
Foundations of Cryptography 

Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 

Indian Institute of Technology-Bangalore 

 

Lecture-18 

Theoretical Constructions of Block Ciphers 

 

Hello everyone, welcome to lecture 17. In this lecture we will see theoretical constructions of 

block ciphers. Specifically the roadmap for this lecture is as follows. 

(Refer Slide Time: 00:37) 

 

So, till last lecture we have seen that if we have a pseudo random function, then we can design 

candidate CPA secure schemes using most of operations of pseudo random functions. But now 

the question is how do we actually go about designing the pseudo random function. And it turns 

out that there are 2 ways of designing pseudo random functions. The first phase, the first class of 

the constructions are the provably secure constructions, which we are going to discuss here. 

 

And they are considered to be theoretical constructions because that is not the way we instantiate 

pseudo random functions in the real world protocols. In the later lectures, we will see the 

practical constructions namely the constructions which we use in real world to instantiate pseudo 

random function. However, even though we do not use the so called theoretical instantiations of 

pseudo random functions, they are very fundamental, they are a fundamental importance in 



cryptography because mathematically here we show that the constructions that we are going to 

discuss they can be proved to be secure based on the assumption that one way function exists. 

 

That means we have now mathematical guarantees that the constructions that we are going to see 

in this lecture they are secure, whereas the so called practical instantiations, right which we are 

going to say in the subsequent lectures. For those constructions we do not have any provable 

security guarantees that means there is no mathematical proof that indeed those construction 

satisfies the definitions of pseudo random function, pseudo random permutations and so on. 

 

It is only a belief or an assumption that ever since they are discovery, no attacks or no 

shortcomings have been reported in those constructions. And that is why we believe that those 

constructions emulate the behavior of a pseudo random function, pseudo random permutations 

and so on, right. So now coming back to this lecture, the roadmap for this lecture is as follows. 

We will see how to construct provably secure pseudo random functions given provably secure 

pseudo random generators. 

 

Then we will see the constructions of provably secure pseudo random permutations from 

provably secure pseudo random function. And this construction is also called as Luby-Rackoff 

construction attributed to the name of their inverters. And then finally, we will see how to 

construct provably secure strong pseudo random permutations given provably secure pseudo 

random permutation. 

(Refer Slide Time: 02:59) 



 

So, let us do the first thing here. Namely, we will see how if you are given a provably secure 

pseudo random generator, we will see how to construct provably secure pseudo random 

permutation. And for the purpose of demonstration, I am assuming that I have a length doubling 

pseudo random generator. And this you can construct in a provably secure way from one way 

function using the Goldreich-Levin construction and assuming that hard-core predicate exist, 

right. 

 

So, remember in one of our earlier lectures, we had seen provably secure constructions of pseudo 

random generator, where we first expand the output or the input of the pseudo random generator 

by 1 bit using hard-core predicate and then we do serial composition of that pseudo random 

generator polynomial number of times to expand the length of the pseudo random generator by 

any polynomial amount. 

 

So, I assume that I have such a pseudo random generator, namely a length doubling pseudo 

random generator and my goal is basically to construct pseudo random function taking n bit key 

n bit block and giving me a 2 n bit output right and the construction is called a tree construction. 

And the reason it is called a tree construction is that basically the way we define the keyed 

function F k is that we construct a complete binary tree of depth consisting of 2 to the power n 

leaf nodes. 

 



Where each leaf node is going to consist of pseudo random string of length 2 n bits determined 

by the value of the underlying key k right. Now, the reason we are going to construct a complete 

binary tree of depth n is that we are going to have 2 to the power n leaves and each leaf node is 

basically a value of the function F k. And this matches with our semantic of the keyed function F 

k that we are interested to construct. 

 

Because the block size of my underlying keyed function which I want to construct is n bits that 

means, my function F k, namely the range of this little i could range from 0 to 2 to the power n - 

1. So there are 2 to the power n candidate inputs for this function. That is why I am interested to 

design a tree consisting of 2 to the power n nodes. And ith value or the value of the keyed 

function F k on the input i will be basically the pseudo random string which I am going to store 

at the ith leaf node in this tree. 

 

So the entire thing boils down that how exactly this tree is going to be defined as a function of 

my underlying keyed k right. So for the purpose of demonstration, I assume that I have pseudo 

random generator, expanding seed of length 3 bits into an output of 6 bits. And using that I have 

to design a keyed pseudo random function, taking a key input of size 3 bits, a block input of size 

3 bits, and giving me a pseudo random output of 6 bits. 

 

And the construction is as follows. So this is the your complete binary tree of 8 notes. So this is 

your oth leaf. This is your first leaf and this like this, this is your 7th leaf. And this will denote 

the strings that we are going to store in each of these respective leaf nodes will denote the value 

of the function F which we are going to define at their respective inputs. So now let us see what 

exactly will be the bit strings which are going to be stored in each of this internal nodes and the 

leaf nodes. 

 

So to begin with at the root of the tree, we are going to store the value k 0, k 1 which is a bit 

string of length 6 bits, and which is generated by actually invoking the pseudo random generator 

on the key k right. So remember k is basically the key of the pseudo random function which I am 

interested to design, but now that key I am using as the seed for the pseudo random generator. 



And since my pseudo random generator expands the seed and gives me an output which is twice 

the size of the input. 

 

I will obtain a pseudo random output which I can parse as 2 blocks of 3 bits, 3 bits each. Right 

now in my left hand side note, right which is that with the left child of this root, I basically stored 

the output of the pseudo random generator on the input k 0, right. So remember, the string k 0 k 

1 is a string of length 3 bits. So you have 3 bits here, you have 3 bits here, the first 3 bits part I 

am denoting as k 0, and I call the function G on that input to again obtain a new pseudo random 

string of length 6 bits, which again, I can divide into 2 parts. 

 

And the right child of my root basically stores the value of the output of the pseudo random 

generator on the string k 1, which will now give me another pseudo random string of lengths 6 

bits which I can parse as 2 chunks of 3 bits, 3 bits each. And then I repeat this process at the first 

layer of this tree, right, that means this node will now have the outcome of the pseudo random 

generator on the 3 bits k 0 0 as the input. 

 

And this note will have the output of the pseudo random generator on the seed k 0, 1. And again, 

I obtain an output of 6 bits and so on. So that is the way the internal notes are filled. And 

similarly I filled the leaf notes also using the same logic to. How exactly I am going to output F k 

of i right. So imagine, so this whole tree is basically the definition of F k. Now, I have to define 

what exactly will be the output of this tree on my input i. 

 

So remember, the keyed function F takes 2 inputs, the key input and the actual block input. So 

with respect to the key input I have defined a tree to be like this. Now I have to define how I take 

the output of this tree for the input i right. So imagine for instance, I want to defined or compute 

the value of this so called function F k at the input 3. So 3 in binary can be written as 011. And 

basically, the idea is now I have to just pass this tree based on the binary representation of 3, 

right. 

 

So, I pass the first bit here which is 0, if it is 0, the rule is I go to the left of my current node, so, I 

start exploring from the root first bit is 0 I go to the left note, the next bit in the binary 



representation of 3 is 1. So, from my current note, I go to the right and the last bit in the binary 

representation of 3s are 1. So, that means from my current note, I go to the right and this will be 

the value of my function F k at the input 3. 

 

That is the way I am going to define my function k. So, if you see on a very high level basically 

the way function F k is defined it is nothing but polynomial number of sequential composition of 

the truly random generator right. I am basically composing the pseudo random generator G 

polynomial number of times depending upon the binary representation of my input i. In this case 

the binary representation was 011. 

 

So, I am basically invoking the function G 3 times in sequence one after the other where the 

outcome of the previous invocation of G is serving as the input for the next invocation in a 

specific way, depending upon the binary representation of my input i, that is the way you can 

internally interpret the execution or the construction of this keyed function F k. 

(Refer Slide Time: 10:49) 

 

Now, you might be wondering that whether this construction is efficient or not, because the size 

of the tree is exponentially large here, right, it consists of 2 to the power n number of nodes and 

where n is the security parameter. So that means if I am defining the function F k like this, then 

one might feel that both sender and the receiver have to maintain this tree because once they 

know the value of the k they have to construct the tree like that. 



 

Because they do not know well in advance what is the value of the i that they are going to use it 

could be end up with any of the leaf nodes right. So had they have to have the whole tree with 

them in advance, but storing the whole tree will require them exponential amount of 

computation. So, intuitively, this construction might look like to be an inefficient construction, 

but it turns out that the entire tree not be computed and stored to compute the value of discrete 

function on the input i. 

 

Because depending upon the requirement, that means depending upon the value of i, I can 

compute or I can compute the actual part that I need to follow in this tree by just invoking my 

underlying pseudo random generator n number of times. For instance, if I want to compute the 

value of the function F k i i = 3, what I basically need is just 3 invocations of the PRG. That is 

all. I do not need the remaining invocations of the PRG. 

 

In the same way suppose later I have interested in computing the value of say F k 4 therefore, in 

the binary representation is 100, then I do not need the whole tree, I need only this node, namely 

this invocations of the PRG, followed by this invocation of the PRG, followed by this invocation 

of the PRG. That means each value of F k i can be just computed by executing polynomial 

number of instances of the underlying pseudo random generator. 

 

And that is why this construction is computationally efficient. It does not demand exponential 

amount of computation. Now, the big question is this tree construction, or this way of defining 

the keyed function F k is indeed going to give me a secure P i. And the answer is yes. Because 

intuitively what is F k i, what is the way I have computed F k i. F k i you can interpret as a 

polynomial number of sequential compositions of PRG. 

 

And remember, when we were discussing pseudo random generator earlier, we had proves 

rigorously that polynomial number of sequential composition of PRG also gives you a pseudo 

random generator namely that output will be pseudo random and it will be indistinguishable from 

the outcome of a corresponding truly random generator. So, in that sense, this way of defining 

the function F k based on a complete binary tree is indeed going to define a pseudo random 



function. But now, if I want to formalize this intuition into a rigorous proof, then there are a lot 

of subtleties which are involved here right. 

(Refer Slide Time: 13:52) 

 

So the actual proof is indeed suttle and it requires lot of advanced technicalities. So, due to the 

interest of time and since the proof is really out of scope of this course, I will avoid the full 

formal details of the proof. But if you are really interested to see the complete proof, you can see 

the proof available in the book by Claude Shannon but let me discuss the overall proof idea, 

right. 

 

So, as I said the value of the F k i is nothing but polynomial number of invocations of the pseudo 

random generator. So, my goal is basically to show that, if an adversary interacts with the keyed 

function F k by asking polynomial number of queries where it does not know the value of k, it 

knows the structure of the tree, but it does not know the value of the k and hence, it does not 

know what are the pseudo random streams which are stored in the individual nodes. 

 

So, imagine if I have an adversary which is interacting with F k i or a function F k polynomial 

number of times, my goal is to show that it should not be able to distinguish the behavior of the 

tree construction from the behavior of a truly random function, but I cannot directly reduce that 

indistinguishability to the security of the underlying security of the pseudo random generator, 



because there are polynomial number of invocations of the pseudo random generator which are 

involved. So, what basically we required here is the hybrid argument. 

(Refer Slide Time: 15:19) 

 

So, let us see the security of the tree construction basically, we have an overview of the proof 

idea here. And for the demonstration of the proof idea, I take the case where I am constructing a 

pseudo random function taking a key of size 3 bits and giving you an output of size sorry, it takes 

an input of size 3 bits and gives you an output of 6 bits and it is operated by a key and this is 

designed using a pseudo random generator which takes a seed of length 3 bits and it gives you an 

output of 6 bits. 

 

So, as per the tree construction that we have discussed just now, this is how your, the function F 

k will look like and now, what I am going to do is I will I am going to compare this tree based 

construction of the function F k with an alternate construction, where all the instances of the 

pseudo random generator big G are going to be replaced by a truly random generator G prime. 

 

So, what we are basically trying to construct here is we are trying to construct an unkeyed truly 

random function which takes an input of size 3 bits and it gives you an output of 6 bits. And on a 

very high level, the construction is exactly the same as the tree construction except that at each 

node all the invocations of your function G are replaced by G prime. So at root node we just call 

the function G prime. 



 

And since the function G prime is a true random generator, it does not take any input so just 

gives you some random 6 bit output that will be filled in this root. Then when we go to the left 

node again, we invoke the function G prime, which will give you another 6 bit, truly random 

string. And like that, you can see that each node we are basically just invoking by function G 

prime. 

 

And as a result, each of these nodes in this tree, which is constructed on the right hand side part 

will have 2 random values of length 6 bits. So, that is how we have constructed the function little 

f right. So, now construction wise differently between the 2 functions that we have constructed is 

that if we want to the left hand side k, it defines your function F k. And if I want to compute the 

value of this function at some input, i say for instance, if I want to find the value of this function, 

on your left hand side on the input is equal to say all 0s. 

 

Then basically I have to follow the path 000 and the value of my F k i will be the value stored 

here. And we say other hand, if I want to compute the value of the function little f that I have 

constructed in the right hand side on the input all 0s then again I have to follow as the I have to 

traverse along this tree as per the binary representation of my input i and wherever I stopped the 

leaf node, the value that is stored there, that will be considered as the value of the function little f 

on the input i. 

 

So, in terms of the way I am computing the obtaining the output of the function, it remains the 

same in both the function what differs in the 2 functions is then the left hand side tree, all the 

invocations are for pseudo random generator and the right hand side tree all the invocations are 

for 2 random number generator. Now informally, the proof the idea behind the security of the 

tree construction that we have given is that if the underlying function big G is a secure PRG. 

Then what we are going to show is in the proof that no polynomial time distinguisher should be 

able to distinguish apart the value of the function, F k on the input i from the value of the 

function little f on the input i. 

 



That means, it does not matter whether he has interacted with the tree construction on the left 

hand side polynomial number of time, or whether here it has interacted with the tree on the right 

hand side polynomial number of tree from the viewpoint of the adversary, the interaction should 

be almost identical except with negligible probability. If indeed my function big G is a secure 

PRG. So that is what is basically the overall idea of the proof. 

(Refer Slide Time: 19:39) 

 

That is what I have to show. And the idea behind a proof here is we basically define n + 1 

complete binary tree, each of depth n, where each node is going to store 2 n bit strings, but in a 

different way right. So let us start with the tree t 0, which is actually a tree of depth in complete 

binary tree of depth n where each of the nodes basically consist of a uniformly random 1 n bit 

string. 

 

And this is nothing but the way a truly random function little f will behave as per the tree 

construction and my ith tree i will be as follows. In my ith tree T i, the first n - i levels, all the 

nodes in those n - i levels will consist of 2 l bit uniformly random strings, whereas all the 

remaining levels will consist of pseudo random strings by applying the key mechanism or the 

key construction to the node at the previous level. 

 

If I go to the i = 1th key the way it differs from the ith key is that it will have one layer less of 

pseudo random strings and one layer more of pseudo random strings compared to the previous 



string right. That means in the i + 1 nth tree the first n - i – 1 layers of node will consist of 

uniformly random strings of length 2 n bits. And the remaining layers of node will consist of 

pseudo random strings of 2 n bits by applying the pseudo random generator G on the previous 

level and so on. 

 

And like this, if I continue my nth n + 1th tree T n basically is the way I have defined the 

function F k, that means all the nodes consist of pseudo random strings of length 2 n bits by 

applying the pseudo random generator G to the value of the 3 nodes at the previous level. So, 

that is the way I have defined n + 1 trees. And each of these trees basically defines a construction 

of a function mapping n bit strings 2 n bit outputs right. 

 

So the first tree basically defines the way a truly random function will operate. And the last 2 

defines the way we have constructed the key function F k and the overall idea behind a security 

proof of the keyed construction is that we can prove that formerly, if my underlying G is a secure 

PRG, then the behavior of the function defined by the tree T i and the behavior of the function 

defined by the tree T i + 1are computationally indistinguishable from the viewpoint of an 

attacker, who makes polynomial number of queries to the function defined by the tree T i, or 

make polynomial number of queries to the tree defined by for to the function defined by the tree 

T i + 1, right. 

 

And this argument we can reduce by giving a reduction based argument. And we can show that if 

at all, there is an adversary who can distinguish apart the behavior of the function F i from the 

function F i + 1, then it knows how to distinguish apart the behavior of a truly random generator 

from a pseudo random generator right, that is the overall idea. So since there are polynomial 

number of intermediate hybrids, in between my truly random function F. 

 

And my function F k which I have defined, I can say that the overall the probability with which 

an adversary can distinguish apart the behavior of the function little f from the behavior of the 

function F k is the summation of polynomial number of negligible quantities, which is again on a 

negligible probability. That is overall idea of the security proof, but the actual formal details are 

really involved in suttle. And that is why I due to the interest of the time I m skipping. 



(Refer Slide Time: 23:27) 

 

So, now we will see that if we are given a pseudo random function, how we go about to construct 

a pseudo random permutation by a very interesting primitive, which we call us Feistel network, 

and this is a very powerful cryptographic primitive or construction right, which we again 

encounter when we will see the practical instantiations of pseudo random permutations namely 

when we will discuss about the construction of the DES, right. 

 

So the basic idea here behind a Feistel network is that it gives you a method of converting 

invertible function from arbitrary collection of several functions which may not be inverted right. 

So what exactly that means. So for demonstration purpose assume you are given 2 arbitrary 

functions f 1 and f 2 mapping n bit stream to n bit strings, which may not be invertible. That is 

why I am saying they could be any arbitrary function. 

 

And my goal is to use this 2 arbitrary functions f 1 and f 2 and define a new function mapping 

say 2 n bit strings to 2 n bit strings, such that resultant function is inverted. So that resultant 

function I call a denote as Feistel subscript f 1 f 2, because I am composing the 2 arbitrary 

functions little f 1 little f 2 in a specific way, which we will see soon to obtain an invertible 

function. So here is how the composed function Feistel f 1 f 2 will work or look like. 

 



So, it will take an input of size 2 n bits and it has to produce an output of size 2 n bits by 

somehow composing the functions little f 1 and little f 2. So, what we are going to do here is we 

will pass the input x as 2 chunks of n bits n bits each and the overall construction will be 

interpreted as a sequence of 2 rounds. So, in round 1 I am going to construct or convert this input 

x into an intermediate output, which again I will parse as 2 parts which I call as the left off and 

the right off right. 

 

And the way this L one and R 1 is computed from L 0 and R 0 is as follows. The L 1 part is 

basically set to be the same as the R 0 part right. And the R 1 part is computed by invoking the 

function little f 1 on the input R 0 and XORing the output with L 0 part. So since my function f 1 

takes an n bit input, and my R 0 part is also n bit input, that is fine. And output of the function f1 

is again n bits, which can be exhausted with an L 0 part, which is of n bits to give me an output R 

1, which is of n bits. 

 

So that is the rule or that is the way I am going to use my function f 1 for the first one. Now, 

once I obtained the intermediate output denoted as of concatenation of L 1 part and R 1 part I do 

the same principle, but now in the second round, I am going to use the second function. And that 

is why this is a 2 round constructions. In the second round again, my R1 part is set as L 2. And 

my R 2 is computed by invoking now the second function f 2 on the input R1. And XORing with 

L 1, and obtaining R 1. That is the way the function Feistel f 1 f 2 will look like. 

(Refer Slide Time: 27:00) 



 

So, in general, if you are given R arbitrary functions, which I denote as little f 1 little f 2 little f r 

mapping n bit strings to n bit strings, then I can compose that by applying this logic which we 

had seen in the previous example, sequentially our time. And what I obtain is function which I 

denote as Feistel function consisting of R individual function composed in sequence mapping to 

n bit strings to 2 n bit strings. 

 

So, the idea behind is that I apply the same logic that we had seen in the last example, r times we 

are in the ith round, I apply the ith round function namely little f i. Now, you might be wondering 

whether the resultant function Feistel composed which consists of basically a sequence of r 

compose r little functions is indeed going to give you an invertible function or not. 

 

So, I claim that it does not matter what exactly is the choice of your underlying functions f 1 f 2 f 

r that means it does not matter what exactly are your own functions. So, I call this individual 

functions which I am applying in the individual round or the round function, the claim that we 

are going to make use, it does not matter what exactly is your, what exactly are you around 

functions, they may not be invertible it could be any arbitrary functions. 

 

The way we are composing this r individual functions that result in function is always going to 

give you invertible functions, irrespective of how many times you do it. And the idea behind the 



proof is the effect of every round can be uniquely the idea behind the proof of this claim is that 

the effect of each round is invertible irrespective of how what exactly is your own function. 

 

So for instance, let us see that whether we can reverse back that effect of rth round function, that 

means, imagine you are given the output of this Feistel function namely you are given L r 

concatenated with R r and the question is can I uniquely go back to the previous intermediate 

output given that I know the rth round function and it turns out we can do that how well by the 

description or by the nature the way we have done the composition we know that the previous 

intermediate right half is nothing but the current left half right. 

 

So, I can always go back from the current right half to the previous right half by this route. And I 

know that the current right half is basically the XOR of the previous left half and output of the 

rth round function on the previous right half. So, if at all I want to recover the previous left half, 

what I have to do is basically, I have to evaluate the current round function in this example, the 

rth round function, right on the previous right half, which I have already recovered. 

 

And XOR it with the current right half, that will give me back the previous left half. That is the 

way I can uniquely go back from my current state to the previous state. And then I can repeat this 

argument and go back one level up. Again, I can repeat this argument and again can go back one 

level up and all the way I can go back to the input L 0 and R 0. That means it does not matter 

what exactly is that type of the individual round functions, the way we have actually compose 

these functions. 

 

Given the final outcome of the composed function, I can always uniquely go back to the actual 

input. And in that sense, this function, the composed function is an invertible function. 

(Refer Slide Time: 30:51) 



 

So now let us see how we go about constructing pseudo random permutation given that we have 

provably secure pseudo random function right. So, I am assuming that I have a construction of a 

provably secure pseudo random function for simplicity, I assume that a key land block land and 

output land are all n bit strings. And I am going to use a 3 round Feistel network that means, I 

will be now applying 3 around functions. 

 

And I will end up obtaining a keyed permutation where the length of the key will be 3 n bit 

strings and the block length will be 2 n bits and output will be 2 n bits and keyed function, which 

I do not as F superscript. 3 can be proved to be a keyed permutation, right. So, since the key is 

going to be of length 3 n bits I can interpret it as 3 chunks of or 3 independent chunks of n bits n 

bits n bits. 

 

And I am going to apply the Feistel network 3 times or basically I am going to apply the 3 round 

Feistel network which basically means I have to compose 3 round functions. Now, basically in 

each of rounds, I am going to invoke the underlying pseudo random function with independent 

keys right. So the way I am going to define my keyed permutation is nothing but the composed 

Feistel network, where the first round function is the keyed pseudo random function on the first n 

bits of the key of my pseudo random permutation. 

 



The second round function is going to be F k 2 namely, my invocation of pseudo random 

function with K 2 part of the key. And the third round function will be F k 3 namely the 

invocation of the pseudo random function with the last n bits of the key. That is the way I am 

going to compose the pseudo random function 3 times using the structure of the Feistel network 

right. So that is the way I have defined. 

 

So my first round function is F k 1. And by applying F k 1 as my first round function, I go from 

L 0 R 0 to L 1 R 1. Given L 1 R 1 I apply F k 2 s or treat F k 2 as my second round from and go 

from L 1, R 1 to L 2 R 2. And finally, by applying F k 3 on the input L 2 R 2, I obtained L 3 R3. 

And that is what will be the outcome of the function F 3 under the key k 1 k 2 k 3 on the input, L 

0 concatenated R 0. 

 

That is the way I am going to define a keyed permutation, right. So, it is easy to see that a 

resultant composed Feistel function is indeed an invertible function we had already proved that 

right. What is left is to show that why this magical 3 round construction is going to give me a 

pseudo random permutation That is why this keyed permutation is indistinguishable from the 

behavior of a truly random permutation. 

 

Well, again, the proof is slightly involved, and I leave the complete details due to the lack of the 

time you are referred to the book by Claude Shannon for the actual proof but you have to believe 

me that if I compose this pseudo random function 3 times with independent keys as per the 

structure of the Feistel network, then the result and constructions is indeed a key permutation. 

Now, an important point here is, why not 2 rounds why we have to compose this Feistel network 

3 times why we require 3 why not 2 rounds. 

 

It turns out that if I use a key of size only say 2 n bits, and I apply only 2 round functions, and the 

resulted keyed permutation is not pseudo random, it is easily distinguishable from a 

corresponding truly random permutation. And that is why it is only when we compose 3 times 

we actually get a pseudo random permutation. So this is left as an assignment for you. You have 

to now think that why exactly 2 rounds are not sufficient why 3 rounds. 

(Refer Slide Time: 34:53) 



 

Now let us finally see that how do we go about constructing strong pseudo random permutations 

from a pseudo random function. So before that let us first see what exactly is the difference 

between a pseudo random permutation or keyed pseudo random permutation and a keyed strong 

pseudo random permutation, right. So, if I consider pseudo random permutation, which is a 

keyed permutation mapping say, 2 n bit strings to 2 n bit strings. 

 

When I say it is a pseudo random permutation, then it means that no polynomial time 

distinguisher can distinguish apart and interaction with this keyed permutation from an unkeyed 

truly random competition. 

(Refer Slide Time: 35:29) 

 



But if I say that I have strong pseudo random permutation, then it is a special type of keyed 

permutation, which should be indistinguishable from a corresponding truly random permutation, 

even if my distinguisher gets access to not only the outputs of the permutation, but also to the 

inverse of the permutations that means, the keyed permutation should be indistinguishable even 

if their adversary is getting interaction or oracle access to the function F k as well as the inverse 

of the function right. 

 

So imagine we are given a provably secure pseudo random function, which we now how to 

construct using that reconstruction. It turns out that if we do a 4 round Feistel network, namely if 

we use 4 round functions and compose it as per the structure of the Feistel network, then we end 

up getting a keyed strong pseudo random permutation mapping 4 n bit strings and blocks of size 

2 n bits to an output of size 2 n bits okay. And again, the proof is slightly involved, which I am 

leaving due to the interest of the time you are referred to the book by Claude Shannon right. 

(Refer Slide Time: 36:42) 

 

So, that is the overall idea here. So now if we see, if you look into the assumptions that we 

required for provably secure symmetric cryptography, the picture till now is as follows. We 

know that if you are given one way functions then using the Goldreich-Levin theorem and hard-

core predicate we get provably secure pseudo random generator. And in this lecture, we had seen 

that from pseudo random generator we can construct provably secure pseudo random function 

using which we can construct provably secure pseudo random permutation. 



 

And then it can be further used to construct provably secure strong pseudo random permutation. 

And we also know that how we can construct efficient CPA secure encryption scheme from 

PRFs by using modes of operation. Later in this course, we are going to see that how we can in 

fact construct more powerful symmetric encryption process namely authenticated encryption and 

CCA secure encryption just using pseudo random functions. 

 

So it turns out that everything just depends upon the existence of one way function that means if 

you want provably secure constructions of provably secure CPA secure encryption scheme 

provably secure CCA scheme, provably secure authenticated encryption scheme, then it is 

suffice to just have one way function, that means it is enough you have just one way function 

you can get everything for free. 

 

And later on in this course, when we will discuss public key cryptography, we will see that how 

exactly we can go about and construct one way functions based on specific number theoretic 

hardware assumptions, right. So, everything boils down to the existence of one way functions. 

So, that brings me to the end of this lecture. Just to summarize in this lecture, we had seen very 

high level overview of how do we give provably secure constructions of pseudo random 

function, pseudo random permutation and strong pseudo random competition. Thank you. 


