
Foundations of Cryptography 

Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 

Indian Institute of Technology-Bangalore 

 

Lecture-15 

CPA Secure Encryption From PRF 

 

Hello everyone, welcome to lecture 14. 

(Refer Slide Time: 00:32) 

 

The plan for this lecture is as follows. In this lecture we will discuss how to design CPA secure 

cipher using pseudo random function. And we will also see a detailed security proof of this 

construction, because during this detailed security proof we will see a template of how to prove 

the security of the constructions based on pseudo random function, which we will be repeatedly 

encountered throughout this course. 

 

We will also discuss some of the drawbacks of the CPA secure cipher that we are going to 

construct from the pseudo random function, which will motivate us to design what we call as 

modes of operations of PRF or block ciphers, which we will discuss in the next lecture. 

(Refer Slide Time: 01:11) 



 

So, let us first recall the definition of single message CPA security. So, basically this is a game 

between a challenger and an adversary where adversaries computationally bounded, we have a 

publicly known schema was a message space. And the name of the experiment is CPAs single 

message indistinguishability experiment. And basically the experiment consists of 4 phases you 

have a pre-challenge training phase, then the challenge phase, post challenge training phase and 

output phase. 

 

So, during the pre-challenge training phase, our adversary is allowed to adaptively get encryption 

oracle service that means it can ask for encryption of whatever messages of its choice from the 

plain text space. And it can ask its queries adaptively and to respond to the adversaries 

encryption oracle query, the challenger generates a uniformly random key by running the key 

generation algorithm and encrypts all those plain text which adversary has queried for using the 

unknown key k, then in the challenge phase, adversary submits a pair of challenge plain text, but 

the only restriction being that the length has to be the same. 

 

I repeat here that there is absolutely no restriction on the challenge message m 0 and m 1 which 

the adversary is submitting. It could be any of the messages for which it might have already got 

the encryption oracle query service and to differentiate the pair of challenge plain text from the 

interruption oracle queries I am using different fonts for denoting the different plain text. Now to 

respond to the pair of challenge plain text the challenger basically randomly decides either to 



encrypt the message m 0 or m 1 at encrypt some message m b and the goal of the adversity or the 

challenge for the adversary is to identify whether c star is an encryption of n 0 or m 1. 

 

And we actually give the adversary more power namely, after seeing the challenge ciphertext c 

star, we give the adversary access to the post challenge encryption oracle service where again it 

can adaptively asked for encryption of any message of its choice. And the challenger has to 

encrypt all those messages again using the unknown key k. And then finally, in the output phase 

the adversary decides or outputs whether c star is an encryption of m 0 or m 1. 

 

And we say that the encryption process pi is a single message is CPA secure, if the probability 

that any computationally bounded adversary can win this game is upper bounded by half plus 

some negligible function and the security parameter n or equivalent to the distinguishing 

advantage of the attacker is upper bounded by a negligible probability. So that was our definition 

of single message CPA security which we had seen in the last lecture. 

(Refer Slide Time: 03:54) 

 

Now what we are going to do is, we are going to now design a candidate encryption process 

which indeed satisfies notion of security. So before going into the actual construction using 

pseudo random function for the moment, assume we have got access to a truly random function. 

And let us first see the construction of a candidate CPA secure encryption process, assuming we 

have access to a truly random function. 



 

The reason that we are actually seeing this CPA secure encryption process using truly random 

function is that later when we will see the actual construction based on PRF the proof will 

become simplified. So consider this version of encryption process which I call pi tilde consisting 

of a key generation algorithm encryption process and decryption process. The key generation 

process for this scheme titled it basically outputs a uniformly random function or a truly random 

function mapping little l bit strings to big L bit strings. 

 

That is the key generation algorithm. Now, the encryption algorithm for this encryption scheme 

is as follows it takes up plain text of size big L bits. And it takes a truly random function which 

will be available both at the sender as well as with the receiver, and it will be known only to the 

sender and the receiver. Now, to encrypt the message m, what the encryption algorithm does is it 

decides a uniformly random x from the domain of the function F, right. 

 

And then truly random function F is evaluated on this x input to obtain a mask of length big L 

bits which is actually used to master message m, which is the cipher text. Now, you can see that 

the actual ciphertext is a collection of 2 components. It consists of 2 components namely the x 

value at which the truly random function is evaluated. And the actual encryption of the message 

which is the masking of the message with the value of the truly random function evaluated at this 

uniformly random value x, which is a part of the ciphertext. 

 

How the decryption is going to happen. So, imagine the receiver also have the same truly random 

function, and it obtains a ciphertext which consists of 2 components the x part and the actual 

ciphertext part. Now if you see the syntax of the encryption process by the property of XOR, it 

follows that to recover the message and what receiver basically has to do is to compute the value 

of the truly random function F at the input x. 

 

And just XOR it back from the ciphertext component of the actual ciphertext or the c component 

of the actual ciphertext. And that will give back the actual plain text m. So that is the decryption 

algorithm. Now why this scheme is inefficient. The reason the scheme is inefficient is that both 

sender and receiver have to store the description of the truly random function little f. And if you 



imagine a truly random function as a truth table, then basically sports sender and receiver have to 

store these many number of bits. 

 

Namely 2 to the power little l rows, each consisting of big L bits. So if L is some polynomial 

function of the security parameter this is exponentially large. So storage wise both sender and the 

receiver have to store or perform exponential amount of competition. For the moment just do not 

worry about this inefficiency part, let us analyze the security aspect of this encryption process. 

We are going to now prove that the scheme is CPA secure for encrypting big L bit messages. 

 

And the basic intuition that why this encryption processes CPA secure is that if you see the 

syntax of your encryption process here, each instance of the encryption process actually 

evaluates the truly random function on a uniformly random x. That means and since that my 

function F is a truly random function, the value of F on that uniformly random x is going to be a 

uniformly random big L bit string. 

 

That means each instance of an encryption process you can imagine as an instance of one time 

pack, that this holds under the assumption that the x values which we are actually using for 

encryption process, never gets repeated. That means if you use this encryption process for 

encrypting polynomial number of messages, and in those polynomial number of instances of 

encryption, the x value never gets repeated. 

 

Then each instance of this encryption process you can imagine as an independent instance of one 

time pad. And we had already seen that if you consider independent instances of one time pad 

where the pad which is used in each instance is independent of each other, then it cannot be 

broken even by a computationally unbounded adversary. That means we can say intuitively that 

conditi1d on the event at the x values are never repeated in polynomial number of instances of 

this encryption process. 

 

This encryption scheme is actually CPA secure. That is a basic intuition. Now, what we are 

going to do is we are actually going to formalize this intuition rigorously through our 

experiment. 



(Refer Slide Time: 08:50) 

 

And analyzing that experiment. So, consider any arbitrary adversary A, who wants to participate 

in an instance of single message CPA security game against this encryption process vital right. 

So as for the rules of the games, we have 4 phases. 

(Refer Slide Time: 09:05) 

 

Then in the pre-challenge training phase, our adversary can ask for encryption of any number of 

messages of his choice as long as it is bounded by some polynomial function in the security 

parameter. So let adversary asked for encryption of s number of messages. Now, to encrypt this 

to respond to these messages, the challenger basically has to encrypt all those messages as per 

our encryption process in tilde. 



 

So for doing that, it is going to run a key generation alpha or the function generation algorithm, 

in this case to be specific and generates a truly random function. And then once a truly random 

function is available with the challenger, it is going to encrypt all the messages for which the 

adversary has asked for the encryption oracle service, right. So each of the ciphertext c i, x i 

basically each ciphertext c i basically consists of 2 components namely an x component and the 

actual ciphertext. 

 

So, the x value is actually used to evaluate the truly random function to obtain the mask and then 

that is XORed with the actual message to obtain the ciphertext component. In the same way the 

challenge phase adversary will submit a pair of messages say m 0 and m 1 and our challenger is 

going to randomly encrypt one of them, I denote the encrypted message encrypted m b to be the 

collection of x star comma c star basically x star is the x value which is used to generate the pad 

to mask the message m b. 

 

And the masking of the message m b with the pad is start, then you have the post challenge 

training phase we are again over adversity can ask for the encryption oracle service for 

polynomial number of messages. And again, using the same unknown truly random function 

which is available only with the challenger. The Challenger is going to generate the mask namely 

F of x i where x i will be the part of the ciphertext. 

 

And once for x i is computed it will be XORed with the messages to obtain the corresponding 

ciphertext part. And then we have the output phase right where adversary basically output 

whether c star, or the challenge ciphertext x star, c star to be more specific is an encryption of m 

0 or m 1, right. So let us first do some computations here. Let me denote the total number of 

queries, namely the pre-challenge queries and the post challenge queries which adversaries has 

asked for us Q of n, which is going to be some polynomial function of the security parameter. 

 

And we are going to prove this claim namely, we are going to prove that any arbitrary adversary 

A which is computationally bounded and makes Q n number of queries in an instance of single 

message CPA security game against the encryption process pi dash or pi tilde is going to 



correctly identify whether the challenge ciphertext is an encryption of m 0 or m 1 with 

probability at most half plus Q n by 2 power l. Since Q of n is of some polynomial function of 

the security parameter. 

 

And assuming that little l is also some polynomial function of the security parameter, overall this 

quantity is actually a negligible quantity, right. That means we are actually going to prove that 

the probability that any arbitrary adversary A by little q n number of queries wins an instance of 

single message CPA security game is half plus negligible, which proves that our encryption 

process pi tilde is actually single message CPA secure. 

(Refer Slide Time: 12:34) 

 

So let us proceed to prove our claim. And we are going to prove it using several observations 

that we are going to make about any instance of single message CPA security game. So our first 

observation is that if we consider the set of x values, which are actually used for encrypting the a 

pre-challenge encryption or queries, and x values which are actually used by the challenger to 

encrypt the post challenge encryption oracle queries. 

 

Then adversary knows the value of the truly random function F available with the challenger on 

those x values why. So, let us first focus on the pre-challenge training phase. So, if I consider 

that ith query right so, ith query is for the encryption of the message m i where m i is known to 



the adversary. And in response to that adversary learns the ciphertext which is collection of x I, c 

I value and adversary knows the relationship between m i x i c i. 

 

Namely adversary knows that the unknown truly random function F evaluated at the known x i is 

related to ci and mi by the XOR operation and everything is known to the adversary in this 

equation except the F part. So, if adversary knows the mi part the adversary knows the C i part 

and adversary knows the x i part. So, if adversary just performed this operation, adversary comes 

to know about the value of the truly random function F at the x i at x i input. 

 

So that is the case for the pre-challenge query phase or pre-challenge training phase. And the 

same holds even for the post challenge training phase. That means if adversary has asked for the 

encryption oracle service for this message m i and in response to that adversary obtains the 

ciphertext denoted as x i, c i, then that by performing this operation, namely performing the XOR 

of mi and c i adversary will learn the value of the truly random function F at the input x i right. 

So that is the first observation which is easy to see. 

(Refer Slide Time: 14:32) 

 

The second observation here is if you consider x star value namely the x value, which is actually 

used to generate the pad for interrupting the challenge, which is actually used to generate the 

challenge ciphertext right, then if this x star does not belong to the set of x values, which are 



used to encrypt a pre-challenge query phase, pre-challenge queries and the post challenge 

queries, then the probability that adversity wins this instance of CPA game is at most 1 by 2. 

 

And this is because of the fact that if the x star value which is actually used to generate the 

challenge ciphertext has never been used in any of the pre-challenge training phase query or the 

post challenge phase query, then basically, if I shave off this pre-challenge training phase and the 

post challenge training phase, and if I just focus on the challenge phase of this experiment and it 

reduces to an instance of one time pad indistinguishability experiment. 

 

And we had already seen that one time pad is perfectly secure even against a computationally 

unbounded adversary. So that is proof that proves our second observation right. Now, the third 

observation that we can make about this instance of CAP game is that if the x star value which is 

used to generate the challenge ciphertext is repeated that means it belongs to the either the set of 

x values which are use during the pre-challenge training phase, or the set of x values which are 

used during the post challenge training phase. 

 

Then the probability that adversary wins this game is actually 1. This is because as part of the 

challenge ciphertext adversary will know the x value, namely the x star value, which is used to 

generate or encrypt the message m b. And adversary has also seen the x values used during the 

pre-challenge training phase, as well as post challenge training phase. So by just comparing the x 

star value with the list of x values that the adversary has. 

 

If it sees that x star is getting repeated, then it can easily identify where the x star is actually an 

encryption of m 0, or whether it is an encryption of m 1 by performing this operation, right. So 

that is our third observation. And the most crucial observation that we are now going to make is 

that the probability that the x value which is used in the challenge ciphertext namely x start gets 

repeated in when our adversaries make Q n number of queries is at most Q n by 2 to the power 

little l right. 

 

So for this notice that Q n that is nothing but the number of queries that the adversary has made 

throughout this instance of the CPA game. And in each instance of the query when adversaries 



asking for the encryption of some message, the x value which is used by the challenger to 

encrypt, that message is randomly picked over the set of little l bit unit to a binary string, right. 

So the probability that x star which is actually used in the challenge, to generate the challenge 

ciphertext is gets repeated in Q n number of queries is of course Q n by 2 to the power l. 

 

So that is our fourth observation right. So based on this 4 observations, let us formalize our 

argument at why this truly random function based scheme is indeed CPA secure. So let repeat 

denotes the event that the x value which is used to encrypt the challenge, which is used to 

generate the challenge ciphertext gets repeated. That means it is either used during one of the 

pre-challenge encryption oracle query or one of the post challenge inscription oracle query. 

 

Then our goal is to analyze what is the success probability of our adversary of identifying 

correctly whether the challenge ciphertext is an encryption of m 0 or m 1. And the winning 

probability can be split it into the sum of 2 individual probabilities, namely, the probability of 

adversary winning the CPA game, given that the x star value gets repeated during any of the 

encryption oracle queries, or the probability that adversary wins CPA game, given that the x star 

values never gets repeated during any of the encryption oracle queries, right. 

 

Now, what I can do is that the first probability here, I can always upper bound by the probability 

that the event repeat occurs and the second probability I am just writing it down as it is. So that 

means my goal is to now calculate the probability that the event repeat occurs and the probability 

that adversary wins the CPA game, given that the event repeat does not occur. And I am going to 

show that this is upper bounded by 1 by 2 = Q n by 2 power l. 

 

Why well we have already seen that the probability that the x star value gets repeated is Q n by 2 

power l, we had already seen in one of the observations, and the second probability, namely 

adversary wins the CPA game given that x star value never gets repeated is upper bounded by 1 

by 2 because in this case, we can simply say that the pre-challenge training phase and the post 

challenge training phase is useless for the attacker. 

 



And if I just focus on the challenge part of the game that is nothing but an instance of one time 

pad indistinguishability experiment, and we know that even a computationally unbounded 

adversary cannot win the one time pad indistinguishability game. So that is how we get the 

overall success probability of our adversary right. And as I already argued that the probability Q 

n by 2 power l can be approximated by a negligible function in the security parameter. 

 

If Q n is a polynomial function in the security parameter and l little l is also polynomial function 

in the security parameter. So what we overall get is that a truly random function based 

construction is indeed CPA secure. 

(Refer Slide Time: 20:28) 

 

But as I said, that hypothetical scheme pi tilde based on the truly random function we cannot use 

in practice because for deploying it both sender and the receiver have to store the description of a 

truly random function which is exponentially larger in size. So, what we are going to instead do 

is that we are going to retain the blueprint that we had used for this encryption process pi tilde. 

And what we are now going to do is that wherever they ever invocations of the truly random 

function, we replace them by invocations of a pseudo random function. 

 

So here I assume that I have a pseudo random function F, whose key size is n bits, block size is 

little l bits and output size is big L bit, right. So instead of outputting a truly random function, the 

modified key generation algorithm is now going to output a uniformly random key, which will 



be available both with the sender and the receiver. In the same way, instead of computing the 

value of truly random function on some x input to generate the mask. 

 

And using it to masking the message, what we are going to do is if the sender wants to encrypt a 

message of size, big L bits, it is going to uniformly random chose an x value, evaluate the keyed 

pseudo random function on that x input to generate a pad of size big L bit and XOR it with the 

message. So operation wise we are more or less doing the same process as we are doing in the 

truly random function based encryption process. 

 

The only difference is that instead of evaluating a truly random function on some random x value 

we are now actually evaluating a keyed pseudo random function with respect to a uniformly 

random key on some uniformly random x value. And the modified decryption operation process 

is analogously similar to the truly random function based decryption process. 

 

Namely if the receiver sees a ciphertext, it passes it as a collection of x part and actual ciphertext 

part. The x part is used to evaluate the keyed function with the same key k available with the 

receiver to generate the mask and this XOR back from the ciphertext to recover back the 

plaintext. That is a modified scheme pi. 

(Refer Slide Time: 22:46) 

 



And a theorem statement that we are now going to prove is that if the function F is a secure 

pseudo random function, then the modified scheme is actually a CPA secure encryption process 

for encrypting big L bit messages. And before going into the actual proof, let us compare the 2 

encryption process on your left hand side part you have the truly random function based 

encryption process. 

 

And in your right hand side part, you have the pseudo random function based encryption process. 

And what is the actual difference between these 2 encryption process, the only differences the 

nature of the mask. In the truly random function based encryption process, the mask was 

generated by evaluating an unknown truly random function where the function was known only 

to the sender and the receiver. 

 

Whereas in the PRF based construction, the mask is generated by evaluating a keyed pseudo 

random function where the key is now random and known only to the sender and the receiver, 

right, that is the only difference. And we had already rigorously proved that truly random 

function based encryption process is CPA secure against any computationally bounded 

adversary. 

 

So intuitively the same should hold even if I replace all the instantiations of the truly random 

function by a pseudo function. Because now if after the replacement of truly random function 

and by a pseudo random function the modified scheme is not CPA secure. That means we have 

now a distinguisher, who can distinguish apart the behavior of a truly random function little f 

from the behavior of a pseudo random function F k. 

 

But that is a contradiction to the assumption that we are making about the function F being a 

secure pseudo random function. So now we are going to rigorously formalize this intuition 

through a reduction. 

(Refer Slide Time: 24:34) 



 

So now you have 3 entities here you have the truly random function based encryption process, 

which we know is CPA secure. We have the modified scheme based on pseudo random function. 

And both these schemes are over the same message space of big L bit strings. And we have a 

publicly known pseudo random function. Now imagine we have an adversary A who can 

actually win the CPA security game against a modified scheme pi. 

 

Now using this adversary A, what we are going to do is we are going to design a distinguisher, a 

PRF distinguisher, who can distinguish apart the output of a pseudo random function from the 

output of my keyed function F, which will be a contradiction. So let us see how the distinguisher 

operates. So distinguisher basically acts as a verifier and invokes the adversary A a CPA 

adversary A. And an instance of the CPA game is run or executed. 

 

So as per the rules of the game adversary asked for the encryption queries, namely, it asks for the 

encryption oracle service and it throws a s number of queries. Now to encrypt these messages, 

what the distinguisher does is it randomly chooses s number of x values, right from the domain 

of either the keyed function F or the truly random function F, and it asks for the function value us 

at is x values and in response, it gets the function values of output of the function on those x 

values. 

 



So this part of the experiment is basically the PRF game right, where the adversaries goal is to 

basically query for several number of x value of the function and gets the response and based on 

the response, he has to find out whether he has interacted with a truly random function or a 

pseudo random function, whereas this part of the game is your CPA game right. That is the way 

you can pick to really imagine the reduction right. 

 

So once the distinguisher sees the values of the x inputs and obtain the y values here is how it 

produces the ciphertext and forwarded to our adversary in the CPA part of the experiment. 

Namely the x value is retained as it is. And the C part basically is the XOR of the messages for 

which the adversary has asked for the encryption XORed with the y values. Now as per the rules 

of the CPA game in this part of the experiment adversary is going to submit a pair of challenge 

plain text. 

 

And what the distinguisher do is the following. It randomly decides either to encrypt the message 

m 0 or m 1. And to encrypt that message m b, it picks a uniformly random x value from the 

domain of the function and asked for the function value added x input and in response, it gets 

back the y value. And the challenge ciphertext for the CPA part of the experiment is computed as 

this ciphertext basically consist of the x value used by the distinguisher PRF distinguisher. 

 

And the C part is basically the XOR of the y value with the message m b where m b could be 

either m 0 or m 1. In the same way in the CPA part of the experiment, our adversary will ask for 

the post challenge training phase, post challenge inscription oracle queries and for responding to 

that the PRF distinguisher basically picks up several random x values and asked for the function 

values at those x inputs in response it gets back the y values. 

 

And it submits the ciphertext in the to the CPA adversary by repeating those x values and the C 

values being the XOR of the y values and the m values right. Now before going into the details, 

if I consider the PRF part of the PRF game here, the y values as generated by our PRF challenger 

would have been generated as follows. The PRF challenger was basically tossed a fair coin, 

which outputs 0 and 1 with probability 1 by 2. 

 



And if B would have been 0, then all this y values right used for the responding to this x inputs 

are actually generated by a truly random function. And if all these y values are generated by a 

truly random function, then all the ciphertext which are actually forwarded to our CPA adversary 

will have the same distribution, as in the instance of a CPA game against encryption process by 

pi tilde right. 

 

That is what is the relationship between the probability distribution of the y outputs in the PRF 

game and the ciphertext in the CPA game, right. On the other hand, if b = 1 in the PRF 

experiment, then all these y values, right would have the same probability distribution as if they 

are generated by querying a keyed pseudo random function, which further implies that that the 

ciphertext with our CPA adversary is same will have the same probability distribution, as our 

CPA adversary would have seen in an instance of the CPA game against the scheme pi. 

 

Notice that neither of our PRF distinguisher D nor our adversary CPA adversary m knows what 

exactly is the probability distribution of the ciphertext and the y values right because we are 

using the distinguisher and adversary in a blackbox fashion, their goal is basically to win their 

respective experiments. But this is the property which holds with respect to the probability 

distribution of the y values in the PRF game and the ciphertext in the CPA game. 

 

Now, we are going to make some claims here. Right before going into that the last part of the 

CPA game will be that adversary will output whether this x, c is an encryption of m 0 or m 1, 

namely it outputs a big B dash. And based on that our distinguisher PRF distinguisher has to 

output whether the y values that it has seen are the response from a truly random function or the 

keyed function F k. 

 

So the way our PRF distinguisher outputs is the following. It checks whether the CPA adversary 

is correctly able to identify whether x, c is an encryption of m 0 or m 1. That is the case then our 

PRF distinguisher says that the y values are generated as per the pseudo random function. 

Otherwise it says that the y values are generated by a truly random function. That is the way our 

distinguisher is designed. 

 



Now, if I find a running time of what PRF distinguisher well, the running time of RPR 

distinguisher is of the same order as the CPA distinguisher that means if the CPA distinguisher is 

polynomial time, then so is a our PRF distinguisher. Now, let us analyze the property of the so 

called PRF distinguisher that we have designed. I claim that the probability that our PRF 

distinguisher outputs b double dash equal to 1, given that b = 1 is the same as the probability that 

a CPA adversary outputs B dash = big B in the CPA in an instance of the CPA game against the 

encryption process pi. 

 

This is because as I said earlier, if little b = 1 in the PRF game, that means the y values are 

generated by a pseudo random function, then, right all the ciphertext that the CPA adversary is 

same will have the same probability distribution as per the encryption process pi. So with 

whatever probability of a CPA adversary will be able to correctly identify x, c being encryption 

of m 0 or m 1 with exactly the same probability of a PRF distinguisher was going to output b = 1 

right. 

 

That is a first claim here. And in the same way, as I explained earlier, that if little b = 0 in the 

PRF game, that means y all the y values generated by querying a truly random function, then the 

probability that our PRF distinguisher still incorrectly labels them as the output of pseudo 

random function is that the probability that of a CPA adversary wins the CPA game, against 

instance of truly random function based encryption process. 

 

And this is because the decision for the PRF distinguisher is that it outputs b = 0 only even if the 

CPA adversary correctly identifies whether x, c is an encryption of m 0 or m 1 right. That means 

in summary, what I can say is that if I consider the distinguishing advantage of our PRF 

distinguisher, then that is exactly the same as the distinguishing advantage of our CPA adversary, 

right. That means whatever probability it can win the CPA game against a new sense of the 

scheme pi minus the probability that it can win the instance of CPA game against a modified 

scheme pi dash, right. 

(Refer Slide Time: 33:48) 



 

So that is a fact we have already established. But our goal was to basically compute a winning 

advantage or the probability that our adversary can win the CPA game against an encryption of 

pi. So if I take or reshuffle the terms, I get the following. So notice that the left hand side namely, 

the distinguishing advantage of a PRF should be negligible, because as per our assumption, we 

assume that the function F is actually a PRF. 

 

That means as per the definition of PRF, or a secure PRF, for any polynomial time distinguisher, 

the distinguishing advantage of the distinguisher should be upper bounded by a negligible 

function. So, if I take this remaining term to the left hand side, what I obtain is that the 

probability that our adversary wins the CPA game against the encryption process pi is a 

summation of these 2 probabilities. 

 

And we already calculated that for any arbitrary adversary A, the probability that it means an 

instance of the CPA game against the truly random function based encryption process by making 

Q n number of queries is upper bounded by 1 by 2 + Q n over 2 to the power little l which is 

same as half plus negligible. So, I can replace this quantity by some the another negligible 

function negligible dash. 

 



So, overall we get at the probability that our adversary A wins the CPA game against PRFs 

construction is upper bounded by half plus negligible dash n, which is satisfying the definition of 

CPA secures. 

(Refer Slide Time: 35:24) 

 

That means we have proved that the scheme pi which we have designed based on pseudo random 

function is indeed CPA secured. So, we now have a candidates CPA secure scheme, but there are 

certain limitations of this scheme. The first limitation is that if you have a message of size big L 

bits, then the overall size of the ciphertext actually is little l plus big L bits because remember 

that the x value which we are using to generate the mass is also has to be a part of the overall 

ciphertext. 

 

More specifically, if big L and little l are same that means our ciphertext sizes twice size of the 

plaintext right. And that means if I have a large message of consisting of several blocks of big L 

bits, and if little l is same as big L then actually the ciphertext exactly that twice as the size of the 

plaintext. So that is the first limitation of this or the first drawback of this scheme, not a 

limitation. It is a drawback on this scheme. 

 

More importantly, each instance of the encryption process here right is going to require a fresh 

instance of randomness namely the x value which we are using to generate the mass has to be 



freshly picked for each instance of the encryption process right. So that is the second drawback 

because in practice generating uniform randomness is a computationally expensive task. 

 

So these are the 2 restrictions of the drawbacks of the candidate PRF based scheme that we have 

designed here. In the next lecture we are going to see that how we will proceed to get rid of these 

2 restrictions. To summarize in this lecture we had seen a candidate encryption process based on 

pseudo random function, and we had seen a rigorous security proof that how we can reduce the 

overall security of this constructed scheme to the security of the underlying pseudo random 

function. Thank you. 


