
Foundations of Cryptography 

Prof. Dr. Ashish Choudhury 

(Former) Infosys Foundation Career Development Chair Professor 

Indian Institute of Technology-Bangalore 

 

Lecture-11 

Provably Secure Instantiation of PRG 

 

Hello everyone, welcome to lecture 10, the plan for this lecture is as follows. 

(Refer Slide Time: 00:33) 

 

In this lecture, we will discuss about the theoretical instantiation of pseudo random generators 

for which we will introduce the concept of one way function. And after introducing the concept 

of one way function, we will see how to design PRG with one bit expansion and then we will see 

how to design PRG with arbitrary expansion. 

(Refer Slide Time: 00:53) 



 

So, the question that we want to answer is do PRG's exist. So, recall that in the last lecture, we 

had seen that if you have a pseudo random generator, then using that you can design stream 

ciphers, which allow you to encrypt long messages using short key. So, the question that we not 

want to answer is do such PRG's exist or not. And to recall, a PRG is a deterministic algorithm 

which takes a seed or an input of size little l bits which we denote by s. 

 

And it expands it is output and it produces an output which is significantly larger than the input 

and the security of PRG means that the output of this deterministic algorithm G should be 

computationally indistinguishable from the output of a truly random generator of the same size 

right. So, it turns out that there are 2 ways to design PRGs. The first way is provably secure 

constructions of PRGs from one way function. 

 

And when I say provably secure I mean that the constructions that we give using one way 

function for that we give approve that intake the construction is PRG in the sense that they are 

exist no polynomial time distinguisher which can distinguished outcome of the result in PRG 

from the corresponding 2 random number generator. Unfortunately, we cannot use them in 

practice because the amount of computation that are involved in the result and construction are 

of order of several magnitude. 

 



On the other hand, there are practical instantiations of pseudo random generators, but 

unfortunately they are not provably secure in the sense we say believe that they are heuristically 

secure because ever since they are construction, no weakness have been reported for such pseudo 

random generators, but the advantage of search heuristically secure pseudo random generators 

are they are super fast. 

 

So, that is why in practice we prefer to use such an instantiations. So, the focus for this lecture 

will be the provably secure construction instantiations of pseudo random generators from one 

way function. In the next picture we will discuss about the practical instantiations of pseudo 

random generator. 

(Refer Slide Time: 03:00) 

 

So let me introduce the concept of one way function or OWF in short, so it is a function from the 

domain of bit string to the codomain of bit string denoted by little f. And, informally, it is a 

function which is easy to compute, but difficult to invert. More specifically, there are 2 

requirements of this function. The first requirement is that it should be easy to compute. Namely, 

if you are given any input x, computing the value of the function on that input x should be 

polynomial time polynomial in the size of the input x. 

 

The second requirement, which is the interesting property from this one way function is the hard 

to invert property namely, the requirement is that if you are given a random sample, y from the 



codomain, then finding the preimage or one of the preimages of this given y in polynomial time 

should be difficult except with a negligible probability. And this property is modeled by an 

experiment. 

(Refer Slide Time: 03:58) 

 

So in this experiment, we are given the description of a publicly known function f. And the name 

of the experiment is invert, played with respect to a polynomial time algorithm whose goal is to 

invert the output of a function on a random sample with respect to the function f, and n is the 

security parameter here. So in this experiment, we have 2 entities, namely the verifier and 

adversary. So the rules of the experiment are as follows. 

 

The verifier here picks a random x from the domain which is an arbitrary bit string and computes 

the value of the function on that input x, which is given as a challenge for the adversary. So the 

adversary is not aware of the input x, it only sees the output of the function on the input text 

namely y and the goal or the challenge for the adversary is to invert to sample y namely to find at 

least one of the preimages of this given value y. 

 

So it submits his response namely x dash and we say that the function f has one wayness 

property, if any polynomial time algorithm A participating in this experiment there exist a 

negligible function say negligible n such that the probability is that the probability that adversary 



is indeed able to output x dash, which is actually a preimage of the given y is upper bounded by a 

negligible function. 

 

That means we require that no polynomial time algorithm should be able to invert this random y 

except with a negligible probability. So, in this definition the requirement is that the success 

probability of that adversary to give invert the random y should be upper bounded by a negligible 

function not by 0, because they are always exist a guessing strategy by the adversary namely 

adversary can simply guess a random x dash. 

 

And they are always exist a nonzero probability that the guest x dash indeed turns out to be one 

of the preimages of the given y, that is why in the definition, we do not require that we do not 

enforce that the condition that it A should be able to invert the sample y should be upper 

bounded by 0, we give the leverage and the upper bound the success probability of the adversary 

by a negligible probability. 

 

Also notice that it is not required by the adversary to find the exact x, because the function can 

be a many to one function. So, it could be possible that the given y which is thrown as a 

challenges or the adversary has several preimages. The goal of the adversary is to find one of 

those preimages right. 

(Refer Slide Time: 06:25) 

 



So let us see an example to make our understanding clear, consider the function f which is a 2 

input function and the function is from the set of natural numbers to the set of natural numbers. 

So, the function take 2 inputs from the set of natural numbers and output of the function is 

basically the product of the 2 inputs. Now, is the question is this function a one way function that 

means if someone gives you the value of x dot y, your x and y are not known to you. 

 

Will you be able to invert or find one of the preimages namely appear of x, y such whose product 

is equal to the given product in polynomial amount of time, and it turns out that they are exist. 

Indeed, they are indeed exist a simple algorithm to find one of the preimages and the algorithm is 

as follows. So you are given a random sample z, which is basically the output of the function on 

a pair of unknown inputs x, y. And your inversion algorithm is as follows. 

 

The algorithm checks whether z is even or not, if z is even then the algorithm outputs the 

following pair of preimages, the first preimage x dash is 2 and a second preimage y dash is z by 

2. So, that is a pair of inputs which would actually give you the output z, whereas if the sample z 

which is given to you is XOR then you just randomly output x dash, y dash on the set of natural 

numbers. 

 

So, it turns out that the success probability of this inversion algorithm is actually 3 by 4. Because 

since the function is a 2 input function, the possible values of x, y could be odd, odd, odd, even, 

even, odd and even, even. And it turns out that out of this 4 combinations for 3 of the 

combinations, your z will always be even. And if z is even and indeed the inversion algorithm 

that is used here, namely outputting, 2 and z by 2 as the possible preimage is a successful 

algorithm. 

 

The only problematic case is when the sample x, y is actually an odd, odd pair in which your z 

may not be z will not be an even number, in which case you might be outputting an incorrect x 

dash, y dash. So, it turns out that in three fourths of the instances, the adversary or this algorithm 

will be able to successfully invert the given value z. Hence, this function f is not a one way 

function because the success probability of inversion is 3 by 4, which is a significant amount of 

probability right. 



 

On the other hand, let us slightly modify this function. So, my function f of x y is still the 

product of x and y but instead of saying that x and y are random natural numbers, put the 

restriction here that x and y are random prime numbers of roughly same size. And it turns out 

that this function is now conjecture to be a one way function if x and y are large prime numbers 

say of order 1024 bits. 

 

So I stress here that it is just conjecture that this function f of x y where x and y are arbitrary 

large prime numbers is a one way function because till now, we do not have any polynomial time 

algorithm to invert this function. It is not proved formally that indeed this function is a one way 

function. And later on, when we will be discussing about the public key cryptography, and we 

will be discussing number theory with their we will see several such candidate one way 

functions, which are conjecture on several hard so called number theoretic hard problems. 

 

So for the moment, we will believe that this function f of x, y where x and y are arbitrary large 

numbers and the function is a product of x and y is a candidate one way function. 

(Refer Slide Time: 10:02) 

 

So now let us define another related concept namely that of one way permutation or OWP. And 

basically a one way permutation is a one way function, which also happens to be a bijection. 

Namely, the mapping is now a one-one onto mapping. That means each y from the codomain 



will have a unique preimage. And the requirement or the hard to invert part for one way 

permutation is that if you are given a random y from the codomain, the challenge for the 

adversary is to find out a unique preimage x which would have actually given that y in 

polynomial amount of time. 

 

So the difference here is for the case of one way function, the random challenge y could have 

several preimages and your goal was to find one of those preimages. In the case of one way 

permutation, random sample y which is given to you will have only a unique preimage. And your 

goal is to find that unique preimage and polynomial amount of time. Notice that both in the case 

of one way function as well as in one way permutation, we put the restriction that the inversion 

algorithm should take polynomial amount of time. 

 

Because if we do not put any restriction on the amount of time, which is given to the inversion 

algorithm, then they are always exist a brute force algorithm namely, the algorithm can try over 

all possible candidate x from the set of candidate x and definitely it will hit upon one x which 

will be given the random y which is thrown as the challenge, but the running time of this brute 

force algorithm will be exponentially or it will be proportional to the size of the domain. 

 

And the size of the domain is exponentially larger than the inversion algorithms running time is 

also exponential. So, that is why in the experiment, where we model the inversion part both for 

the one way function as well as one way permutation we put the restriction that running time of 

that adversary should be polynomial time. 

(Refer Slide Time: 11:52) 



 

So, now let us put this let us discuss another interesting related concept namely that of hard-core 

predicate which will be useful when we will design our candidates pseudo random generator 

from one way function and the motivation for this hard-core predicate is as follows. So imagine 

you are given a function f, which is a one way function or a one way permutation. And if you are 

given the value of function on a random input x, that definitely computing the entire x in 

polynomial amount of time is difficult. 

 

Because that is what is the precise, that is what is the property of a one way function or one way 

permutation, but that does not necessarily mean that you cannot compute anything about x in 

polynomial time, there might be some information about x, which you can compute from the 

value of f of x in polynomial amount of time. So basically hard-core predicate models what can 

be computed about x from a f of x in polynomial amount of time and what cannot be computed. 

 

To make my point more clear, consider this function and say this function f is a one way function 

and using this function or design another function g, which is now a 2 input function and the 

function g on the input pair x 1, x 2 is defined as the output consist of x 1 as it is, and the second 

part of the output of this function g is actually the value of the function f on the second part of 

the input, namely x 2. 

 



That is the way I am defining my function g. And my claim is that if the size of x 1 and x 2 are 

roughly same, namely some polynomial function in the security parameter, then if the function f 

with which we start is a one way function, then the constructed function g, which is constructed 

like this is also a one way function right. So basically, the idea here is that if g is not a one way 

function, that means if someone gives you the value of g of x 1, x 2. 

 

And you can actually find out x 1, x 2 in polynomial amount of time. Then intuitively using that 

algorithm, you can also compute the value of x 2 using just given f of x 2, so we can formally 

established his fact using a reduction argument. So I am not going into the reduction argument. 

But basically the idea here is that if f is one way function and the function g, which is a 2 input 

function constructed like this is also a one way function provided both x 1 and x 2 are roughly 

same size. 

 

Now, if you see the function g, it turns out that even though it is a one way function, by seeing 

the output of this function g on a random pair of input, you actually end up learning the one half 

of the input, right. Because the first half of the output is actually the first half of the input as it is. 

In that sense, even though this function g is a one way function, it is not the case that if I give 

you the value of this function g or non arbitrary pair of input, you cannot compute back the entire 

input in polynomial amount of time. 

 

There is something which you can compute, there is something which you cannot compute in 

polynomial amount of time. So this notion of hard-core predicate precisely models, what is 

polynomial time computable from the value of the function f of x on random input x, right. 

(Refer Slide Time: 15:01) 



 

So let us see the formal definition of this hard-core predicate. So, imagine you are given a 

function from a domain of bits string to the codomain of bit string and I stress that the function 

may not be a one way function it could be a normal function. So, we are given a function f and 

corresponding to the function f we define another function hc which is a Boolean function that 

means, it takes an arbitrary Boolean input or binary string as an input and it produces a Boolean 

output 0, 1. 

 

And then we see that this function hc associated with a function f is a hard-core predicate if the 

following 2 conditions are hold. So, the first condition is that if you are given random input text 

and computing the value of this function, hard-core predicate namely hc of f should be 

polynomial time computable that means you should be able to compute the value of hc of x in 

polynomial time polynomial in the size of the input x. 

 

The second interesting property which actually makes hard-core predicate very interesting is the 

following that if you are given the value of a f of x for a randomly chosen x, then it is not 

possible to compute the value of hc of x with probability significantly better than half in 

polynomial amount of time. That means the challenge here is that if I give you f of x and I do not 

to tell you the value of x, where x is randomly chosen. 

 



Then even after learning f of x, we should not be able to compute the value of the function hc of 

x in polynomial amount of time, except with probability, but negligible better than half. If that is 

the case, then we say that the function hc of x hc is actually hard-core predicted associated with a 

function. So this requirement of inability to compute the value of hc of x with probability 

significantly better than half by a polynomial time algorithm is modeled by an experiment which 

we call as hard-core experiment. 

 

And now this experiment is designed with respect to a function f which is publicly known, which 

is a candidate function which could be a candidate one way function or one way permutation or 

it could just be a function and associated with the function f which have a candidate hard-core 

predicate, which is a Boolean function and experiment involved 2 entities. So the rule of the 

experiment is as follows. 

 

The verifier here picks a random x from the domain, computes the value of the function on that 

input x. And the corresponding output y is given as a challenge to the adversary. And that goal of 

the adversary or the challenge for the adversaries after saying the value of y it has to compute the 

value of h c of x without knowing the x. So, says hc of x is going to be a bit it submits the 

adversary outputs a bit which could be either 0 or 1. 

 

And we say that adversary has won the game if actually b = h c of x. So, that means, we say that 

the function h c associated with the function f is a hard-core predicate, if for any polynomial time 

algorithm participating in this experiment, the probability that adversary outputs b where b is 

actually equal to hc of x is upper bounded by half plus some negligible probability or negligible 

function in the security parameter. 

 

If that is the case, then we say that the function f that the function hc is a hard-core predicate 

associated with the function f. So, notice there is in definition, we bounded success probability of 

the adversary to be half plus negligible, we do not require that the success probability of the 

adversary should be 0, because there is always a guessing strategy or guessing adversary who 

can just guess a bit and there always exist a probability of 1 by 2 that the guest is indeed the 

value of hc of x correctly. 



 

Apart from that we are also willing to give that adversary an extra negligible advantage and 

successfully outputting the hard-core predicate, because we are in a computationally secure 

world right. So that is the definition of hard-core predicate. 

(Refer Slide Time: 18:53) 

 

So now the question is, if we are given a candidate one way function or one way permutation 

does there exist or associated hard-core predicate or not. And it turns out that interestingly the 

answer is yes. And that is because of a very fundamental theorem and cryptography, which is 

also called as Goldreich-Levin theorem. And Goldreich-Levin theorem basically shows you how 

to construct a hard-core predicate associated with any given one way function, or any given one 

way mutation. 

 

So we will not be going into the proof of the Goldreich-Levin theorem, we will just roughly see 

the theorem statement and intuition of the security. So the theorem statement is as follows. So 

imagine you are given a candidate one way functions f or a candidate one way permutation. Now 

using this candidate function f, we construct a 2 input function g, and the construction of g is as 

follows. So it passes the input as x, r. 

 

And the output of the g is defined as follows. So we evaluate the function f on the first part of the 

input of g. That is constitutes the first part of the output of g, and the second part of the input of g 



is copied as it is in the output of the g. And here the size of the 2 inputs of the g, namely x and r 

are of same model. So that is the way we define our function g. Now we can prove formerly that 

if the function f with which we start with is a one way function, or one way permutation that the 

function g, which we have constructed like this is also a one way function or one way 

permutation respectively. 

 

And the proof is by a reduction argument. Namely, we can show that if you have a polynomial 

time algorithm to invert the output of the function g that you have constructed on a random pair 

of input x, r. That means if you have an algorithm who without knowing the random pair of input 

x, r, but just saying the value of g of x, r can give you back x, r in polynomial amount of time. 

Then using the same inversion algorithm we can construct another polynomial time algorithm, 

which when given the value of f of x on a random x without knowing the value of x can actually 

give you back the value of x, which is a contradiction to the fact that f is a one way function or a 

one way permutation. 

 

So that is straightforward reduction argument using which we can prove this theorem. So, now 

we will focus on the function g. And what Goldreich-Levin theorem shows you basically that if 

this function g is a one way function, then we can associate a corresponding hard-core predicted 

with this function g. Namely, the hard-core predicate is the Boolean function, which basically 

takes random linear combination of the bits of the input x, right. 

 

So what we consider here is that your r is interpreted as a bit string of length n, and your x is also 

considered as a bit string of length n, these are the 2 inputs for the function g, and associated 

hard-core predicate, which is associated with the function g is denoted by the function GL. And 

the function g L is basically random linear combination of the bits of the x, where the combiners 

are defined by the bit representation of the input r. 

 

And what the Goldreich-Levin theorem claims basically that this function GL of x, r is the hard-

core predicate associated with the function g. That means, if someone gives you the value of the 

function g of x, r, for a random x and r, then, except with probability half plus negligible no 

polynomial time algorithm can compute the value of GL of x, r. And the intuition behind this the 



proof of the Goldreich-Levin theorem is that even though you are given f of x since you do not 

know the value of x. 

 

Basically the challenge for computing the Goldreich GL, the output of the function GL of x, r is 

basically to compute the XOR of the random subsets of the bit of x but since the adversary will 

not know the exact bits of the x, it will be difficult for the adversary to compute that XOR of the 

random subsets of the bits of x. That is basically the intuition of this theorem. However, it turns 

out that the proof of this theorem is indeed challenging and involved. 

 

So, can do students who are interested to go through the proof of this Goldreich-Levin theorem 

they can refer to the book by Carson Rendon, where they have given the detailed proof, but for 

our discussion, we will assume that the function GL x, r is associated hard-core predicate which 

is associated with our candidate, one way function g of x, r right. 

(Refer Slide Time: 23:36) 

 

So, assuming we have now a hard-core predicate, and we have a candidate one way permutation 

let us see how we can construct PRG with minimal expansion, and what we mean by minimal 

expansion is that we will assume that we are given candidate one way permutations from the set 

of n bit strings to the set of n bit strings. That means the function f takes an input which is a 

string of length n and it produces output which is also a string of length n. 

 



And it is a one way permutation. And associated with the function f, we have a hard-core 

predicate. Now given this we will construct a pseudo random generator where the construction of 

the pseudo random generator is as follows. So the we call the algorithm as G which takes an 

input S, which is a random input of size n bits, and it is going to produce an output of n + 1 bits. 

So the first n bits of the output is nothing but the value of the function f for the input S. 

 

And the last output bit of the function G is basically the value of your hard-core predicate on the 

input S. And the theorem statement that we are now going to prove is that if the function f is a 

one way permutation, and HP is the associated hard-core predicate, then the construction G that 

we have given here is actually a pseudo random generator, which expands it is input by one bit. 

 

That is why it is actually a PRG with minimal expansion because that is a minimum amount 

expansion which you expect from a PRG. Because if the output of PRG is same as input of PRG, 

then that is not a PRG as per our definition of PRG, because the first requirement from the PRG 

definition is that the output should be larger than the size of the output should be more than the 

size of the input. 

 

So minimal such condition is when the size of the output is one more than the size of the input. 

And that is why this PRG is a PRG with minimal expansion. So pictorially, this is your algorithm 

G, you take the input of size n, which is a uniformly random bit string, and you produce a bit 

string of length n + 1. And we want to prove that this algorithm G is a pseudo random generator. 

 

Namely, we want to prove that this output of this algorithm G is indistinguishable from the 

output of a true random number generator say G dash, which also outputs strings of length n + 1 

where the difference via the algorithm G dash differs from the algorithm G in the sense that all 

the n + 1 output bits of G dash are uniformly random and independent of each other, whereas the 

outputs of algorithm G actually depend upon the input S. 

 

And intuitively if we see the difference between the output of PRG and output of the algorithm G 

dash is actually in the last bit, because if we compare the first n output bits of the algorithm G, 

and the first n output bits of the algorithm G dash, the distribution is actually the same, namely 



the uniform distribution over the set of n bit strings. This is because if the seed S to the algorithm 

G uniformly random. 

 

Then the function output f of s is also going to be uniformly random that means, this output f of s 

is actually indistinguishable from the output capital R. The difference is only in the last part of 

the output of G. And the last bit of the output of G dash for the case of G dash the last output bit 

is a uniformly random bit, but for the algorithm G the last bit is actually the of the hard-core 

predicate on the input S. 

 

And it turns out that from the definition of hard-core predicate the output bit hp of s is actually 

computationally indistinguishable from the uniformly random bit that means no polynomial time 

algorithm can distinguish between the uniformly random bit b and the bit hp of s, because that is 

what is the definition of hard-core predicate. And that is precisely the argument which we are 

going to use to prove that the construction G that we are given is actually a pseudo random 

generator. 

 

We can actually formally establish that if the algorithm G which you are constructed is not a 

pseudo random number generator, then there exists an algorithm polynomial time algorithm, 

which when given the value of f of s without knowing the value of s can actually compute the 

value of hp of s with probability significantly better than half and that will be a contradiction to 

the assumption that the function hp is the associated hard-core predicate corresponding to the 

function f. 

 

So that formal argument we can establish to a reduction, I am leaving that reduction and the 

former details to you as an assignment. 

(Refer Slide Time: 28:07) 



 

So, that is a way we can design a PRG which whose output is one more than the size of input, 

but in practice we might be interested to construct pseudo random generator where the size of the 

output is significantly large compared to the size of the input. So, now, what we are going to do 

is using the previous construction, where the output of the PRG is one more than the size of the 

input. 

 

We are going to construct another pseudo random generator whose output is polynomially large 

compared to the size of input and this will be done by doing a sequential composition of pseudo 

random generators where we will be executing several instance of the pseudo random generator 

that we have constructed in the last slide, see polynomial amount of time in sequence one after 

the other. 

 

And this will be different from the polynomial composition of pseudo random generators which 

we had seen in one of our earlier lectures. So, now, in this construction we are assuming that we 

are given a pseudo random generator, which takes a n bit seed uniformly random n bit input and 

gives the output of length n + 1. And for example, you can take the construction G to be the same 

that we have constructed in our last slide using the one way function at hard-core predicate. 

 

Now, using this function G our goal is to construct a new PRG which takes an input of size n and 

produces an output of length n + big L bits, where big L is some polynomial function in your 



security parameter. And this is how we will construct a new pseudo random generator G new by 

sequentially composing the function G polynomial amount of time. So, what we do here is we 

invoke an instance of the algorithm G on the input s. 

 

And the input s will be the seed for our algorithm g new which we are constructing. So, the input 

as for the g new is actually passed as an input for the algorithm G and as a result, G produces an 

output of size n + 1 bits. So we passed that input as r 1, s 1 where r 1 is a single bit and the 

remaining n bits is denoted by s 1. Now what we do is we actually invoke another invocation of 

the PRG with a seed value s 1. 

 

So seed value s 1 is a string of length n bits. So that fits the semantic of my algorithm G. And I 

invoke the second invocation of the algorithm G using a s 1 as seed, which produces an output of 

size n + 1 bit, which again is passed as a bit r 2 concatenated with the remaining part, which is a 

string of length n bits and now again, I keep on doing this process repeatedly, one after the other 

l number of times, and the final invocation of the PRG will be on the output produced by the 

second last output of the PRG namely S L – 1. 

 

And it produces an output of length l + 1 bits which again we pass as R L, S L. So, the overall 

output of this algorithm G new will be nothing but the concatenation of r L, r 2, r L – 1 r L along 

with S L. So, what basically we are doing here is we are actually invoking the algorithm G the 

existing algorithm G L number of times and in each invocation we are actually generating one 

pseudo random output or a pseudo random seed. 

 

Where the pseudo random seed is actually used for the next invocation of the PRG and this 

process is repeated L number of times. So, the claim here is that if the existing algorithm G is a 

pseudo random generator, then the new algorithm or the new construction that we have designed 

G new is also a pseudo random generator provided at least some polynomial function in the 

security parameter right. 

 

And now, you can see that why this construction is called as a sequential composition, here we 

are not invoking here the invocations of G are not independent of each other, they actually 



depend on the previous output of the next invocation of the G actually depends upon the output 

of the previous invocation of G. In that sense, it is a sequential composition of the pseudo 

random generators. 

(Refer Slide Time: 32:09) 

 

So, the theorem statement that we want to prove is the following. And the proof will be using the 

hybrid argument because if you see pictorially they are a polynomial number of invocations of G 

which are involved here. And we cannot directly reduce the security of the algorithm G new to 

the security of the algorithm G. Because there are polynomial number of invocations. 

 

So to get around this we actually introduce hybrid argument and for the demonstration for the 

sake of demonstration we assume that n = 3 and big L = 2. Namely, I assume that the G new 

construction that we are giving takes a seed of length 3 bits and it produces an output of 5 bits. 

So what we are going to do in the hybrid argument is as follows. We are going to introduce 

polynomial number of intermediate hybrids. 

 

So we start with the first algorithm G dash and output of the algorithm G dash basically is a 

collection of n + 2 uniformly random bits. So since n = 3, and n = 2 here, basically, the algorithm 

outputs a string of length 5, where all the bits are uniformly random. And that is precisely is the 

output that a screwed random number generator of length 5 would actually look like. That is the 

construction of your algorithm G dash. 



 

We are at the construction that we had given, namely the sequential construction will look 

something as this. We start with a seed of length 3 bits, right. That is your seed. And we invoke 

the algorithm G and produce a pseudo random output of size 4 bits. Now, what we do is we take 

the first output bit to be the overall output of the algorithm G new and the remaining 3 bits are 

actually used as the seed for the next invocation of G. 

 

So actually, in this pictorial group, presentation I am doing it other way around, I am setting the 

last bit of the first invocation of G to be the overall output, or the overall last bit of the algorithm 

G new. And the first 3 output bits of the first invocation of G is used as the seed for the next 

invocation of G. And it does not make any difference here, you can use any way, any 

representation for your convenience here. 

 

So the second invocation of G is actually now on a pseudo random string of length 3 bits, and it 

produces an output of length 4 bit, which is actually concatenated with the first bit, the last bit 

which was generated by the previous invocation of G. And that is how you would have actually 

obtained a pseudo random string of length 5 bits. That is the construction of your algorithm G 

new. 

 

And our goal is to prove that no polynomial time distinguisher can distinguish apart a random 

sample which is produced by d dash from a random sample produced by G new, that means if it 

is thrown a uniformly random sample, which is either generated by G dash or by G new without 

actually knowing the way by which it is generated, then the distinguisher cannot find out in 

polynomial amount of time whether the sample that is given to him is actually generated as per G 

dash or as per G new. 

 

To prove that what we are going to do here is we are going to introduce an intermediate hybrid 

or an intermediate construction, which we call us G int. And what this construction G int does is 

it takes an input of size 4 bits, which are uniformly random. And what it does is on the first 3 bits 

of the input it invokes and invocation of G and it produces a pseudo random output of length 4 

bits. 



 

And the last bit of the input of G int is copied as it is in the overall output. And that is the way 

the algorithm G int produces a string of length 5 bits. So you can see that you have now got 3 

different constructions. The construction of a 2 random number generator which outputs a string 

of length 5 where all the 5 bits are uniformly random. The construction G new which is 

construction that we have proposed which produces a pseudo random string of length 5 bits by 

invoking by using 2 invocations of G. 

 

And we have an intermediate algorithm G int, which also produces a pseudo random string of 

length 5 bits, but by just using one invocation of algorithm. Now, in the hybrid argument, what 

we are going to prove is we can prove that if the construction G, which expands a 3 bit uniformly 

random string to a 4 bit pseudo random string is a PRG, then the construction G dash and the 

construction G int are indistinguishable. 

 

That means no polynomial time distinguisher can distinguish apart a sample produced by G dash 

from a sample produced by G int. That we can establish by reducing the distinguisher who can 

distinguish between G dash and G int to a distinguisher who can actually distinguish between an 

output of the algorithm G from a truly random number generator which produces output of 

length 4 bits right. 

 

So I am not going into the details of the proof, I hope that you will be able to complete that 

proof. In the same way we can prove that if the algorithm G is actually a pseudo random 

generator, then no polynomial time distinguisher can distinguish apart a random sample 

produced by G int from a random sample produced by G new. And again, the proof will be by 

reduction right. 

 

That means if you have a polynomial time distinguisher who can distinguish apart a sample of G 

int from a sample of G new then we can show via reduction that the same distinguisher can be 

used to distinguish apart the output of the algorithm G from the output of a 2 random number 

generator which produces true random strings of length n + 1 bits, which is a contradiction. 

 



So now since we have 2 intermediate hybrids and the algorithm G dash is indistinguishable from 

the algorithm G int and algorithm G int is indistinguishable from algorithm G new it follows that 

overall the algorithm G dash is also indistinguishable from the algorithm G new. So that is the 

way we can prove by hybrid argument that G dash and G new are computationally 

indistinguishable. 

 

For the general case here big L is some polynomial function of the security parameter, we have 

to introduce L number of hybrids. And what we can do is we can prove that each pair of 

consecutive hybrids are computationally indistinguishable by reducing it is security to the 

security of your underlying construction G. And since they are a polynomial number of hybrids, 

we end up establishing that algorithm G dash is computationally indistinguishable from the 

algorithm G new. 

 

So, I leave the details of the formal proof to you as an exercise. So, that brings me to an end of 

this lecture. So just to summarize, in this lecture, we have seen provably secure constructions of 

pseudo random generators from one way functions. So we have proved that if one way function 

exists, then corresponding to that one way function, we can construct hard-core predicate and 

using that hard-core predicate. 

 

And one way function we can actually construct pseudo random generator which actually 

expanses input by 1 bit. And then using this construction, namely the pseudo random generator 

with 1 bit expansion polynomial amount of time in sequence, we can actually produce a pseudo 

random generator, whose output is polynomially, large compared to it is input, and the 

construction is provably secure. 

 

Namely, we can prove that no polynomial time distinguisher exist for our construction, 

otherwise, it reduces to the security of the underlying one way function and a hard-core 

prediction. I hope you enjoyed this lecture. Thank you. 


