in a randomized algorithm, it is not guaranteed that if I call that algorithm with the 

same input again and again, it is not guaranteed that I am going to get the same output and output 

depend upon the sequence of random bits, which I am going to generate inside the algorithm. 

And depending upon the value of those random bits, what path I followed inside the algorithm. 

So that is a very high level difference between a deterministic algorithm and a randomized 

algorithm. 

(Refer Slide Time: 10:17) 



 

Now, let us see the syntax of a symmetric encryption scheme. So, any symmetric encryption 

scheme, which is also called as a cipher is going to consist of 3 algorithms. The first algorithm is 

the key generation algorithm, which is denoted by Gen and this algorithm is not going to take 

any external input. What this algorithm is going to do is as part of the algorithm inside there will 

be some random which strings which are going to be generated, which I did not by this particular 

notation. 

 

So when I say when I write this notation that someone is tossing the coin, I mean that inside the 

algorithm, random bit strings are going to be generated and based on the value of that bit string, 

that output is going to be determined. So the output of this key generation algorithm is a key 

denoted by the symbol k. And since it is a randomized algorithm, every time I run the key 

generation algorithm, I am bound to get a different output, I would not get the same output. 

 

The syntax that we use to denote the key generation algorithm is the following. We say that the 

key generation algorithm Gen, it does not take any input. So that is why the brackets are left is 

empty because it does not take any external input. And it is going to output a key which I denote 

by k. And this k belongs to a larger set, this calligraphic k, which is the set of all possible keys 

which is key generation algorithm can output. 

 



And the important thing here is that since this algorithm is a randomized algorithm, that is why I 

do not say that the output of Gen assigned a value key, instead I say that the output of Gen is 

going to take one of the possible value k from the set of all possible keys. I am not using the 

assignment operator because it is not a deterministic function. It is a randomized function it is a 

randomized algorithm. 

 

So here this calligraphic K is the capital case the set of all possible keys which are key 

generation algorithm code output. So for instance, if we know that the key generation algorithm 

is going to output to 56 bit key, then I know that this calligraphic key is a set of all possible to 56 

bit strings, namely, the key space K is 2 to the power to 56. And as I said earlier, this key 

generation algorithm is going to be a randomized algorithm. 

 

The second algorithm in any symmetric encryption scheme is the encryption algorithm denoted 

as Enc. And it is going to take 2 external inputs namely the plain text which the sender wants to 

encrypt, which is going to be a bit string which are denoted by the symbol B, and the key k, 

which the key generation algorithm would have output. And apart from these 2 inputs, it has an 

internal input namely the internal random coins, which are generated or the random bits which 

are generated as part of this encryption process. 

 

And as a result, this encryption algorithm is a randomized algorithm. So, based on the message, 

the key space and the random bits which are generated inside the encryption algorithm, the 

encryption algorithm is going to output ciphertext denoted as C. So, as I said that since the 

encryption algorithm could generate internal random bits to decide the outcome C, it is a 

randomized algorithm. 

 

And the syntax that we use to denote the encryption algorithm is the following we say that the 

encryption of the plain text m. So within the brackets I am writing the message m as the input 

that means that is the external input with this encryption function takes as input and the key k is 

put as a subscript. So I will say that the message m is encrypted under the key k. And since this 

algorithm is a randomized algorithm, I am not using the assignment operator to denote the output 

of this encryption algorithm. 



 

Instead, I am saying that the output of this encryption algorithm is going to be one of the possible 

ciphertext from the set of all possible ciphertext which your encryption algorithm could produce. 

So since this encryption process is a randomized algorithm, what it means is that even if I call 

this encryption process with the same value of m and the same value of k multiple times, I am 

going to get different ciphertext. 

 

Because every time I call this encryption process, the set of random bits strings which are 

generated as part of the algorithm will be different. And since C is going to be a function of both 

of the message key and the internal random bits, the value of C will be different for different 

implications of C. So that is the syntax of encryption algorithm. Now, the decryption algorithm 

takes the ciphertext C as the external input. 

 

And the key k which has been generated by the key generation algorithm, and in return it 

produces the plaintext m. So the same text that I follow to denote the decryption algorithm is the 

following. We say that decryption of the input C so here C is the external input, which is fed to 

the decryption function along with the key k. So I will say that the decryption of the ciphertext C 

under the key k is going to produce the message m. 

 

And the message m belongs to the largest set of possible plaintext namely capital M, which is the 

plain text space. Notice that my decryption algorithm here is a deterministic function. There are 

no random bits strings which are generated inside the decryption algorithm to decide the 

outcome M. And as a result of that, I am not using the arrow notation to denote the outcome of 

decryption. 

 

Instead, I am using the assignment operator to denote the outcome of the decryption function. 

What I mean by that is if I call the decryption algorithm multiple times with the same value of k 

and the same value of C, I am bound to get the same M again and again, I would not get different 

m for the different invocations of deck on the same value of C and k. In that sense, it is a 

deterministic function. 

 



And as a result, we use the assignment operator to denote the output of the Dec function. So that 

is the syntax of your key generation algorithm, encryption algorithm and decryption algorithm. 

So notice that we required the key generation algorithm and encryption algorithm to be 

randomized whereas the dec algorithm should be deterministic, and there is a reason for that, 

which we will be able to appreciate when we discuss the various attack models in this lecture. 

(Refer Slide Time: 17:09) 

 

Now how to typically use a symmetric cipher. So imagine we have a symmetric k encryption 

scheme. Namely, we have a collection of key generation algorithm, encryption algorithm and 

decryption algorithm. And we assume that the steps of this key generation encryption and 

decryption algorithm is publicly known. That means, the steps are known even to the sender and 

the receiver or to any third party in this world. 

 

Now, to use this symmetric cipher, what center is going to do is, it is going to run the key 

generation algorithm, which is going to output one of the candidate keys namely k from the key 

space. And this key will be agreed upon with the receiver by some magical mechanism at the 

beginning of the session. So, we imagine that at the beginning of the session sender runs this key 

generation algorithm. 

 

And in that session there are several messages, which sender would like to encrypt and 

communicate to the receiver using this k. So the first step of the session will be the key 



generation algorithm and the agreement of that key with the receiver by some magical 

mechanism. Now once the key is agreed upon, every time center wants to encrypt a plain text 

time using this key what is going to reduce the phone, it is going to run the encryption algorithm 

to produce the cipher text. 

 

And the cipher text will be communicated over the public channel, through which sender is 

communicated to the receiver and as and when the receiver receives the ciphertext what it is 

going to do is receiver will be knowing what encryption process has been used by the sender. So 

it will know the corresponding decryption process and not only that, it will also know the key 

using with the center has operated the encryption process. 

 

So using the same key it will operate the decryption process and will recover the plain text, that 

is out typically we are going to use a symmetric encryption process. 

(Refer Slide Time: 18:57) 

 

Now what are the properties that we need from any secure encryption scheme or a secure 

symmetric encryption scheme. So roughly we need 2 properties. The first property is the 

correctness property, which says that, that for any key with the key generation algorithm has 

output. And for any plain text m which has been encrypted by m, the following condition should 

hold. If I encrypt the plain text m under the key k to obtain a ciphertext C. 

 



And if I decrypt that cipher text C using the decryption process under the same key k, I should 

get back the original. That is a correctness property to give you the analog if you have a physical 

lock, and if I have 2 copies of the key, what is correctness property demand is that if I actually 

lock that key using the key and send that lock in the lock condition to you, and if you have also 

the same key and if you try to open that lock in the lock position using the key that you also own, 

you should be able to open the lock from the lock condition to the open condition. 

 

That is roughly the analogy you can imagine from this correctness requirement. The second 

important property which we need or expect from a secure symmetric encryption process is that 

of privacy. And now we are going to see that what are the challenges we face when we try to 

formalize the privacy requirement. Intuitively, when we say that a symmetric encryption process 

is secure, or it achieves a privacy property, I mean, that by seeing the ciphertext C the adversary 

or the bad guy who has observed the ciphertext C should not be able to compute anything about 

the message m. 

 

That means imagine there is a third party who is the bad guy who has intercepted the ciphertext 

who knows the details of the key generation process, the encryption process and the decryption 

process. The only thing that bad guy does not know is the value of key with which sender has 

operated the encryption process. The privacy property demands informally, that even after no 

knowledge of ciphertext should not give any information about the messaging. 

(Refer Slide Time: 21:11) 



 

However, it turns out that if we want to formalize the privacy definition, there are several 

challenges that we face. So what I am going to do next is I will propose a series of definition to 

formalize the privacy condition. And then we will see a potential loop hole in each of these 

potential definitions, which is going to show you that what how difficult it is indeed to come up 

with a right definition of privacy. 

 

So my first candidate definition to formalize the privacy definition is the following. I will say 

that an encryption process is secure if the ciphertext does not reveal the underlying key. The 

intention behind this definition is that the if the key is revealed to the adversary, then it can find 

out any subsequent message which has been encrypted under that key, so the minimum 

requirement which I require from any private encryption scheme is that it the ciphertext should 

not reveal the underlying key. 

 

Well it turns out that the requirement is definitely meaningful from any secure encryption 

process. This definition is completely useless. For example, consider an encryption algorithm, 

which always outputs a cipher text, which is same as the plain text, that means the cipher text 

does not depend upon the key at all. And the value of the cipher text is the same as the plain text. 

 

If you see this definition, and this candidate encryption process, definitely the encryption process 

is not revealing anything about the key and ask for this definition. You can label this encryption 



algorithm as a secure encryption algorithm. But this kind of encryption algorithm is completely 

useless to us in practice because it is completely revealing your plain text. So now let us rectify 

this definition. 

 

And let me come up with the second candidate definition to formalize the privacy definition. 

And my definition 2 is I will say an encryption process is secure if the ciphertext does not reveal 

anything about the underlying plaintext, because that is what is the basic intuition of the privacy. 

The problem with this kind of definition is what do you mean by ciphertext does not reveal the 

underlying plaintext, how much it should reveal, how much it should not reveal. 

 

For example, you might have an encryption process, where 99% of the plain text is not revealed 

by the ciphertext. But unfortunately, the ciphertext might be revealing 1% of the plain text and 

that 1% of the plain text which is getting leaked by the cipher dec might be the critical 

information which you want to hide. Again, this definition and this candidate in encryption 

process. 

 

This candidate encryption process might look like satisfying the definition 2 but actually such 

kind of encryption algorithm I cannot use in practice. The problem with this definition is I am 

not exactly specifying what it means by revealing and not revealing and how much to reveal and 

how much not to reveal. 

(Refer Slide Time: 24:05) 



 

So to fix this definition, let me propose the third definition potential definition to formalize the 

privacy definition. The definition 3 says that an encryption process will be considered a secure if 

the ciphertext does not reveal any character of the underlying plaintext. So this will take care of 

the potential bug which was there in our definition 2 or the candidate encryption scheme that we 

proposed to violate definition 2. 

 

Because now, even if 1% is revealed, it is not going to satisfy definition 3. But again, there is a 

potential loop hole in this definition, consider an encryption algorithm where ciphertext does not 

indeed reveal any of the underlying characters of the plain text. But a cipher text might reveal the 

range of the plain text namely it might reveal whether the plain text is less than a particular 

threshold or whether it is greater than a particular threshold. 

 

Again, if I view the definition this candidate encryption scheme indeed satisfies the property 

because no character of the underlying plaintext is revealed. But what is getting revealed is 

whether the plaintext is less than a certain value or greater than a certain value. And that might 

itself be a security breach. So I cannot afford to use such kind of encryption algorithm to encrypt 

sensitive data. 

 

Because if the ciphertext is going to reveal the range of the sensitive data, I might be in trouble. 

So let us try to fix this potential problem in definition 4 and the definition 4 says that an 



encryption process will be considered a secure if the ciphertext does not reveal any meaningful 

information about underlying plaintext that means should hide not only the underlying plain text, 

it should also hide whether the message is less than a certain value greater than a certain value 

and so on. 

 

Well, intuitively this definition is good. But the problem here is what exactly constitutes a 

meaningful information varies from application to application, for certain application, the 

underlying characters of the plain text might be the sensitive information, for another application 

whether the message is less than a certain value or greater than certain value that might be the 

meaningful information, and so on. 

 

So you cannot exhaustive list on what constitutes a meaningful information for a particular 

application. That is a downside of this definition. So, that is as a result, I cannot take it as a 

meaningful definition of privacy. 

(Refer Slide Time: 26:25) 

 

So to fix that problem, let us come up with the next possible definition of the privacy. And this 

definition says that an encryption process will be called a secure if the ciphertext does not help 

the attacker to compute any function of the underlying plaintext. That means imagine an attacker 

who has seen the ciphertext who knows the encryption process. And the attacker is interested to 



compute some function say F of the underlying message the center has actually encrypted in the 

ciphertext. 

 

We will say the encryption process is secure. If using the knowledge of the cipher text, adversary 

is not able to compute the function of the underlying message. Well, this is precisely what we 

expect from a secure cipher. But still there are certain loopholes in this definition. Namely, there 

are 2 loopholes. The first loophole is that how do you formalize whether a particular cipher text 

has helped the adversary to come to the function of the underlying plain text or not. 

 

How do you judge that, how do you mathematically formalize that. That is the first loophole in 

this definition. And the second loophole in this definition is what exactly are the capabilities of 

the adversary you are considering, that is not specified in this definition, that means whether you 

are considering an eavesdropper adversary who is simply observing the ciphertext and trying to 

compute a function, or whether you are considering an adversary or malicious adversary, who 

could change the contents of the ciphertext. 

 

And see the behavior of the or the other response of the receiver and then trying to compute the 

functions of the underlying messages. Also this definition does not specify is the adversary also 

provided with any kind of additional information that means, what are the various capabilities of 

the adversary which you are considering. So even though intuitively definition 5 is the right 

definition. 

 

The 2 potential shortcomings of this definition is the exact formalization of whether the 

ciphertext is helping the adversary to compute any function of the underlying plaintext and what 

precisely is the attack model or the adversarial model you are considering. 

(Refer Slide Time: 28:33) 



 

So, that brings us to the discussion of various attack models which we consider in the 

cryptography. So, typically in cryptography we consider the following 4 attack models. The first 

attack model is the ciphertext only attack or the COA attack model. The next attack model is the 

known plaintext attack model or KPA model. The next attack model is the chosen plaintext 

attack or CPA model. 

 

And a final attack model is the chosen ciphertext attack model or CCA attack. In all these attack 

models, the scenario is the same. We have a sender and the receiver who have agreed upon some 

common key, by running the key generation algorithm and agreeing the key with other entity by 

some magical mechanism such that the adversary or the bad guy or the attacker is not aware of 

the key and the adversary has intercepted some ciphertext. 

 

And the goal of the adversary is to compute some function of the underlying plain text which has 

been encrypted in this C, what differs in this attack models is the power of the attacker that 

means what kind of additional information apart from the ciphertext is available to the attacker. 

So what we are going to do next is we will go upon, we will go through each of these attack 

models and see what are the capabilities of the attack. 

(Refer Slide Time: 29:45) 



 

So let us start with the ciphertext only attack model or the COA attack model, which is the 

simplest party possible attack scenario. And here the scenario is the following. We have the 

sender and the receiver who have agreed upon a common key not known to the attacker and 

sender has encrypted several messages using the same k as for the encryption process and the 

details of the encryption process is known to the attacker. 

 

The attacker has each dropped and intercepted to ciphertext. So attacker does not have to do 

anything fancy here it just have to listen over the channel what cipher text contents have been 

communicated. So that is why this attack is passive in nature. And the goal of the attacker here is 

to compute some functions of the underlying plaintext. So apart from the cipher text knowledge, 

no additional information is available to the attacker in this attack model. 

(Refer Slide Time: 30:33) 



 

The next attack model is the KPA attack model which is slightly stronger attack model than the 

COA attack model because here the adversary is available with some additional information 

compared to the previous model. So the additional information which is available to the 

adversary is the following. The adversary is available with a collection of messages comma 

cipher text here namely, message m 1, c 1 message m 2, c 2 message m t, c t. 

 

That means it got a database of several message, ciphertext pair, where each of the ciphertext in 

the pair is an inscription of the corresponding message in the pair under the same unknown key. 

That is important here, all the messages in the ciphertext are under the same unknown key which 

is not known to the attacker. Now, you might be wondering, what exactly, how exactly it is 

possible for an attacker to come up with such pairs of message, cipher text in real life. 

 

So there could be several scenarios through which it is possible for an attacker to get access to 

such message, cipher text pair, for instance all encrypted messages do not remain private 

indefinitely or if you consider the message to be email exchange, then the first message in any 

email is usually the message hello dear hi, etc. In that sense, the interruption of certain messages 

under the unknown key is going to be revealed to the attacker. 

 

So in this attack model we assume that attacker has already got a collection of several message 

common ciphertext pairs. And now a fresh message has been encrypted by the sender under the 



same key k and communicated over the public channel. And the goal of the attacker is to 

compute some function of this message m using the help of the ciphertext. I stress that the 

message the fresh message, which is now getting encrypted by the sender might already belong 

to the collection of messages and ciphertext pairs which adversary process. 

 

And this shows the importance of your encryption process to be randomized. So recall when we 

discuss the syntax of symmetric encryption process, I stress that the encryption process should be 

randomized. That means even if I encrypt the same message under the same key, I should obtain 

a different ciphertext. If you do not use a randomized encryption process, but instead use a 

deterministic encryption process. 

 

And if the same message is getting encrypted multiple times, then just by observing whether the 

cipher text gets repeated over the channel adversary could come to know whether the same 

message is getting encrypted or not. In this specific case, if the fresh message m, which sender is 

actually communicating to the receiver is already present in the list. And if my encryption 

processes are deterministic encryption process. 

 

Then this C is going to be already present in the list of message, ciphertext pair and adversary 

could easily find out the exact contents of the fresh message. That is why I need my encryption 

process to be a randomized encryption process. So that is the KPA attack mode. And as you can 

see, this is a more powerful attack model. Because not only the adversary is available with the 

encryption of the message m he was also available with the encryption of several earlier 

messages and there. This is already available with the encryption of several prior messages under 

the key k. 

(Refer Slide Time: 33:55) 



 

The next attack model is a more powerful attack model and this is called the chosen plaintext 

attack model or the CPA attack model. The scenario here is the following. We have a common 

key k agreed upon between the sender and the receiver by some magical mechanism. And now 

we assume here that the adversary gets an encryption oracle service to the encryption box. What 

I mean by that is the adversary can force or it can influence one of these 2 parties. 

 

Say for example, the sender to encrypt any message of adversaries choice under the key k. And 

importantly, the sender who is actually providing the encryption oracle service would not be 

aware that actually it is encrypting messages of adversaries choice and providing those ciphertext 

to the adversary. So that is why we say or we model this kind of service as an encryption oracle 

because adversary won't be knowing the value of the key. 

 

But still it will be able to get or see the encryption of messages of any message of its choice 

under that unknown key. And it can get the encryption oracle service for any number of message 

as long as it is polynomially bounded or it is practical in nature. That means, it should not be 

possible for the adversary to get the encryption oracle service for an infinite amount of time. 

 

He should be able to get encryption oracle service only for a limited amount of time or for a 

practical amount of time. So, we assume that it gets or it interacts with the encryption oracle 

service and submit messages of its choice the plain text of his choice and C is the corresponding 



ciphertext and it builds upon our dictionary of messages comma ciphertext pairs in this particular 

case, the message m 1, c 1 m 2, c 2 and the message m t, c t where all the ciphertext or the 

encryptions of the corresponding message messages under the unknown key k. 

 

So, the amount the now the kind of information that is available to the attacker here is same as in 

the KPA and in KPA model also adversary was provided with several messages, ciphertext pairs 

under the unknown k and here in the CPA model also adversary is available with several 

message, ciphertext pairs under the unknown key k. The difference here is the messages in the 

adversaries database in the CPM model is now under the control of the attacker. 

 

That means if adversary, depending upon the context of the underlying application is already 

aware that these are the potential messages which sender might encrypt in the future. The CPA 

model allows the adversary to see encryption of those messages in advance by getting an 

encryption oracle service right. Now, you might be wondering that how in reality it is possible 

for an adversary to influence the sender that please encrypt this messages for me without actually 

sender knowing that she or he is providing the encryption oracle service to the attacker. 

 

When we will be discussing the CPA attack model in some of our subsequent lectures we will 

see how in reality it is possible to launch CPA attack. So now assume that adversary is already 

available with this message, cipher text pairs. The goal of the adversary is the following, a fresh 

message has been encrypted by the sender under the same unknown key k and has been 

communicated over the cyber open channel to the receiver. 

 

And adversary has intercepted this ciphertext. And the goal of the attacker is to compute some 

function of the message which has been encrypted in this fresh ciphertext. I stress here that the 

message which is freshly encrypted might already belong to the database of message, ciphertext 

pair, which adversary process. I also stress that the CPA attack model is active in nature that 

means to get this encryption oracle service, the adversary not only has to listen over the public 

channel between the sender and the receiver. 

 



It also need to change the contents of the ciphertext which are getting communicated between the 

sender and the receiver and see the response of the receiver or the sender to get the encryption 

oracle service that means these kinds of this particular type of attack is no longer an 

eavesdropping attack is now an active attack. So that is the CPA attack model for you. 

(Refer Slide Time: 38:14) 

 

Now let us go to the next attack model, which is the strongest possible attack model, which we 

call as the CCA attack model. And here adversary can now get 2 kind of encryption oracle 2 kind 

of oracle service, it has got access to the encryption oracle service that means it can ask for 

encryption of any message of its choice by influencing the sender or the receiver plus it can get 

the decryption oracle services or as well from any of the 2 parties. 

 

Say for example, from the receiver, what I mean by the decryption oracle services that it can 

submit any ciphertext office choice because the adversary might be already aware that what 

could be the candidate ciphertext that your encryption and decryption and that your encryption 

process might produce. So it can come up with any candidate ciphertext and submitted to the dec 

k it can influence the receiver to decrypt the ciphertext for the adversary. 

 

And in response, the receiver is going to decrypt those ciphertext and send back the 

corresponding plain text back to this adversary. In that sense, we say that the adversary gets 

access to the decryption oracle and there is no restriction on the order in which the adversary 



could get the encryption and the decryption oracle Service it could see, or it could ask for the 

encryption oracle service for certain number of steps. 

 

And then it could ask for the decryption oracle service for certain number of steps. And there is 

absolutely no restriction on what messages he could get encrypted under the encryption oracle. 

And there is absolutely no restriction on what ciphertext it could get decrypted from the 

decryption oracle. So we make no such restriction. And now adversary has 2 kinds of database. 

So the first database is what it gets from the encryption oracle service. 

 

So this is nothing but the encryption of several messages of adversaries choice under the key k 

and a second database is the description of several candidates ciphertext of adversaries choice. 

And the important thing here is that all encryptions and descriptions are done under the same 

unknown key k that is important. So, adversary is now more powerful here. And the goal of the 

adversary is to following. 

 

That now imagine sender has a fresh message which has been encrypted and adversary each draft 

the cipher has to exceed the goal of the adversary is to compute some function of the underlying 

plain text m with the help of the database that adversary has already prepared, I stress that the 

fresh message the sender is sending might already belong to the list database that adversary 

produce. 

 

The goal of the adversary is to compute that message m which has been freshly encrypted using 

the help of the database that is available to the attacker. So, these are the 4 attack models which 

we consider in the literature. Now when I say that a particular encryption scheme is secure in a 

particular attack model. For example, if I say that an encryption scheme is secure in the CCA 

model, by that I mean that even if adversary is launching a CCA attack. 

 

That means adversary got access to the encryption oracle service, it got access to the decryption 

oracle service, still it should be difficult for the adversary to compute any function of the 

underlying plain text which has been freshly encrypted and communicated over the channel. In 



the same way, if I say an encryption process is secure and the COA model or the ciphertext only 

attack model. 

 

I mean that just by looking into the ciphertext adversary should not be able to compute any 

function of the underlying text right. 

(Refer Slide Time: 41:43) 

 

So, these are the 4 attack models which we will discuss in this course rigorously. Now, the final 

thing which I want to discuss for this lecture is the Kerckhoffs’ principle. So definitely to 

maintain the security, the key with which the encryption and the decryption process are operated 

should be a secret. Because if the keys leaked to the adversary, adversary can definitely find out 

what has been encrypted or decrypted. 

 

Now, you might be wondering what about the encryption and decryption algorithm, will I get 

more security by keeping the encryption and decryption algorithm private to well in 

cryptography we strictly say that we should not follow this principle and this is coming from a 

well known principle which we call Kerckhoffs’ principle. So Kerckhoffs’ is a well known 19th 

century Dutch cryptographer. 

 

And he led down several guidelines, which should be followed by any good practical, secure 

cipher. And one of the guidelines states that that a crypto system should be secure if everything 



about the system is public knowledge except the key. That means what this principle clearly 

states that the secrecy of the system should only rely on the secrecy of the key and not on the 

secrecy of the encryption and decryption process. 

(Refer Slide Time: 42:59) 

 

Now what is the importance of Kerckhoffs’ principle. What I mean by that, what are the 

arguments in the favor of Kerckhoffs’ principle. So the first argument in the favor of Kerckhoffs’ 

principle is the following. Maintaining the privacy of a key is a relatively easier task compared to 

maintaining the privacy of a pair of algorithm. Because keys are roughly of size 100 bits, 200 

bits, whereas programs are 1000 times larger than the size of the key. 

 

So that is why maintaining the privacy of a key is relatively an easier task than maintaining the 

privacy of a large algorithm. Also the algorithm can believe or reverse engineer that even if you 

assume that encryption and decryption process which are operated by the sender and receiver are 

private, just by launching on KPA attack where adversary gets access to several messages and 

ciphertext pair. 

 

Adversary could reverse engineer the steps of the encryption and decryption process. Also, 

another argument in the favor of Kerckhoffs’ principle is that if your keys leaked, it is very easy 

to replace the key right because your keys are of very short magnitude right. Whereas if a 



program is leaked, then it is also encryption processes leaked and it is very, very difficult to 

come up with a substitute. 

 

Because as you will see in this course, coming up with new encryption algorithm it is really, 

really a very challenging task. Also, it is infeasible to imagine a scenario where a user selects a 

pair of secret encryption and decryption process for every party with which it want to do the 

secure communication. For example, if I want to do secure communication with 100 parties, I 

cannot come up with 100 secret algorithms or 100 secret encryption algorithms for each of these 

users. 

 

Whereas it is feasible to imagine that I am going to use the same encryption and decryption 

process with each of the 100 users. But I am going to use 100 different keys for operating each of 

these instances of encryption and decryption algorithm and most importantly, if you are in 

corruption and decryption algorithms are publicly available, they go through public scrutiny. 

And if something has been proved to be secure, even after they are existing for last 30 40 years. 

 

Then we have a strong confidence that indeed, those published algorithms are more secure 

compared to an algorithm about which you do not know any details right. So the summary here 

is it is extremely dangerous to use any kind of proprietary encryption process. So if someone 

says that, hey, I am not going to leave the description of my encryption process, but I give you 

the guarantee that it gives you a very good amount of security. 

 

You should not believe such encryption process, because you do not know what kind of 

loopholes might be present in such an algorithm. So it is always recommended to go or use 

algorithms which has available in public domain and has been scrutinized publicly. So that 

brings us end of this lecture. To summarize, we discussed the various types of cryptographic 

primitives that we use in cryptography. 

 

We also discussed the syntax of symmetric encryption process. And we focused on the 

importance of the key generation algorithm and encryption algorithm to be randomized, because 

this comes as an implication of Kerckhoffs’ principle, which says that the secrecy of the whole 



system should rely on the fact that only the key is hidden not the algorithms right. We also 

discuss the various kinds of attack models, namely the COA attack model, the KPA attack 

model, the CPA attack, model and CCA attack model. I hope you enjoyed the lecture. Thank 

you. 


