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Okay, so last class, actually happened to be a crucial lecture, so we discussed all the normal 

forms in the last lecture, many of you could not attend, I hope you have check them the slides, so 

we discussed what are called 2NF, 3NF Boyce Codd normal form in the last lecture, definitions, 

examples and all that. Now, a typical situation that we have seen occurring you know in the last 

lecture was that we find certain relation to be not satisfying a particular normal form. 

 

And then what we do is; we decompose that relation, we kind of; we distribute the attributes in 

the relation into 2 different relations and then we see that the same information is you know, the 

presenter here and each of those individual relations are satisfying the normal form that we are 

looking for like for example, if we does not satisfy Codd normal form, we have decompose that 

relation into 2 and then we have seen that both of them now satisfy the Codd normal form. 

 

Now, this process of you know taking a relation and then decomposing it is a phenomenon that is 

something that we have done several time in the last lecture, in each time when we find that a 



relation instance, a relation does not satisfy the normal form. So, let us try to make that a little bit 

more formal and then actually, study certain properties of these decompositions that these 

decompositions are important. 

 

So, we will realise during this course of this lecture that you know, all possible you know taking 

arbitrarily cut of these relations and then you know bringing them into 2 relations will not work, 

we have to look at certain properties before we can do that. Okay, so let us see what is the 

decomposition in the first place, so if R is a relation scheme, so it has some N number of 

attributes, if we replace R by this k number of relations, R1 through Rk, where each of this Ri is 

a subset of R. 

 

And they collectively have all the attributes of R, okay, collectively have all the attributes of R, 

then such a replacement of R through by this R1 through Rk is what is called a decomposition, 

okay and of course this Ri’s need not be disjoint because they would not typically be disjoint 

okay, so you will need some attribute to be in more than 1 relation, so that you know it serves the 

purpose of a foreign key, primary key reference, okay.  

 

So, such a thing is what is called a decomposition; a decomposition is nothing but taking a 

relations scheme and replacing due to it R1 through Rk and we call this as D, the decomposition 

and these R1 through Rk as such that Ri is a subset of R and they collectively give that our set of 

attribute form (()) (04:12). For example, in the last lecture we were looking at these relations 

called grade info, which had roll numbers, student names, course and grade. 

 

And this was satisfying Codd normal form but it still had redundancy in that, so we went for a 

stricter normal form for that which is called the Boyce Codd normal form. So, during that thing 

we have decomposed this into these 2 relations; roll number, course, grade and roll number, 

student name, so it is an example, so we replace this R by this R1 and R2, this is the R and we 

replaced it by the attributes of in the 2 relations that will mainly its back the entire set of 

attributes, okay.  

 



Now, let us look at; can we do this arbitrary, can we you know, are there any problems in this, is 

there any systematic way in which this has to be done, these are the various questions that come 

up in the context of these decompositions.  
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So it turns out that not all decompositions of a relations scheme are going to be useful, we 

require that these decompositions satisfy certain important properties, so we call there are 2 

properties; one of them is called lossless joint property, the other one is called dependency 

preserving property. So, basically what we here require is that whatever the information that was 

present in R the; any instance R from the scheme, original scheme. Now, if you decompose the 

relation scheme R into say R1 and R2, what will happen to the data? 

 

Obviously, you have to split the data also, obviously, you have to take the data, project it onto 

R1, project it to R2 and then create instances of data instances for these 2 schemes R1 and R2 

that we decomposed from R, right, so data has to be also created, the original data which is the 

instance R has to be you know use in order to derive instances r1, r2. So, how do you derive this 

r1, r2, rk, naturally the both natural way of doing that is to take the projection of the original 

instance r on to these Ri, right.  

 

So that is what we; so whatever be the information that was present in R should now be present 

in r1 through rk, okay. So, what do we mean by it should be present in; it will actually will be 



present right because any way you are taking projection of R and then getting these r1 through 

rk, so wherever was the tuples that were in R will automatically you know, from segments of 

those tuples will come into r1 through rk. 

 

So, each of these tuples that is there in R now will get segmented in something actually, right. 

So, a few values of them will go into r1 and they may be some overlap and then some other 

segment will go into r2 like that, the data will go into all these; so, we will see exactly in the next 

slide actually, whether they can be actually some kind of a loss in this process, then this is one 

thing.  

 

The other thing is that supposing there was a set of functional dependencies that was holding on 

the relation scheme R okay, how do we appropriately you know translate those functional 

dependencies, if each of these Ri’s, so that you know enforcing these functional dependencies 

and each of these instances r; each of these decomposed relations r1 is equivalent to enforcing 

the functional dependencies on the original thing; original relation scheme, how do we get 

possible, that is another thing. 

 

So, if a set of functional dependencies hold on R, it should be possible for us to enforce this set 

of functional dependencies, what do we mean by enforcing; basically, if we want to see the 

relation scheme satisfies those functional dependencies, whether it is satisfying or not, we want 

to check that. So checking that should be possible for us to you know by enforcing some 

appropriate derived functional dependencies on each of these ri’s, okay. So, these are the 2 

properties that we will look for, so we will go into a bit more detail into these things now, okay.  
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So, in this context first thing is we will elaborate on the losslessness property that means there 

should not be any loss in information, okay. So, let me said that up a little bit more formally 

now, let us say we have a set F or the functional dependencies that hold on R and R is 

decomposed into R1 through Rk. Now, this particular decomposition is called lossless with 

respect to the set of functional dependencies, when in any instance; every instance r, on these R, 

this scheme that satisfies this functional dependencies.  

 

What happens here is that if you take r and project it into R1, project it into R2, you get little r1, 

little r2, little r3, little rk etc., you do a natural join among them, you should get back r. Why 

natural join; because attributes are all; same attributes are you know, there are some common 

attributes; common attributes are there, okay, r has some say A1 to A10 you know, so r1 through 

rk will have basically, this A1 through A10 right but then some subsets will be in R1, some 

subsets will be in R2 etc.  

 

So, it is possible for us to do a natural join because there are some common attribute, so you 

project the instance, for any instance, you take any instance on R; on R and then you get back 

these instances by projecting them onto R1, R2, R3, Rk and if we join them back, you should get 

r because in any way originally, this information came from r, so if we join them you should get 

back r. If this is the case, then we call it lossless, this looks fair, right. 

 



This kind of a restrictions looks fair because basically, we had some data and now we are saying 

that this scheme is going to be split into 2 schemes, so we project the data into 2, we should join 

back, if we join, we should get back the original r, okay, so that is fair, right that is what we will 

ask for in this property. Now, one subtle thing that we have to notice here is that if there is a 

tuple in the original relation, right and let us say we have split it into 2, let us just for the (()) 

(13:11), consider 2 of them and so there are some common attribute let us say. 

 

So, we split it into 2, right, 2 tuples have come. Now, obviously if you do a join because these 2 

tuples exists, you will always get back to your original tuple, do you agree with that; you take a 

tuple in R, okay, project it into R1, project it onto R2, you get 2 sub tuples, right, so if the same 

tuple became into 2 different tuples now, one on R1, the other one on R2. So, suppose you do a 

join on little r1, little r2, because this particular 2 tuples exists in those individual relations, you 

will get back your original tuples, here these 2 things joined where they have the same common 

value any way. 

 

They have some common attribute, let us say they have some attribute, the common attribute 

value will go into left hand side tuple also into the right hand side tuple and so when we do a 

equijoin, these 2 tuples will agree on the common attribute and so you will get back to your 

original tuple, is that clear, I can repeat if you want. See, just consider 1 tuple in the original 

relation, we are splitting that; we are assuming that the original relation is decomposed into 2 

relations; R1 and R2. 

 

So, if you take the tuple, when you project the data, one part of the tuple will go into R1, another 

part of the tuple will go into R2 and because these 2 tuples exist in R1 and R2, when we do a 

natural join between them, we will always get back to your original tuple, okay. So, what I am 

assumed here is that or telling you here is that this will always contain r, the trouble is it may not 

be exactly r, it may contain something more than r that is the trouble. 

 

By containing more than what is there in r, it is actually correcting the information, I will now 

show you an example, where such a thing happens and those tuples; those extra tuples uninvited 

you know, guest for us something like that is a trouble for us actually, okay. Here is an example, 



just look at them, just look at this, focus on this example, we have A, B, C and we have 

decomposed it into AB and BC, these are the instance a1, b2, c1 and all that, so I have taken 

them, projected them here. 

 

Now you do a join these 2, now do a join here, so a1, b1 joins the b1, c1 and we will get a1, b1, 

c1, one of the original tuples but unfortunately, a1 b1 also joins with b1 c3 and then you will get 

a1 b1 c3 which is actually not there in the original data, okay. So, it is possible that we will 

actually get some spurious tuples; these tuples are called spurious tuples, so some extra tuples 

will come into the picture. 

 

And because of this we will call this as a; this particular decomposition is called a lossy 

decomposition, the original information is distorted and so we will actually call it as a lossy 

decomposition, even though we are actually having additional tuples, okay. So, those 

decompositions that do not have any spurious tuples are what are called loss less join; lossless 

decomposition. 

 

And in the easier Nomenclature could be that they are called non additive decomposition, they 

do not add spurious tuples, so they are called non additive decomposition, okay, so, this is what 

is called as loss less join property for decompositions. Now, this is truly an undesirable kind of 

situation, we do not want this, whenever we do a decomposition, we would like the information 

to be preserved in the decomposed relation.  

 

So, when you take the decomposed relations, okay join them, do a natural join, you must get 

back exactly what is there in R, you should not get additional tuples, there should not be any 

additional tuples. If there are additional tuples, then we say that there is actually a loss of 

information there, so we call such a decomposition as a lossy decomposition, okay. Now, you 

can actually, if we carefully watch this, you know this B is a common attribute for AB and BC. 

 

And B neither determines A nor determine C from the functional dependency point of view, B 

does not determine C, B does not determine A and because of that if it has certain common some 

values, the other values can be anything, you know and because of that you can see that when we 



do a join, you will get some spurious tuples okay, so there is some issue involved in this, so 

people who have studied this property and then said that okay, this kind of phenomenon is 

happening. 

 

And we do not want this kind of this thing to happen whenever we do decompositions, so we 

have to be careful about this decompositions, we should always put this conditions in that we 

must get loss less decompositions, our decompositions that we are trying to get in order to 

achieve certain normal form, it will always be loss less, so that is the kind of, okay. 
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The other one property, the desirable property for decompositions is called dependency 

preserving property, okay. So, here also let me now, define what exactly are we talking about, let 

us take a decomposition D which has some A number of components, you can now call it 

probably like that. It is said to preserve a set of functional dependencies here, if the union of pi 

R1F, pi R2F, pi RkF, the closure of that union is exactly same as the closure of the F, okay.  

 

What is this pi R1F? The pi R1F normally, we use pi for projections; data projections but here 

we are kind of slightly misusing the notation because kind of conveniently use it, we are now 

applying it on functional dependency, set of functional dependency, okay, so it is defined like 

this. The set of all functional dependencies that are there in the closure whose left hand side and 

right hand side are part of this Ri, okay, Ri is a attribute; subset of the attributes of R, okay.  



 

So, when you take the set of all functional dependencies that are supposed to hold on the original 

scheme R that is F closure, it makes sense to take those FD’s in that closure you know, which 

contain the attributes that are there in Ri and then put them separately as those applicable for Ri 

and that is what we are doing here. So, pi Ri here, okay we can call it as F under script I, if you 

want, is the set of all those functional dependencies in F plus, whose left hand side and right 

hand side are both part of Ri. 

 

They do not contain any other attribute other than what is there in Ri, so there in some schemes 

applicable to Ri only, so okay, so that is what we call them as the functional dependencies that 

are in some schemes, applicable to a particular scheme Ri; Ri is a subset of R, right. So, we can 

called as a projection of F onto Ri because normally, we talk about projection only for data but 

now, we are projecting the functional dependencies onto a sub scheme are called Ri, okay.  

 

Now, the decomposition is said to preserve the functional dependencies, if you take these you 

know projections, take a union of all these projections and then take their closure, if that is equal 

to the F closure that means, all functional dependencies are available either directly or in each of 

these you know Fi’s or they can be derive from these Fi’s. If that is the case, then we call this 

decomposition as a dependency preserving decomposition.  

 

So, I have written it here that any FD that logically follows from F must also logically follow 

from the union of the projections of F onto each of these Ri’s, we will call (()) (25:00), this is 

also fair thing to ask for, right you have a bunch of dependencies and the relation instance is 

supposed to satisfy all those functional dependencies at all point of time and so the RDBMS is 

actually fairly responsible for ensuring that happen. 

 

And so if now you take a particular relation, then split it into 2 relations, then the RDBMS 

should have a way of enforcing them, so what the decomposition if it satisfies this dependency 

preserving property, then what it can do is that I can take the projection of F onto Ri, R1 and R2 

and enforce them, it is equivalent to enforce in the relational set of function, okay, so that is what 

we want, so these are the 2 interesting properties of decompositions that we are looking for. 



 

So, we are not interested in the arbitrary decomposition of a relation R, we are interested in those 

decompositions that satisfy these 2 properties; one is called the loss less joint property, the other 

one is called the dependency preserving property. Do you have any questions, please raise them 

now, because we will then discuss specific algorithms for; actually checking for the loss lessness, 

we now need a method of checking, whether a decomposition is indeed gross less with respect to 

a set of functional dependency, okay you need a method to do that. 
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Okay, I have an example here which illustrates dependency preserving, just have a look at the 

simple scheme A, B, C and we have FDs AB; A determines B, B determines C and C determines 

A (()) (26:53) is a cyclic, so the decomposition R1, AB and BC now, if we take pi R1 of F is all 

those FD’s in F or F closure that are applicable to the scheme AB, so obviously A determines B 

is applicable, B determine C is not applicable because C is not there here, this is also not 

applicable. 

 

But then because of B determine C and C determines A, we have B determines A and so that is 

actually applicable, right. So, A determine B, B determines A will connect here, in a similar way 

B determines C, C determines will be connected here and if you take the union of these 2 things 

and take a closure of that, we will see that it is actually equal to A, not equal to this, it is equal to 



the closure and so this particular decomposition is loss; I mean dependency preserving with 

respect to this set of functional dependency for this relation R.  
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It turns out that okay, we have an algorithm that can check for whether a decomposition is indeed 

loss less or not, okay, so given some scheme R, with attributes A1 to An and given some 

functional dependency FD’s that is where the decomposition R1 through Rm; we are going to 

answer this question; if D is a loss less decomposition, okay, so here I am going to present a 

intriguing looking algorithm but will not give any clue for this, okay, it is an interesting 

algorithm. 

 

So, let me present that algorithm, this algorithm works on a small matrix actually, we create a m 

by n matrix, where m is the number of components that are there in the decomposition and n is 

the total number of attributes that are present in the original scheme, we create an m by n matrix 

called S, and the column means are all these attributes, A1 through An, and the row actually, I 

have labelled by these relations, R1, R2, Rm the components of a decomposition, okay and it is 

kind of initialise like this. 

 

The ith row, jth column is initialise to S symbol called bij uniformly, so all b symbols, but b 

symbol is distinct from other because it has a subscript ij; bij, standing for the ith row, jth 

column. Now, so some of these attributes are part of these schemes; R1 through Rm, so that 



information is captured like this. If some Aj, which is a column right, if Aj is in the scheme Ri, 

schemes are in the rows, okay, scheme Ri. 

 

Then, what we are going to do is to set the ith row, jth column into a symbol called aj, so this 

does not have the; notice that this does not have 2 subscripts, just has 1 subscript, the column 

number so, this is how we visualise this matrix. 
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And then we do something interesting with this matrix. We repeat certain; we actually what we 

do take this relation, take this matrix as some kind of a instance on the scheme R and try to 

enforce all the functional dependencies that are given to us, ensure that this particular data 

actually satisfies those functional data’s. So, how do we do that; is that for each of this functional 

dependencies U determines V in the F, what we will do is; for all rows in this matrix that agree 

on the left hand side attributes; U attributes, okay, make the symbols in V, right hand side V 

attribute columns. 

 

For each V attribute column, okay, make the values same in all those ways, let us say there are 

some 3 rows, all of them are agree on the U attributes, okay. So, take one of these V attributes 

and then ensure that in that column, the same value is existing in all those rows. If you do that 

then basically, we have ensured that U determines V is enforce on that matrix, okay, so, let me 

elaborate that actually, how exactly we will do that, there is a method of doing that.  



 

So, if any rows; if any of the rows has the a symbol, what are these rows; these rows are the ones 

that are having the same values for the U attribute, okay. Now, we are focussing on one 

particular V attribute, the right hand side of it, in that we will look at all the rows, okay. If any of 

those 2 rows have, if any of the rows actually have an a symbol, we give priority to the a 

symbols if any of them have an a symbol then we put that a symbol in all the rows, of the 

column, okay, that will make it same.  

 

So, if any of the rows has an a symbol for that column, set the other rows also to the same a 

symbol, otherwise that means, it does not have that particular column of that V attribute, does 

not have any a symbol at all, so it has some only this bij’s, then choose one of them, choose 

some these symbol arbitrary and then make everybody else equal to that V symbol, so there is 

some non-determines here, it does not matter with these symbol is used, take them and then do 

that. 

 

And you do this for there are 2 kinds of things, for each of the attributes V you do this and then 

go back here and then take up another functional dependency UV, you do the same thing, repeat 

the same thing, repeat until no changes occur will the matrix does, so this is the algorithm, this 

almost looks like some kind of you know magic kind of algorithm and we; what do you do at the 

end of this thing; is that at the end, if there exist a row with all the a symbols, then the 

decompositions is loss less, otherwise the decomposition is lossy, okay.  

 

I urge you to take that example and then you know trying this out actually or I will be giving 

some anyway, I will going to give you an illustration of this particular. So, at the end of all these 

changes to the matrix, what we are doing, going to check is that is there does exist a row with all 

a symbols, if that is the case, then D is loss less, otherwise D is lossy.  
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So, here is an example, study this carefully, this is some kind of familiar attributes for you, we 

have roll number, name of the student, advisor; advisor means advisor ID, then advisor name, 

course; course means course ID, then grade and the functional dependencies are roll number 

determines name obviously, roll number determines advisor, advisor determines advisor name 

and roll number course determine the grade, these are look very appropriate for this relation.  

 

Now, we are going to do this decomposition like this roll number, name, advisor; advisor, 

advisor name; roll number, course and grade, see this particular relation you can see that it has 

information about different aspects mixed up into one relation. So, if you check based on these 

functional dependencies, if you check the normal forms, it will not be in an appropriate, it would 

not be in you know, this 3NF etc., okay, so it has trouble. 

 

So, let us consider this decomposition, which is actually pretty logical decomposition of this 

because R1 has information about students, R2 has information about advisors and R3 has 

information about students and courses, okay so this is the neat decomposition of the original 

scheme. Now, let us just use this to illustrate this algorithm; the algorithm has the matrix where 

all the original you know attributes were all there as columns. 

 

And then these 3 things R1, R2, R3 are the rows here, initially we will fill it up with all b 

symbols; b14, b15, b16 like that but then some, if some attribute is present in the; in a particular 



relation, we make them into a symbol, that is what the initial relation will be but then that a 

symbol will be distinct because we will use the column name for that, so a1 will be used here, a2 

will be used here, a3 will be used here, put a3 in all those places where these particular attribute 

occurs. 
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Now, let us start you know, enforcing this functional dependencies, after enforcing roll number 

determines name and roll number determines advisor, what happens here is the; so there are 2 

row that agree on roll numbers, a1, a1, so originally it had b32, now we focus on the right hand 

side attribute which is name, and then in that column, we have one a attribute value; a symbol, so 

we will make the other one also equal to the same a symbol and then ensure that these 2 are 

same. 
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And same is the case with the advisor, we had a32, so we are going to face and then we will do 

one more; advisor determines advisor name, so now in the current matrix, we find that there are 

2 rows that agree on advisor a3, in fact all of them agree on advisor and so we do a enforcement 

here, where and one of them had a relatively a symbol and so we replace the other b symbols 

with that a symbols, so now suddenly we find that last row has all a symbols; a1, a2, a3, a4, a5, 

a6 and you can also see that there is no more changes that can occur in the matrix and so it 

actually a loss less. 

 

This kind of a looks like magic right, I mean there is no; I have not presented any particular logic 

has to why this algorithm should work and I am not going to present actually, I leave it to you 

kind of try and figure out by consulting some foundation books on relational databases in 

particular; the proof of this particular algorithm makes use of a variant of tuple relational 

calculus called domain relational calculus and this present; the proof is present in Jack 

Wellman’s principles of data base system book. 

 

So, I am not going to present the proof, I leave it as something which will intrigue you to go and 

figure out why this book, okay. So, this is how, you should you can test for lossless 

decompositions of properties.  
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So, we will stop here, let me just conclude by saying that this particular algorithm is needed 

when you have you know more than 2 number of components in the decomposition, in there 

exactly 2 given scheme here and then given set of functional dependencies, the decomposition R 

into R1, R2, just 2 of them is loss less with respect to a; this is a simplest check that we can do, is 

that R1 intersection R2 determines R1 - R2 or R1 intersection R2 determines R2 - R1. 

 

If this happens, if any one of these things belongs to a plus, then such a decomposition is loss 

less, this is another interesting property of this decompositions, so this is easier to check, you do 

not have to go to an elaborate algorithm for doing this. So, for example our decomposition of 

grade info into roll number course, grade and roll number student name is in the loss less because 

the common attribute that is there between these 2 things is roll number. 

 

And roll number determines student name which is R2 - R1 and I urge you to check this 

condition on the example that I have gave you which has A, B, C and then it has spurious tuples, 

okay. So, in summary what we have done today is to observe that there are some interesting 

properties that we desire for decompositions, these are called lossless join property and 

dependency preserving property and we have defined them formally and then we have looked at 

an algorithm for checking lossless dependency property for a decomposition, okay, good, so we 

will stop here. 


