
Foundations of Cryptography 
Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 
Indian Institute of Technology-Bengaluru 

 

Lecture-19 

Practical Constructions of Block Ciphers Part I 

 

Welcome to lecture 18, in this lecture we will discuss about the practical constructions of block 

ciphers. And this will be the part 1 of the discussion on the practical constructions of block 

ciphers. 

(Refer Slide Time: 00:41) 

 

So, the road map of this lecture is as follows, we will start discussing about confusion diffusion 

paradigm and then we will see how to instantiate the confusion diffusion paradigm using 

substitution permutation network or SPN. Later on in during our part 2 of the discussion on 

practical constructions block cipher. We will see that how SPN plays a very crucial role in the 

design of one of the most popularly used block ciphers, namely DES. 

(Refer Slide Time: 01:10) 



 

So let us start our discussion on confusion diffusion paradigm. So, this paradigm was introduced 

by Claude Shannon. And the underlying idea here is that we are interested to design a random 

looking keyed permutation, right. So that is our goal, we want to construct a random looking 

keyed permutation big F with a larger block length by combining several random looking 

permutations, which are also keyed permutations. 

 

But with a small block length, so the random permutations with small block length those are 

denoted by f sub i. And for basically the confusion diffusion paradigm does is it tells you how to 

compose or to combine this random looking permutations with small block length to obtain a 

random looking permutation with a larger block length, right. And the way we do the composing 

is in such a way that the choice of the smaller permutations if sub i are determined by the secret 

key of your larger sized permutation. 

(Refer Slide Time: 02:17) 



 

So, to demonstrate how exactly the confusion diffusion paradigm works, let me take an example 

where my goal is to construct the keyed permutation big F with a block length of 128 bits using 

several keyed permutations of block length of 8 bits, right. So, I beg your pardon here, so the 

smaller size permutations, they are not keyed permutations, they are unkeyed permutations. 

There will be truly random permutations and what basically the confusion diffusion paradigm 

does is. 

 

It tells you how to compose these small block size unkeyed permutations and obtain a larger 

blocks length, the keyed permutations. So for the demonstration purpose, we will assume that we 

have several random permutations, mapping 8 bits to 8 bit strings. And using that our goal is to 

compute or construct a keyed permutation big F of block length of 128 bits. So the way we are 

going to design the function big F is as follows. 

 

So we parse the input f x for the function f as a sequence of 16 bytes, so those bytes I am 

denoting as x 1, x 2, X 60. And the reason I am splitting it into bytes is because we are given at 

our disposal several permutations, mapping 8 bits to 8 bits, right. So that is why the input x for 

the keyed permutation big F is divided into bytes here. 

(Refer Slide Time: 03:44) 



 

So imagine that you have the set of all permutations mapping 8 bit string straight bit strings. So 

that said, I am denoting by this notation from sub 8 right. So each of this small circles, you can 

imagine that it is a permutation mapping 8 bit string to 8 bit string right. And each of these 

permutations, say, if I take this particular permutation and f i. You can interpret it as a table 

consisting of 2 to the power 8 entries, right. 

 

So you can imagine it as a table consisting of 2 to the power 8 entries where the first entry 

denotes the value of the permutation on the input all 0. The second entry denote the value of the 

permutation on the inputs 001 and like that the last entry denote the value of the permutation on 

the input 111. So, like that you will have 2 to the power 8 rows, and each row will basically 

consisting of 3 bits, and 3 bits, namely the value of permutation on the corresponding inputs. 

 

So, in that sense, I can imagine or interpret each of these small permutations f sub i as a table 

consisting of 2 to the power 11 bits, right. 

(Refer Slide Time: 04:57) 



 

So, like that you have several such tables and each such table I am denoting as a red circle here. 

And a collection of all those red circles basically is my set perm sub 8 ok. 

(Refer Slide Time: 05:07) 

 

So, the way we are going to construct the keyed permutation big F is as follows, we randomly 

choose 16 permutations f 1, f 2, f 16 from this bigger set. And say the randomly chosen 

permutations of 16 permutations that I have chosen are denoted by this yellow circles. And each 

of these 16 permutations mapping 8 bit to 8 bit strings can be individually interpreted as a string 

of 2 to the power 11 bits. 

 



This is because as I said earlier, each of the permutations can be interpreted as a table consisting 

of 2 to the power 11 bits. So, the choice of the first small permutation that corresponds to a string 

k 1, the choice of the next permutation that will be the string k 2. And like that the choice of the 

16th permutation mapping 8 bit string to 8 bit string can be interpreted as another string of 2 to 

the power 11 bits ok. 

(Refer Slide Time: 06:09) 

 

And now once we have randomly chosen the 16 permutations, which are going to be used for the 

construction of the function big F. The overall key for the big permutation big F is the 

concatenation of the individual tables. Namely, the concatenation of k 1, k 2, k 16 and if I 

concatenate all the strings, I obtain the overall key for the function big F. So, it is easy to see that 

the key size for the function f which we are interested to construct will be of 2 to the power 15 

bits. 

 

Because each of the smaller permutations which I am going to use is denoted by 2 to the power 

11 bits and I have 16 such permutations. So overall the key size for the bigger permutation big F 

is 2 to the power 15 bits. And once I have decided the value of the key, the output of the keyed 

function F k on the input x is determined to be the value of the first small size permutation f 1 

operated on the first byte, concatenated with the value of the second smaller permutation f 2 on 

the second byte of the input x. 

 



And like that the value of the 16th is smaller sized permutation on the 16th byte of the input. And 

if I concatenate all these individual outputs, that is what is going to be my the output of the keyed 

function f k on the input x. So that is the way we are going to construct a function F using several 

smaller size permutations. Now the advantage of constructing the bigger function F k like this is 

as follows. 

(Refer Slide Time: 07:56) 

 

If I would have directly tried to construct a function F k, right mapping say 128 bit strings to 128 

bit strings. Then that would have required me to actually store a table consisting of 2 to the 

power 135 bits, because that table will have 2 to the power 128 entries. And each entry would 

have further consisted of 8 bits. So that is why the overall size of that table would have been 2 to 

the power 135 bits. 

 

But the way we have constructed the function f k by combining several 16 smaller permutations, 

I just need to store a key of size 2 to the power 15 bits. And it is enough if I just tow the value of 

the k namely, the description of the 16 smaller permutations which I have chosen. And that 

suffice for evaluating the value of big F on any input x. So that is the advantage of constructing 

the keyed function or keyed permutation F k by this confusion diffusion paradigm. 

 

So now you might be wondering why exactly the name confusion and diffusion in this term 

confusion diffusion paradigm, what exactly causes confusion and what exactly causes diffusion. 



(Refer Slide Time: 09:13) 

 

So let us go into the details, so this is the way in our example we have constructed the keyed 

function F k. So, the smaller size function f 1, f 2, f 16 which we have chosen here, they are 

called us round functions and they are dependent on the key, right. So that creates a confusion 

from the viewpoint of an adversary. In the sense if an adversary wants to compute the value of F 

k of x, but he is not aware of the value of k. 

 

Then the adversary does not know what exactly are the 16 round functions I am going to use. 

And from the viewpoint of the adversary, it could be any 16 functions from this collection of all 

permutations mapping 8 bit strings to 8 bit strings. And a size of this collection of all 

permutations mapping 8 bit strings to 8 bit strings is enormously large. So that means adversary 

will be completely confused or clueless what exactly is the value of the key, that means what 

exactly are the 16 round functions. 

 

And hence, adversary cannot predict what exactly is going to be the value of F k of x even if it 

has seen several value of F k of x, for several x of it is choice in the past. So, that creates the 

confusion aspect in this paradigm. 

(Refer Slide Time: 10:30) 



 

However, it turns out that even though the description of the keyed function F k which we have 

constructed is very concise. Namely, it requires a to stoke only 2 to the power 15 bits, it is not 

pseudo random, right. So require a pseudo recall that the property of the pseudo random 

permutation is that. If I have 2 inputs x and x dash and if I compute the value of F k of x and F k 

of x dash with respect to the same key. 

 

Then even if x and x dash differs in a single bit or a single byte, the outputs should be 

significantly different. That is what we expect from a truly random permutation and if I say that 

F k is a pseudo random permutation. Then basically I expect almost similar behavior from the 

resultant F k x function. 

(Refer Slide Time: 11:26) 



 

But it turns out that the way we have constructed the function F k x, this property is not 

achieved. It is easy to see that if I have 2 inputs, x and x dash which differs only in the first byte, 

then the output of F k of x and F k of x dash will differ only in the first byte. All the remaining 

16, 17, 15 bytes of the output of F k x and F k of x dash will be exactly the same. And that is not 

what exactly you expect from a pseudo random permutation. 

 

So the way we get around with this difficulty is that we actually apply the logic that we have 

used in the construction of F k of x several number of times by introducing what we call as a 

diffusion step. 

(Refer Slide Time: 12:05) 

 



So let me go into a little bit more detail, so imagine we have the input x for the function F k, 

which we are interested to construct, and we have the value of the key. What we do is that 

depending upon the value of key, we determine the smaller sized permutations which we are 

going to apply on the individual bytes of x. And after we obtain the outcome of the individual 

round functions on the respective bytes, what we do is we apply a mixing permutations. Namely, 

we just shuffle the bits of the intermediate outcome that we have just obtained. 

(Refer Slide Time: 12:44) 

 

And what we say is that this one iteration of confusion followed by one iteration of this mixing 

permutation constitutes 1 round. And then we repeat this process again, that means we just do 

not output whatever we obtain after 1 round as the output of F k x, whatever output we obtain at 

the end of first round, that is considered to be the x input for the next iteration. And again, 

depending upon the value of the key, we determine the round functions that we are going to use. 

 

We apply the individual round functions on the intermediate output and again we do a mixing 

permutation. And then we repeat this process for several iterations for several fixed number of 

rounds. And by repeating this process for several number of rounds, it is ensured that even there 

is a single change in the input bit, it affects over several output bits. Because every iteration, the 

result of mixing permutation will cause the bits of the intermediate output to shuffle around. 

 



And that is what creates a diffusion from the viewpoint of the adversary and that is why the name 

confusion diffusion paradigm. The confusion is created because the value of key is not known 

for the adversary. And that is why the choice of the round functions would not be known to the 

adversary. And diffusion is caused because of the mixing permutation which ensures that after 

every at the end of every round whatever output we obtain that shuffled around. 

 

And that is as a result when we go to the beginning of the next iterations, the next round 

functions will be applied on different bytes. So that creates a diffusion, which ensures that even 

if there is a single change in the input bit, that affects several output bits and ensures that the 

overall keyed permutation F k x that we obtained behaves like a pseudo random permutation, 

right. 

(Refer Slide Time: 14:39) 

 

So that is on a very high level, the confusion diffusion paradigm. And after we do this process 

for several number of iterations, the resultant output is denoted as F k of x. 

(Refer Slide Time: 14:49) 



 

So now let us discuss about substitution permutation network or SPN in short, which implements 

the confusion diffusion paradigm. And this SPN is a very important building block used in the 

construction of practical block ciphers like DES, which we will discuss in the next lecture. And 

this SPN implements the confusion diffusion paradigm, but with few differences. The most 

important difference is that instead of choosing round functions which are key dependent. 

 

We will be now using key independent and publicly known round functions, which I denote by S 

i or which are also called us S boxes. Because they are known as substitution boxes that means, 

if I go back and if I see the description of the confusion diffusion paradigm. In the confusion 

diffusion paradigm, the confusion was coming because the value of key was determining the 

round functions that we are using. 

(Refer Slide Time: 15:51) 



 

But in the substitution permutation network, there are no round functions which are key 

dependent, everything is publicly known. So, now you might be wondering that if the round 

functions that we are going to use in SPN are publicly known and key independent, how exactly 

the confusion is going to be brought from with respect to the viewpoint of the adversary. Well, 

the confusion comes because even though the S boxes are publicly known. 

 

The S boxes are applied on an input, which depends upon the value of the key. Namely, if I want 

to apply the S box on an input x, then we do not directly compute the value of the S box on the 

input x. But rather on the value of x, XORed with the value of the key and that ensures that even 

though the value of the description of the S box is publicly known. The exact input on which the 

S box is operated upon is not known from the viewpoint of the attacker. And that is what creates 

that confusion aspect of the confusion diffusion paradigm. 

(Refer Slide Time: 16:52) 



 

So, again to demonstrate how exactly an SPN works, let us discuss how exactly we are going to 

construct a keyed permutation with a block size of 64 bit. Assuming that we are given 8 S boxes, 

right. So those as boxes we denote as S 1, S 2, S 8 and they are publicly known they are key 

independent. So this is the x input for my keyed permutation that I am interested to construct 

which I denote as x. And the first step in the SPN architecture will be the key mixing step, where 

we use a 64 bit sub key and mask it with my current x input. 

(Refer Slide Time: 17:36) 

 

And whatever output I obtain that I parse it as collection of 8 bytes, and now this individual 8 

bytes go through the 8 S boxes, which are publicly known. So the first step where actually we do 

the masking of the input current input with the sub key, that step is denoted as the key mixing 



step. And this key mixing step is followed by a substitution step, where the outcome of the key 

mixing step are interpreted as individual bytes and they go through the individual S boxes. 

 

And as a result, now I obtain a 64 bit intermediate output and the substitution step is followed by 

a permutation step, where we do the shuffling. Namely, we apply a mixing permutation and this 

mixing permutation also will be publicly known. So, in this whole architecture, everything will 

be publicly known except the value of the key, the adversary would not know the just adversary 

would not be knowing the value of the key. 

 

Other than that, it will be knowing the entire architecture, it will be knowing the description of 

the S boxes, it will be knowing the description of the mixing permutation and so on. And once 

we apply the mixing permutation that finishes 1 round, and then we apply this process again. 

That means we go to the next round that means whatever intermediate output we obtain at the 

end of the mixing permutation that serves as the x input for the next iteration. 

 

And then we again go through the same process. And after doing it for several iterations, the 

final outcome is treated as the outcome of the resultant keyed permutation that we have 

constructed using the SPN architecture ok. 

(Refer Slide Time: 19:12) 

 



So if I say that I have a keyed permutation design using an r-round SPN, then it means that we 

have done r iterations of key mixing followed by substitution, followed by permutation. And this 

r-iterations are finally followed by one final round of key mixing, right. So, you might be 

wondering that why this 1 round of final key mixing after the rth iteration. Well, it turns out that 

if we do not do this final key mixing at the end of the after the completion of the rth iteration. 

 

Then the effect of the rth iteration, substitution step and permutation step are completely useless. 

Because the adversary knows the description of the permutation step and the description of the 

substitution step. Say if I do not apply this final round or final iteration of the key mixing at the 

end of the rth iteration. Then it is as good as saying that the effect of rth iteration substitution 

step and the permutation step is not going to be applicable. So that is why this final key mixing 

step is useful. 

(Refer Slide Time: 20:21) 

 

And now, the question comes is how do we determine this sub keys for the individual round. So, 

we assume that we have a master key k for the function F k x which we are interested to 

construct. And this 64 bits of keys are selected from this master key as per a publicly known key 

scheduling algorithm, right. Say depends upon how exactly my key scheduling algorithm is 

designed and this key scheduling algorithm will also be publicly known. 

 



Because remember, the only thing which a sender and a receiver who are going to operate this 

keyed permutation F k will share is the value of the key. Other than that day, we expect that they 

should not have any pre shared information. So that is why the description of the S boxes, the 

description of the mixing permutation, the description of the keyed scheduling algorithm 

everything is available in the public domain. 

 

So, depending upon the length of the master key, we determine a key scheduling algorithm 

according to which we decide which subset of the master key is going to serve as the sub key for 

the ith iteration and that description will be publicly known right. 

(Refer Slide Time: 21:31) 

 

So, a very important theorem which we can prove is that, if the S boxes which we are using in 

the architecture of SPN or permutations. Then the keyed function F k which we are going to 

obtain at the end of any r-round SPN is going to be a permutation. That means it is a 1 to 1 on to 

mapping it does not matter what exactly is the value of r. As long as you ensure that these S 

boxes are invertible, the overall keyed function F k which we are going to obtain by deploying an 

r-round SPN is going to be a keyed permutation right. 

 

And the proof for this simply follows from the fact that at the receiving end if the master key is 

also known to the receiver, then the effect of each round of the SPN is invertible. 

(Refer Slide Time: 22:28) 



 

For instance, imagine that the sender has used an input x and it has operated an r-round SPN and 

it has obtain the value y. And imagine that the receiver knows the value of y and it also knows 

the master key k right. Now, the goal of the receiver is to uniquely go back from the output y to 

the input x. So, let us see whether it can reverse back the effect of the last iteration, right. 

 

So, since this mixing permutation is publicly known from this output y, it can receiver can go 

back to this intermediate step. Because the mixing permutation is publicly known, so that as a 

result in inverse of this output y with respect to this mixing permutation. The input that would 

have given this output y with respect to this mixing permutation can be uniquely computed 

because it is a permutation. 

 

Now, once we have reached here, that means we have reached to the state where the we know 

the output of the S boxes 8 S boxes and each of these S boxes are invertible. As a result, we can 

reverse back the effect of each of this S boxes and we have come to the output of the key mixing 

stage. And now, if I want to go back from the output of the key mixing stage to the previous 

input, what we have to do is basically we have to take out or we have to do the XOR of this sub 

key which I would have used in the last iteration. 

 

And that we can compute provided we know the value of the master key, and the key scheduling 

algorithm is anyhow publicly available. That means any entity which knows the value of key and 



y can uniquely invert back the output y and obtain back the input x. And as a result we can say 

that the overall construction F k x which we have constructed is indeed a keyed permutation. 

(Refer Slide Time: 24:24) 

 

So, now let us come to the security properties of the keyed permutation which we obtained by 

operating an r-round SPN, right. So, the construction is very straightforward right, now the 

important thing that we have to discuss is about the security aspect. Now, it turns out that the 

security of any keyed permutation F k, which we obtained by running an r-round SPN, depends 

upon the exact choice of the S boxes which we are using the exact choice of the mixing 

permutation. 

 

That we are using and the exact choice of key scheduling that we are using right. So in the 

architecture of SPN, till now I have not discussed what exactly should be the properties of the S 

boxes. We just required that the S boxes should be invertible to ensure that the overall F k x that 

we obtain is also invertible. But for the security properties, namely to ensure that your keyed 

permutation F k x is a pseudo random permutation. We need some desirable properties from 

these S boxes. 

 

In the same way we need some desirable properties from the mixing permutation and from the 

key scheduling algorithm right. It turns out that there are no hard hitting rules or sufficient 

conditions. Namely it is not known that if we ensure certain list of properties with respect to the 



S boxes mixing permutation and key scheduling algorithm, then the resultant construction is 

always going to be a pseudo random permutation. 

 

There are no such cookbook or algorithmic rules available. But it turns out that we do expect 

certain desirable properties from the underlying S boxes, mixing permutations and key 

scheduling algorithm to ensure that the resultant the keyed permutation indeed behaves like a 

pseudo random permutations. 

(Refer Slide Time: 26: 12) 

 

So there is an important property called avalanche effect and what exactly avalanche effect 

means is that, if we have constructed a keyed permutation F k using an r-round SPN. Then we 

expect that even a minor change in the input of F k should produce a significantly different 

output. Now the question is, how do we ensure that in how do choose an SPN which ensures that 

the resultant F k designed using the SPN indeed achieves this avalanche effect. So, for the 

moment assume that we have designed or we are using S boxes the publicly known S boxes and 

the mixing permutation having the following properties. 

(Refer Slide Time: 26:58) 



 

The S boxes that we are using which is publicly known and known to the adversary have the 

property does. Even if there is a change of 1 bit of input in the S box. It ensures that there are at 

least 2 output bits in the output bits of S box which differ right. That means what I am saying is 

that assume you have the S box having the property that if you operate it with input x and input x 

dash, where x and x dash differs only in say 1 bit. 

 

Then the resultant outputs y and y dash differs in at least 2 bits. So for the moment, you assume 

that all the 8 S boxes that we are using have this property right. 

(Refer Slide Time: 27:48) 

 



And for the moment assume that the mixing permutation that we are using have the property that 

the output of any S box serves as the input to multiple S boxes, when we go to the next iteration. 

So remember in the SPN, the mixing permutation basically shuffles the bits of the intermediate 

output and then only we go to the next iteration. So what we are assuming here is that we have 

some special type of mixing permutation, which ensures that the output of any S box serves as 

the input to multiple S boxes in the next round. 

 

So now let us see how exactly the keyed permutation F k is going to behave with respect to 

inputs x and x dash, where x and x dash differs in only say 1 bit say the first bit for simplicity 

right. Assuming that we are using S box is in mixing permutations that defines these 2 properties. 

So it turns out at the end of the first iteration it is only the first S box, whose output is going to 

differ in 2 bits. 

 

Because x and x dash with respect to all the remaining 7 bytes they will be same as a result 

output of all the 7 S boxes with respect to x and x dash will be same. But the value of the output 

of the first S box with respect to x and with respect to x dash will differ in 2 bits. And now, when 

we apply the output of the first S box with respect to the mixing permutation right, it will be 

ensured that when we go to the beginning of the second round, there will be 2 S boxes whose 

inputs will be differing right. 

 

Because this is ensured because of the mixing permutation which we have applied at the end of 

the first round. That means in round 2 we have now 2 S boxes, whose input differ in at least 1 bit 

and the output of those 2 S boxes during the second round will differ now in 4 positions. Because 

we are ensuring that we have our S boxes which ensures that even if there is a change in 1 bit of 

input the output differs in 2 bit positions. 

 

And now, those 4 bit positions right, where the output of SPN with respect to n x dash are 

differing. They will be going through this special mixing permutation. 

(Refer Slide Time: 30:07) 



 

And this will ensure that at the beginning of the third round, we now have several S boxes, 

whose input bits are differing and so on. So if we continue operating this SPN say for 6 rounds, 

then ideally we expect that all the 64 intermediate output bits of the SPN are going to be 

different. But it turns out that ideally we expect this behavior to be achieved by SPN but we 

would not be able to get it theoretically. 

 

But, it turns out that if we execute the SPN with this special type of S boxes and special type of 

mixing permutation for sufficiently large number of iterations, then avalanche effect is achieved 

more on this right. So that gives you an idea that the S boxes and the mixing permutations which 

we are going to deploy in the SPN. They cannot be any arbitrary S boxes or any arbitrary mixing 

permutation. 

 

They need to have certain nice properties to ensure that the resultant keyed permutation which 

we are constructing indeed behave like a truly random permutation or a pseudo random 

permutation and satisfies the avalanche effect. 

(Refer Slide Time: 31:18) 



 

It turns out that how many the number of rounds inside an SPN is also a very crucial feature and 

which determines the overall security of the keyed permutation which comes out from the SPN 

right. So to understand the significance of the number of rounds, it turns out that we have to 

understand what exactly we mean by the security of the resultant F k which we are constructing 

using the SPN, so since we are interested in the practical block cipher. 

 

We are not going to measure the security of the resultant block cipher asymptotically rather we 

defined what we mean by a practical security. So imagine the resultant F k that we are going to 

obtain by a operating an r-round SPN has a key length of little l bits right. So then the by 

practical security of F k, I mean that if adversary got access to several x i, y i pairs where y i is 

the value of F k on the input x i and a key is not known to the adversary. 

 

Then the adversary could retrieve the key only by performing computations of order 2 to the 

power little l. If that is the case, then we will say that the resultant block cipher F k that we have 

constructed is practically secure. So the idea here is basically we will say the resultant F k to be 

secure. If the only possible attack that adversary can launch to recover back the key given several 

x i comma y i pairs equivalent to brute force. 

 

If that is the case our F k will be considered as secure, whereas if there is an attack, whose 

complexity is of order less than 2 to the power l given several x i comma y i pairs to the 



adversary, we would not be considering the resultant F k to be secure that is the idea here. Now 

you might be wondering that how exactly the adversary is going to obtain this x i comma y i 

pairs right. 

 

So remember the CPA game or any CPA secure construction and which uses say a keyed 

permutation. And in any CPA secure encryption scheme when we play the CPA game with 

respect to an adversary, adversary is given the access to encryption oracle service. And we have 

seen in the candidate constructions of CPA secure scheme based on modes of operation that 

whenever adversary is querying for the encryption oracle service. 

 

In response, whatever it our sees it launch the value of the underlying pseudo random 

permutation on several x values of it is choice. That is the way adversary can get access to 

several x i, y i pairs right. So when we are measuring the practical security of block ciphers, we 

assume that adversary has got access to several x i, y i pairs. And it is goal is basically to recover 

back the underlying key adversary knows the description of the SPN. 

 

The only thing that is not known to the adversary is the value of the key and our goal will be to 

see whether the complexity of the adversary to recover the key is of order that same as brute 

force or not right. 

(Refer Slide Time: 34:32) 

 



So let us do a warm up first and see how easy it is for an attacker to simply recover back the key 

without even doing the brute force. If you just use the 1 round SPN that means imagine someone 

design a function F k x, where function F k x is nothing but 1 round SPN without doing the final 

key mixing step. So remember, as per the definition of r round SPN. Ideally after doing 1 

iteration of key mixing, substitution and permutation, there should be a the final round of key 

mixing but that is not happening here. 

(Refer Slide Time: 35:09) 

 

And let us see how trivial it is for an adversary to recover back the key if it has got access to 

several x i, y i pairs right. So imagine the adversary knows y, from this y it can go back and 

reverse back the effect of the mixing permutation go back all the way to the intermediate output 

here. Namely, the output of the substitution step, it knows the value of the S boxes here right. So 

it knows the description of the S boxes. 

 

So it can invert back the intermediate output here and it can go back all the way here to the 

output of the key mixing step. And it knows the x value as well, so since it knows the x value 

and it knows the output of the key mixing step by XORing the x with the output of the key 

mixing step. It is easy for the adversary to recover back the sub key. So adversary just have to do 

constant number of steps here to recover back the complete key. 

 



And hence the resultant keyed permutation is not at all secure here, it is very trivial for the 

adversary to recover back the key. 

(Refer Slide Time: 36:15) 

 

So now let us imagine that we do actual 1 round SPN, namely we design n keyed permutation F 

k x, where we do 1 iteration of key mixing ,substitution and permutation followed by the final 

key mixing right. 

(Refer Slide Time: 36:32) 

 

And imagine that the sub keys which are used to during the first round of key mixing and the 

final key mixing they are independent of each other. And hence the overall master key of my F k 

function is of size 128 bits. 



(Refer Slide Time: 36:51) 

 

So we will consider the resultant F k x that we have constructed like this to be secure, if the 

complexity of recovering the unknown key is of order 2 to the power 128 right. because by just 

doing 2 to the power 128 computation adversary can simply recover back the unknown key if it 

has got x comma y pair, where y is the outcome of x or with respect to that unknown key k. 

(Refer Slide Time: 37:21) 

 

But now what we are going to see is a very interesting attack or a simple attack where adversary 

can end up actually recovering the 128 bit candidate key by just doing computations of order 2 to 

the power 64. And the idea here is that adversary not have to perform brute force both on the k 2 



part as well as on k 1 part. It is sufficient for the adversary to just do a brute force over all 

candidate k 2’s because for each candidate k 2 that adversary thinks in it is mind. 

 

It gives him 1 candidate k 1 and that candidate k 1 with respect to the candidate k 2 with the 

adversary has done the brute force gives him 1 candidate k, that is a overall idea here. So 

adversary do not need to do an explicit brute force over each candidate k 1 and independently a 

brute force with each candidate k 2, it suffice for the adversary to just do a brute force over each 

candidate k 2. So now you can see that if I actually design a keyed permutation using 1 round of 

SPN and using a key of size 128 bits just by doing computations of order 2 to the power 64. 

(Refer Slide Time: 38:25) 

 

The adversary can end up recovering a key of size 128 bits and that simply goes against our 

definition of practical security of block cipher, that means 1 round is not sufficient right. 

(Refer Slide Time: 38:37) 



 

So in practice when we are going to see in the our subsequent lecture the description of the DES 

it turns out that we have to use an r-round SPN where r is significantly large. In fact in the 

context of DES the number of iterations that we are going to use is 60. So the number of rounds 

along with the details of the S boxes mixing choice of the S boxes, the choice of the mixing 

permutation, and the choice of the key scheduling algorithm. 

 

All these constitutes very important here very important aspects of this defining the overall 

security of the keyed permutation that we design using an r-round SPN. So till now we have 

discussed SPN which constitutes a very important building block in the design of practical block 

ciphers. It turns out that there is another important building block namely Feistel network which 

we also use in the practical constructions of block ciphers. 

 

And if you recall, we had already seen the definition of Feistel network, when we have seen how 

to construct pseudo random permutations from pseudo random function right. So on a very high 

level what we do in Feistel network is be compose several round functions or a small sized 

functions in a special way. So if I have composed r-round functions then the overall 

constructions is denoted by this notation namely Feistel composed with respect to f 1, f 2, f r. 

 

And the input size of the overall permutation will be 2 n bits and output will be 2 n bits. The 

important aspect of the Feistel network or the interesting property of the Feistel network is unlike 



SPN where we need the S boxes to be invertible. To ensure that the overall keyed permutation is 

invertible when it comes to Feistel networks the round functions that we are using in the 

individual iterations, they may not be invertible. 

 

It could be any function even if they are not invertible right there is a special way by which we 

can uniquely invert back the effect of the Feistel network. 

(Refer Slide Time: 40:51) 

 

And to just to recall how exactly the Feistel network operates. If I consider the ith round, say for 

instance, the first round, the way I go from L 0 R 0 to L 1 R 1 is as follows. My current right half 

namely R 0, it simply goes and serves as the next L half. And I applied the current round 

function, namely, f 1 on my current right half and XOR it with my current left half to obtain the 

next right half. 

 

And this is what we do in every iteration, what differs or what could differ is exactly the choice 

of the individual round functions. But the operation wise the structure of the operations that we 

are performing in each iteration is exactly the same. 

(Refer Slide Time: 41:41) 



 

And again, I am not going to prove this but we had seen in one of our earlier lectures. That 

irrespective of what exactly are your individual round functions. For any value of R and any 

choice of the round functions, the overall function the composed Feistel network, the overall 

function that we have obtained by the composed Feistel network is indeed a your invertible 

function. 

 

So, that brings me to the end of this lecture. Just to recall in this lecture, we have seen 2 

important building blocks namely SPN and Feistel network, which we use in the constructions of 

practical block ciphers. And in our next lecture, we will discuss that how these 2 building blocks 

are used to design some of the real world block ciphers like DES and AES, thank you. 


