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Lecture-16 

Modes of Operations of Block Ciphers Part I 

 

Hello, everyone, welcome to lecture 15. This will be the first part of the modes of operations of 

block ciphers. 

(Refer Slide Time: 00:34) 

 

And the roadmap for this lecture is as follows. We will see how to get efficiency to secure 

ciphers via 2 modes of operations, namely, the ECB mode and a CBC mode, the remaining 

modes of operations we will see in the next module. 

(Refer Slide Time: 00:49) 



 

So, just to recall in the last lecture, we had seen a candidate CPA secure encryption process for 

encrypting big L bit messages right and the 2 drawbacks that we have identified in this 

encryption process is that the ciphertext size is large compared to the plain text, specifically if 

big L and little l are same then the ciphertext is twice the size of the plaintext. And the second 

disadvantage here is that each encryption of the encryption process requires a fresh randomness 

of little l bits. 

(Refer Slide Time: 01:21) 

 

So, that leads us to what we call as modes of operations of block cipher. And basically the goal 

here is the following. Imagine you are given a keyed function which could be either a pseudo 

random function or a pseudo random permutation or a strong pseudo random permutation. And 



the construction that you are given with is a length preserving function. Namely the block size, x 

and output size are the same namely bigger. 

 

And for simplicity we assume that a big L is L but it could be any polynomial function of your 

security parameter. So you are given description of such a function F. And the goal here is the 

following. We have now a large message consisting of several blocks of big L bits. Namely, 

imagine you have little l number of blocks. And our goal is to come up with an encryption 

process where I can encrypt such large messages, such that resulted encryption process should be 

CPA secured. 

 

And the resulted encryption process should have randomness usage as minimum as possible. The 

ciphertext expansion should be as minimum as possible and there should be a support for 

parallelism. That means, if there is a scope where I can encrypt multiple blocks in parallel, given 

that I have multiple computing processes available with me, then my encryption process should 

provide that support. 

 

And most importantly, the overall security of my encryption process should depend upon the 

minimal security assumption for from the function f. That means it should suffice if my function 

F is just a pseudo random function. That is our overall goal. 
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So let us see one of the ways of doing that. And then we will analyze, which of these following 

properties that I have listed here are achieved and what are not achieved. So this more is called 

as the electronic code book, or ECB in short. And to demonstrate that imagine I have a message 

consisting of 3 blocks of big L bits. So the way I am going to encrypt in the ECB mode here is as 

follows. 

 

So since I have 3 blocks of big L bits, each of them is going to be encrypted using the same Ks. 

So I feed the same K to 3 invocations of my underlying function F. So that is the key and block 

input for the underlying invocations of the function F or actually the blocks of the message that 

means m 1 goes as it is, as the block for the first invocation. Similarly, for the second invocation, 

m 2 goes as it is, as the block input. 

 

And in the third invocation m 3 group serves as the block input and the result and output c 1, c 2, 

c 3 is basically what is my ciphertext, that means a ciphertext will be the concatenation of c 1, c 

2 and C 3. So, in general the encryption process here is the evaluation of the keyed function F k 

on the block input m i and the decryption process here is basically the inversion of the keyed 

function F k under the same key k on ith ciphertext C i to recover back the ith plain text book. 

 

That means, you can see that in this case my function F should be a keyed pseudo random 

permutation, it should not be a many to one function otherwise the decryption will become 

ambiguous. Also the another interesting property here is that my ciphertext size is exactly the 

same as the message size. So, if I have 3 blocks of L bits, L bits, L bits then I have a ciphertext 

consisting of 3 blocks of L bits L bits L bits each. 

 

Moreover, this encryption process or encryption mode supports parallelism that means, if I have 

3 computing processes available with me then c 1 can be computed independently of c 2, which 

can be computed independently of c 3, that means at the same time in parallel, I can compute c 1 

c 2 c 3, same holds for encryption and for the description. Now, let us answer the most important 

part whether this ECB mode is CPA secure or not. 

 



And the answer is absolutely no, because as you can see here, that this ECB mode is a 

deterministic encryption scheme. That means wherever the message blocks are getting repeated, 

and if I encrypt those repeated message block under the same key k, I am going to see the same 

ciphertext block, which is fundamentally against a principle that in order to achieve CPA 

security, my encryption process should be randomized. Since this encryption process is 

deterministic, no way I can claim that this encryption process is CPA secure. 

(Refer Slide Time: 05:59) 

 

To give you a feeling of how insecure this ECB mode can be. Let us see a practical example. So 

suppose I want to encrypt an image using ECB mode. And since an image is basically a 

collection of pixels, what I can do is that I can imagine a group of pixels in my image as one x 

block and feed it as the message block during the invocation of ECB mode. So here is a black 

and white image, basically, which I want to encrypt. 

 

And if I encrypt it using the ECB mode, the encrypted image will look like the following right 

and as you can see from the encrypted image, you have an absolutely clear pattern which is 

available in the encrypted image. And the reason it is happening is wherever you have a group of 

black pixels, it will always produce the same kind of ciphertext and wherever you have a group 

of white pixels that will always produce the same kind of ciphertext. 

 



And that pattern will be clearly visible in the encrypted image. And if I send this kind of 

encrypted image over the insecure channel intercepted by an adversary, the adversary can easily 

find out what exactly is the underlying image. Ideally, if I want to encrypt this black and white 

image using some so called secure mode, it should produce this kind of encrypted image where 

there is absolutely no pattern available in the encrypted image, irrespective of whether it is a 

white pixel that I am encrypting or whether it is a black pixel, I am encrypting. 

 

We will later see how exactly those secure modes look like. But for the time being, if I just focus 

on ECB mode, it is completely useless. The lesson that we learn from this example is that a block 

cipher namely the function F should not be used directly to encrypt a message. And if you see 

the syntax of ECB mode, what we were actually doing, we were doing that mistake, we were 

directly encrypt the message using the invocations of F, where the same key was getting used in 

all the invocations. 

 

So we should not do that. And if you recall, our candidate CPA secure scheme, we never 

encrypted the message directly by feeding it to the function F, we actually fed a random x input 

to the function F generated the pad, which was exalted with the message to produce the actual 

ciphertext, right. So that is ECB mode, and clearly, it is not CPA secure. 
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Now let us go to the second mode, which we also call a ciphertext block chaining, or CBC mode. 

And this mode was used in some older versions of the real world TLS protocol. Again, for 

demonstration, assume you have 3 blocks, each consisting of L bytes, big L bytes. So the way we 

encrypt here is as follows. We first choose a random IV, which we do not as c 0 and which is 

going to be a part of the ciphertext. 

 

And the length of the c 0 will be the same as the block size input of my underlying function F 

that means big elements. And now I am going to encrypt 3 individual blocks by invoking 3 

invocations of my function F with the same key k. The first invocation of the function F is 

basically on that XOR of the message m 1 with the IV serving as the block, I obtain outputs c 1 

and the reason this mode is called as the ciphertext block chaining is that we are now going to do 

a kind of chaining process. 

 

The ciphertext block c 1 which I have obtained now, it is going to be chained and XORed with 

the second block of my message. And the result XORs serves as the block input for my second 

invocation of my function F and gives me the output c 2. And now this serves as the chain for the 

next block of the message, XORed with the third block, fed as a block for the third invocations 

of my function F. 

 

And I stopped with the ciphertext block 3, and my overall ciphertext will be c 0 concatenated 

with c 1 c 2 and c 3. So in general, if I want to do the encryption of ith block, the ith block is 

basically the evaluation of the keyed function of F k where the block input is XOR of the current 

message block and the previous ciphertext block. That is why the name ciphertext block 

chaining. 

 

And the random IV that we are selecting here at the beginning of the encryption has to be a part 

of the cipher text. If I want to decrypt ith ciphertext block, the way I do that is I compute the 

inverse of the keyed function F k with respect to the same key. And if for instance, if I want to 

decrypt say c 3 I compute the invert of F of c 3 with respect to the function F k, and if I invert, I 

basically obtain the XOR of m 3 and c 2. 

 



And to cancel out the effect of c 2, I just have to take the XOR of c 2 with this recovery. So that 

is what the generic description of ith right, that means my function F should be a key 

permutation if I want to unambiguously do the decryption part A. Now, what is the overall 

ciphertext size here, well the number of blocks in the ciphertext is exactly the same as the 

number of blocks in the message plus an additional block for the IV part. 

 

That means in terms of message expansion, that is a minimal you can think of, this is 

significantly better compared to the candidate, PRF CPA secure scheme, which we had seen in 

the last lecture. However, one of the drawbacks of this mode is that it does not support parallel. 

So that means the interruption of the second block can happen only when the encryption of the 

first block has happened. 

 

Because I need that for the chaining purpose and so, right. More importantly, this instance, this 

encryption process is a randomized encryption process, because every time I have a new 

message, the IV will be picked randomly, and which basically triggers the randomness in the 

entire training process. In fact, we can formally prove that if the underlying function F is a secure 

PRP as per the distinguishability definition, then this mode of operation is indeed CPA secure. 

 

And you can see any of the references, namely the book by Claude Shannon for the actual proof, 

I am not going to give you the actual proof here right. 
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Now let us see an interesting aspect of the CBC mode. So the way I had discussed CBC mode till 

now is that I assumed that the number of blocks in the message is basically it is a multiple of the 

block length of your underlying F, right. So imagine that the block length of the underlying 

function F is big L bytes, right. So there could be 2 cases with respect to the underlying message, 

which I want to encrypt. 

 

If the number of bytes in my underlying message which I want to encrypt is already a multiple of 

big L bytes, then I can just divide my message into several chunks of big L byte big L bytes and 

do the CBC mode of encryption as I discussed. 
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But what if my underlying message is not a multiple of big L bytes, right. The length of the 

message is not a multiple of big L bytes. That means I have to now do some kind of padding 

before I actually encrypt my message. Because if I do not do the padding, I cannot apply the 

CBC mode of encryption. Because even if I divide my message into blocks of big L bytes, the 

last block will not be length of big L bytes. 

 

And hence, I cannot apply an instance of my underlying function F. So what I am going to do 

here is I am going to discuss what kind of padding we have to use and apply to my underlying 

message before doing the CBC mode of encryption. So my padding mechanism has to be 

invertible. And it has to be unambiguous right. So let me discuss one of the important interesting 

padding mechanism which we call as PKCS version 5 padding. 

 

And the idea here is let little be denote the number of bytes which I need to add in the last block 

in my message m. So that the overall padded message, it is length become a multiple of big L 

bytes, right. So once I have identified the value of little b, what I basically do is I append little b 

number of bytes in the last block, and each of them represents the interior value B. Once I do 

this, my padded message will now consist of it is length will be a multiple of big L bytes, which I 

can divide into several blocks of big L byte. 

 

And now I can do my usual CBC mode of encryption. How I am going to do the decryption. 

Well, a decryption and the receiver will pick up the try to decrypt the last ciphertext block as per 

the usual CBC mode, right. And then what it is going to do is that once it recover the padded last 

block, namely m 2 dash in this example, it is going to read the last byte value. And from that last 

byte value, it is going to learn the value of b and we see whether the last recovered b bytes 

indeed represents the byte value b. 

 

If that is the case, just strip off those last b bytes and the remaining thing will be the actual 

message which was encrypted and communicated by the sender. On the other hand, if the last b 

byte to not represent the integer value B, that means some error has occurred while sending the 

encrypted message and hence the receiver is going to output back pad. Now, based on the 



encryption process and decryption process, you might be wondering that what should be the 

range of b that means that how many bytes need to be appended. 

 

So that my padded message, its length become a multiple of big L bytes and intuition says that 

the range of little b should range from 0 to L - 1 0 because I might have a message whose length 

is already a multiple of big L bytes, and L – 1 because I might have a message we are actually I 

need to append L - 1 byte. But it turns out that the range of b cannot be from 0 to L - 1, because 

that is not going to lead to invertible padding. 

 

Because that might lead to ambiguity whether padding has occurred or padding is not occur, the 

problematic cases b = 0 right, a receiver cannot distinguish whether my padding has happened or 

not happened when his decrypting. So that is why when b = 0 actually, we make b = L. That 

means if at the sender sent, no padding is required, then to indicate in an unambiguous fashion to 

the receiver sender is going to add a full block of big L bytes, each of them representing the 

integer value big L. 

 

That is an indication to the receiver that actually no padding has occurred, and the entire last 

block has to be stripped off. So the range of B is not 0 to L - 1, but I actually 1 to L right. So that 

is the way we can actually do an encryption of arbitrary long messages using CBC mode of 

encryption by doing this padding. 
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Now, let me also discuss very interesting aspect of the CBC mode what we call a stateful variant 

of the CBC mode. And if you see the way CBC mode is defined, if you have 2 different 

messages, say m and m dash in sequence one after the other, of course of different lengths say 

for example, message m consist of 3 blogs, followed by another message m dash consisting of 2 

blocks, then this is the ideal way sender should have encrypted m and m dash for encrypting m 

sender should have picked some independent IV denoted as IV 1. 

 

And should have done the chaining part and then if there is another message follow up message 

m dash sender should ideally pick another independent IV say IV 2 and should have done the 

CBC mode of encryption. But a smart implementer might imagine that if sender and receivers 

are synchronized, and if the same sender and the same receiver are going to do a sequence of 

several encrypted communication, then why do not we maintain state. 

 

And what do I maintain mean by maintaining state here is that, why cannot we retain the last 

ciphertext block of the last message between the sender and the receiver and use it as the IV for 

the next message which sender is going to encrypt and communicate to the receiver right. So that 

is what I mean by maintaining the state here. And actually if we do this, there is an advantage we 

get here. 

 



First of all, for the next message, namely m dash which sender wants to communicate, I have 

been not have to be picked both sender and receiver will know that since they are using a stateful 

variant, C 3 is going to serve as the IV right. So that saves the randomness part. And it also 

provides advantage in terms of bandwidth, because now c 3 may not be communicated again 

when m dash is encrypted. 

 

It will be known anyhow to the receiver that the decryption need to happen with respect to c 3, so 

big L bytes not this communicated because the size of c 3 would have been big L bytes. So in 

that way, we are actually saving bandwidth. And now you might be wondering whether the 

stateful variant is indeed CPA secure or not and intuitively you might feel that the stateful variant 

should be CPU secure. 

 

Because if actually sender would have got a larger message big M, which is a concatenation of m 

and m dash, that this is the way sender and receiver would have actually performed the CBC 

mode of encryption and decryption c 3 would have served as the IV and it would have been used 

for encrypting the message block m 4 and so on right, that is the intuition. But based on intuition 

we cannot formally say that whether a modified scheme is secure or not. 
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And what we are going to now demonstrate is that the stateful variant is definitely not CBC it is 

not CPC here there is an attack here right. The attack basically stems from the fact that in the 



stateful variant adversary is already aware of the IV which is going to be used for the future 

message, which is not the case, if the sender would have actually encrypted a long message, a 

single message consisting of both m and m dash. 

 

In that case, adversary would not be aware of the IV, which is actually going to be used for m 4 

right. But in the case when m and m dash are treated as 2 different messages, namely a sequence 

of messages, adversaries already aware of the IV, which is going to be used for doing the 

chaining part for encrypting the message m dash. That means, in some sense, it has the control 

over the randomness, which the adversary can exploit. 

 

And by asking encryption or queries and can completely identify whatever message block it 

wants to identify. So let us see the attack scenario here. Imagine we have a sender and say 

sender. The first message that it wants to encrypt is a concatenation of 3 blocks each of big L 

bytes it does it using a stateful variant of CBC mode. So, since the message m is the first method 

which it was sending to the receiver, the IV will be picked randomly. 

 

And c 1 c 2 c 3 will be basically encryption of m 1 m 2 m 3 and say there is an TPA attacker, 

which intercepts this in encrypted packet, right. And now the adversary knows the relationship or 

the way c 1 c 2 c 3 have been computed. The adversary does not know the k, it is unknown for 

the attacker, but the adversary knows the underlying mathematics which is used to compute c 1 

c2 c 3. Now imagine the CPA attacker is under the falling state. 

 

It somehow knows that the message m 1 or the first block of the message m actually, is either m 

1 0 or m 1 1. That is a prior information somehow available with adversary. Now if the stateful 

variant of my CPA or CBC mode is indeed CPA secure, then even if the adversary has this prior 

knowledge and adversary sees this encrypted communication, by just seeing the ciphertext 

blocks c 1 adversary should not be able to figure out whether it is an encryption of actually m 1 0 

or m 1 1 without except with probability 1 by 2. 

 

Even if my adversary gets access to the encryption oracle queries, but now what we are going to 

demonstrate here is that if the sender and the receiver are using a stateful variant of CBC mode 



of encryption, how a smart CPA attacker can get encryption oracle query and identify whether 

the message block m 1 whether it is m 1 0 which is encrypted in c 1 or whether it is m 1 1 which 

is encrypted in CBC right. 

 

So that is what we are going to demonstrate. Support the CPA attacker asked for an encryption 

oracle service for a new message m dash which is consisting of 2 blocks say m 4 and m 5 and m 

4 is selected in this specific way. The reason m 4 is selected like this will be clear to you very 

soon. M 5 could be any arbitrary block of big L bytes, I do not care about m 5, but m 4 is 

selected like this. 

 

And since we are in the CPA rigid, we cannot prevent a CPA attacker from asking encryption 

oracle query for this kind of message. Now, in response, suppose sender is not aware of the fact 

that it is interacting with an adversary and it is influenced to actually encrypt the message m dash 

consisting of these 2 blocks M 4 and m 5 with the same key k but using a stateful variant of CBC 

mode of encryption. 

 

So, the encryption will now no longer consist of an IV, because the IV for encrypting the 

message m dash will be the ciphertext block CT right. So adversary will know that the ciphertext 

blocks c 4 is the value of the keyed function F on the XOR of m 4 and m v 3. And now if I 

substitute the value of m 4 the way m 4 has been picked by the adversary, the effect of c 3 and c 

3 cancels out. And basically c 4 turns out to be the value of the keyed function on the XOR of IV 

and m 1 0. 

 

Now, adversary has also seen the value of c 1 right. Because that was the encrypted 

communication, which adversary has intercepted. And since my F k is a permutation, it is a 

keyed 1 to 1 on 2 mapping, adversary knows that c 4 is going to be equal to c 1 if and only if the 

message block m 1 is same as m 1 0, so it has all the information available with it to find out 

whether the ciphertext block c 1 was an encryption of m 1 0, or whether it is an encryption of m 

1 1. 

 



And with probability one our adversaries going to identify what exactly is the case. That is why 

we can no longer claim that the stateful variant of the CBC mode of encryption is CPA secure. 

And this attack was indeed launched in one of the earlier version of the TLS protocol where the 

implementers by mistake thought that the stateful variant of the CBC mode will be CPA secure, 

and they ended up deploying stack. 

 

And this weakness was exploited by the attackers to launch what we call us a beast attack. And it 

is only later that this attack was formally identified and people realize that what exactly is the 

importance of formal proof. So the lesson that we learn from this example is that you should not 

make absolutely any modification to a crypto scheme which has been formally proved to be 

secure, right. 

 

Even if the modifications look benign to you until and unless you do not have a formal proof for 

the security of the modified scheme. So that brings me to the end of this lecture. Just to 

summarize, we had seen 2 modes of operations of the pseudo random permutations, namely the 

ECB mode, and a CBC mode. The ECB mode is definitely not CPA secure and not 

recommended to use in practice and the CPC mode is CPA secure. 

 

We have not seen the proof though, but you have to believe me that it is CPA secure. The 

disadvantage of the CBC mode is that it is not stateful that means we cannot maintain the state 

across multiple messages, and it does not support for perils. In the next lecture, we are going to 

see 2 other modes of pseudo random function and pseudo random permutations which are CPA 

secure, and which actually get rid of the restrictions that are there or the drawbacks that are there 

with respect to the CBC mode. Thank you. 


