
Database Systems 

Prof. Sreenivasa Kumar 

Computer Science and Engineering Department 

Indian Institute of Technology-Madras 

 

Lecture-02 

Database Architecture 

 

Okay, so let us begin in the last lecture I was talking to you about this idea of data models right. 

A data model, let us briefly recall that and then proceed with the rest of the material. 

(Refer Slide Time: 00:35) 

 

Basically a data model will allow us to describe the information system or the database system at 

a certain level of abstraction, I want you to understand clearly is that why do you need several 

levels of abstraction for the information system. We need that mainly because information 

system is a very complex entity, it is a sometimes a large pieces of information and very detailed 

information is you know descriptions possible, etc. 

 

So it is a complex entity and so, we need to have a description of this thing this entire 

information system at a level where you know, it can be easily understood by the stakeholders of 

this information system. There are several stakeholders for this information system. First thing is 

the people who want it to be built and then use okay. And then we have what are called I will tell 

you a little later what are called main users of the information system. 



 

Who just want to interact with the information system, just feed information and then you know 

like that. So, there are various groups of people who are interacting with this information system. 

And when we are collecting the requirements for building an information system, there is really 

no need for us to kind of expose all the internal details of how this information system is going to 

be organized to the stakeholders. 

 

First thing is, they would not like to know, they do not want to know those details. So we should 

have the ability to hide those hide certain unnecessary details from these users. And then 

describe the database at a level of abstraction which is comfortable for them. So that is why we 

need various again, of course when you have to build the system itself. Then we need all the 

details of that. 

 

So, we as computer science people would like to look at the information system in a much more 

detailed level right. And so we need a different abstraction level for us and ultimately the 

information system, you know is going to be stored on a secondary storage, which is discs and 

tapes if necessary, if the amount of information is too huge, then we may even want to use tapes, 

the usage of tapes is very limited these days. 

 

But then the disk the actual database is going to lie there in the storage medium on the disks. So, 

we need some to understand how exactly the database is going to be organized in the form of 

always as files on disk systems, so that is a different level of detail for me. So, because there are 

these various levels of details at which we can describe a database system, we need different 

toolkits for doing that. 

 

So basically a data model provides that toolkit, the conceptual toolkit to kind of describe the 

database as at a level of abstraction. So, for a high level description, will use this conceptual data 

models and this is basically useful for understanding the requirements and also collecting them. 

We use representational data models to describe the database at a logical level. 

 



This is what actually we computer science people would like to use, okay. So, this will give the 

full logical details about the database. And then we have also a data model that can be used to 

describe the full details of the record formats, file structures everything. And that is what we 

normally call as a physical level data model physical data model okay. So, let me spend a little 

bit time with each of at least the first 2 of these things. 

(Refer Slide Time: 05:36) 

 

So, a popular conceptual level data model is what is called the entity relationship model. E/R 

model. So what this provides is basically, concepts like entities, relationships and attributes, 

basically entities are things that we would like to keep track of the important things in the 

information system that we would like to keep track off. And relationships basically, or 

associations between these important entities in the religion in the information system that we 

would like to keep track of. 

 

And attributes are like, for example, the details such as the names, roll numbers, addresses of a 

student entity. And name employee number, phone number of faculty entity. These are specific 

attributes. And here are some examples of relationships. So, for example, the enrollment 

relationship between student and course, students enroll for courses and we'd like to keep track 

of these association. 

 



And the employment relationship between faculty and a specific department. Now, so the it is 

very easy for us to kind of make use of these terms like, you know, entities and relationships and 

attributes. These are the conceptual tools that we will use, and then sit across with the 

stakeholders who want this information system to be developed, and then discuss with them what 

are your entities, what are the relationships you bother about, etc. 

 

And then describe that entire database in terms of these 3 concepts, there is a few more concepts, 

then we will see them when we actually discuss this model in a separate module in the course. 

Okay, I will give you more details little later, but I just want to give you some idea about what 

conceptual level data model looks like okay, any questions in this. 

(Refer Slide Time: 08:13) 

 

Then we will move on to a popular representational level data model, which is actually the 

relational data model. Relational data model is going to be the central you know concept for this 

course and we will spend a lot of time understanding this relational data model and also other 

data is connected with the relational data model. So, to give you a brief idea about this basically 

it provides this concept of a relation. 

 

And a relation is nothing but what we are familiar with in discrete mathematics course, which is 

a subset of cross product of sets, basically, a relationship. So, we are going to use that and that 

will play a central role in this data model. So, for example, in the context of a university data 



model database, we can think of a relation called student. So, this is the name of the relation and 

then there are here as the various attributes for the student relation. 

 

So, yes name, roll number, the joining year, birth date and the program in which the student is 

enrolled for and what is the department in which the student is studying. So, these are the 

attributes and we also call that as the schema of the relation. And here is a specific pieces of data, 

which we will talk about a specific student called Sriram, who has all these details. 

 

So, we call this the entire thing as a data tuple okay, data tuple okay and a relation is basically 

will consist of a set of such data tuples set, okay. Please remember this definition with calling it 

as a set of tuples not a sequence of tuples. There is slight difference between these 2 things right. 

So, this is a set of tuples, a finite set of tuples will constitute our relational data instance we call it 

instance. 

 

So, in general relational database is going to have several relations with these kind of attributes 

etc. and a bunch of these finite number of these relations will constitute our relational database 

and we will go into much more details about this relational model when we take it up in when we 

go into the relational data model okay. Now, let us move on basically the I want you to 

understand that there is this important notion called a data model which is a collection of 

conceptual tools to describe the database at a certain level of abstraction. 

 

You can see that this level of abstraction this gives you, you know a different tool to describe the 

database. This is the relation to whereas in the previous slide, we have seen entities and 

relationships because in relationships, etc. okay, so please do not hesitate to stop me if you have 

any questions. 

(Refer Slide Time: 11:58) 



 

Now, this point we have also mentioned earlier that the distinction between data and metadata is 

one of the central ideas in the database systems field and the DBMS database management 

system basically becomes generic in nature, because it is able to separate these data and metadata 

and then store them separately. So, when a DBMS has to deal with a particular database, okay. 

 

What it will do is to console the metadata corresponding to that particular database. Open that up 

in some is as you know, and then plan to do certain modifications or whatever is required for that 

particular database. And that is why it is not tied to a single database. It is capable of managing 

several databases at a time. I will give you some more details about the architecture of a RDBMS 

as we go along. 

 

So in our DBMS, relational database management system context, the schema, basically, or the 

metadata basically consists of all these table names and we call them table also, it is actually in 

the last slide I call it as relation right. Relations are informally called also as tables. So the names 

of the relations, names of the attributes, along with their data types for each of these relations. 

 

And we will also see later on that there are certain kinds of constraints. For example, if you put 

an age attribute there, you cannot put a negative number right. So, there are certain kind of 

constraints about these attributes and also about table relations in general. So, all this information 



together is what is called the metadata or the schema information and this will be stored 

separately from the data. 

 

And then whenever we have to deal with the database, we will conserve this schema and then 

operate on the on the database. So, the database definition basically talks about you know when 

you say that we are defining a database, what we mean is first designing this is that schema for 

the database and then we will when you say database loading data is getting updated what we 

mean is to actually store data into this the skeletal structure which we have set up. 

 

The skeletal structure is basically the table of tables with table names, attribute teams, etc. at 

blanks in it. So that is what the distinction between the schema and data versus schema. This is a 

very central idea in database systems. Okay, so moving on. 

(Refer Slide Time: 15:50) 

 

Let me take you to this interesting architecture diagram which describes the internal abstraction 

levels that are available within a database management system. Now, we are talking about a 

database management system, specifically relational database management system and what are 

the different abstractions it provides in as part of its architecture. So this is popularly called the 

three schema architecture. 

 



And we will see how exactly what are the various things that are there. Now, basically, the 

middle layer is the actually the important layer, which is this logical level representation of the 

database. It consists of a set of relations. Guys I was previously telling you, the relational 

database basically consists of a bunch of relational relations as set of relations. So, this is what is 

the representational data model, which is the relational data model and the description of the 

database is given as a bunch of relations. 

 

Now at a low level of detail, we have the actual data is sitting in files, there are a set of files, 

okay, which are actually organized on the desk. And there are also what are called index files. 

Basically, index files help us to retry record efficiently from a data file. A data file is the one that 

actually contains a lot of records in it. Each record basically is somewhat similar to our structure 

that you have defined as part of C programs etc. right. 

 

So, these are records. And then we also have index files, index files are again basically, they 

implement some kind of a data structure, and then they will help us retrieve a data record from a 

data file efficiently. So, we will spend some a lot more time trying to understand what are the 

various kind of indexing techniques later on in the course. But right now, we can just say that 

index files help us locate data records efficiently. 

 

So, the data is actually lying in the physical level on the disk in the form of these files index files 

and a few other things, okay. So that is the physical level scheme. So to say the metadata at that 

level. So the metadata here basically consists of what is a file, what is the record structure etc. is 

that record a fixed length record or is that record having variable number of fields in it, various 

other details like that. 

 

So, that is the physical level scheme. So, we will come back to this diagram. Let me first take 

you, okay, so at the top level is this view level. 

(Refer Slide Time: 19:47) 



 

So, I have a slide for that. So, let us look at what is view level. So, view level logical level 

physical level. These are the 3 levels we are talking about. The view level basically consists of a 

finite number of views, what is the view, a view describes certain aspect of the database which is 

relevant to a particular group of users okay. A aspect of the database which is relevant to a 

particular group of users, let me give you an example. 

 

For instance, let us look at the context of a library database system. Okay if you have gone to the 

university library or the institute library, you will see that there is this place where issues of 

books, return of books and all of them are managed, and most of them you will interact with that 

particular section because that is where you borrow items, return items, probably pay fines and 

things like that. 

 

If you are delayed in returning an item, they will collect, you collect fines from you and all that 

right. So, that is the issue return management section. And then when new users, new students 

come into the campus, they need to be enrolled into the library. So they have to be given smart 

cards or they have to be given their details need to be taken down, etc. So, that is the users 

management section you will see that it is there in a separate place okay. 

 

And then of course, the library has a huge collection of books and so faculty keep requesting for 

new books to be added to the library, etc. And so the books have to be purchased. So there is a 



procurement section. A complete section dedicated for interacting with the suppliers of books, 

placing orders for books, receiving books, etc. that you do not see, because you do not need that, 

right you do not need to know it is it is kind of hidden from you. 

 

But to manage a library of our kind, you can imagine that you need a separate section, which will 

keep taking the requests from the faculty taking appropriate approvals, you know, looking at the 

budget and then placing orders receiving books and managing books. Once the books are 

purchased, then they will be stopped and so that issues and returns can happen. And so, so you 

can see that a large even a enterprise like a library has different groups of people who are 

concerned with different aspects of the same enterprise. 

 

It is the same library enterprise, but you can see that there are a group of people who are 

bothered about books, purchase of books, dealing with suppliers and things like that, there is a 

group of people who are actually are issuing and written the books returning and managing all 

that. So, you can see that these are best model as some kind of a view of the entire database 

specifically meant for a particular section like a book purchase section okay. 

 

So you can see that each of these sections views a portion of the entire data. For example, the 

books purchase section does not really bother about what is happening in the issue return section. 

There is not concerned with that. In a similar way, this issue returns section, you know, simply 

does not bother about what the book purchase for where people are doing, they have their own 

task cut out for them. 

 

So, they keep doing. So this is little interaction between these 2 people, but all of them are 

interacting with the same enterprise database system. Now, how nice it would be to kind of you 

know, give you a view of the entire enterprise to this book section people separately, so that they 

can always deal with that part of the database only okay. And this is possible by what is called 

creating of these views. 

 

So, we can create views which are nothing but actually virtual relations. Okay, they can answer 

they may not be actually be physical you know relations as part of the entire relational schema, 



but they will be some kind of virtual relation. So, it is as far as that group is concerned that 

relation exists and they can interact with that schema. So, a part of the, so that is what we 

actually mean by a view. A View describes an aspect of the database relevant to a particular 

group of users. 

(Refer Slide Time: 25:37) 

 

Whereas the middle layer, which is the logical level schema, this describes the entire database. 

But of course, no physical level details are given at the logical level schema. Now, this is of 

course, useful because this is as I was telling you that this is the most important schema because 

it gives the entire logical structure of the whole database. Now, the physical structure of data in 

terms of as I was telling you record formats, file structures, indexes is given by the physical level 

schema. 

 

Now, views are actually optional, you know if your enterprises not to date and you know, if there 

are no easily identifiable user groups who want a particular you know, aspect or a view of the 

database then we can probably not create these views at all okay. So, it is up to the modern all 

the modern relational database management systems, the software do provide this option of 

creating views. 

 

So that when a group of people want to take a restricted view of the entire database and then 

work with that, it is possible for us to enable that in the RDBMS okay. So, the views are actually 



optional. And the whereas the logical scheme of course is essential because that is the one that 

describes the entire database in its full form and the physical level most of the modern RDBMS 

software is actually completely hiding this physical level. 

 

And giving the even the database administrators giving a limited access to this physical layer, we 

will see why it is it is happening. You may want to actually have access to this physical layer as 

to how the data is actually stored on files, formats and things like that, if you want to tune the 

performance of the database, how is the database performing for certain kinds of queries, if the 

database is taking unusually long time, you would like to go investigate as to why it is 

happening. 

 

And then you may want to kind of tinker the data at the physical level. But the trend is to hide 

the details of the physical layer, but then of course, when there will be ways in which you can 

actually access the physical level details okay. So I hope this three scheme architecture is kind of 

clear. This is not to be confused with the data models that I was mentioning just a while ago, 

okay. 

 

The 3 kinds of data models that I was mentioning a while ago. So, a while ago I mentioned 

conceptual level data models, those conceptual level data models are different in the within 

relational data model, which is a representational level data model. We are now looking at the 

implementation of the relational data model. The RDBMS is the one that implements the 

relational data model. 

 

And while implementing the relational data model, it provides these kind of other, you know, 

facilities. One of them is the facility of creating views okay, and sometimes it is very useful to 

have that facility. Now, within this context we traditionally describe 2 things called the physical 

so let me take you to that slide. 

(Refer Slide Time: 30:20) 



 

We call it physical data independence, okay. The notion of physical data independence is 

important. What it basically says is that I should have the ability to modify my physical level 

schema without affecting the logical or the view level schemas okay. So, the database 

management system should be so architected such that, I should have the ability to kind of 

modify the physical level details like you know, creating a new file, inserting it into a system or 

taking a existing file and splitting it into 2 different files etc. 

 

Such kind of modifications I should be able to do without affecting the logical and the view level 

descriptions of the levels of the schemas. Why would you require that, first thing is that once you 

describe this database there are these what are called applications okay, that will be built based 

on the assumption that the database has all these details okay. So, what exactly is an application. 

 

An application is a program written in a typical high level language like C, C++, Java which uses 

SQL and interacts with the database and modifies the database, retrieves results from the 

database okay. So, these application programs are very important and they are the ones that 

actually update the database okay and they in fact implement the day to day requirements of the 

enterprise for modification of the database okay. 

 

Now, supposing I have already set up a few application programs like this, I do not want to 

redevelop all those application programs okay, because a new file has been added into the 



database, you know, for example, okay. So is it really possible. That is the kind of question that 

we are facing. So, if it is really possible, then we will call that as a physical data independence. 

And actually, the three schema architecture enables this. 

 

How does it actually do that and first of all, why do we have to do any modifications at the 

physical level that I supposed to be clear, because we may want to do performance tuning, a 

certain application is running slow, because it is trying to access the database in a certain way. 

And we now find that after looking through the application, we now find that if we have an 

additional file, which stores a slightly different kind of records. 

 

Then this application will now become faster. And so we would like now add that file at the 

physical level. So this is what is called performance tuning. And so, because of this, we should 

be able to, we want to have this ability of doing a modification to the physical level. And ideally, 

if we do this physical level modification we will not like the logical and view level schemas to 

change okay. So that is this ability that we are talking about. So, how is it achieved. 

 

It is achieved by ensuring that the modification we have done is in some sense localized okay. 

And nothing comes free. So how does it exactly come. It is achieved this particular ability for 

physical data independence is achieved by suitably modifying the physical layer to logical layer 

mappings okay. Now, it is time to go back to this three schema architecture picture, I think I can 

just go back like this okay. 

 

So, I talked about this set of relations and then I talked about this set of views, these are the ones 

that provide specified you know use view for a group of people etc. Now is the time to talk about 

these boxes that are lying between these layers. So, this is a box that will that basically captures 

the logical level to physical level mappings, what basically it consists of is okay, you have a 

relation, let us say R1. 

 

How is it actually implemented. What are the files, where are the remembers the relation R1. R1 

is a set of tuples. It is a set of tuples okay. Each tuples consists of a bunch of values. So it is a 

conceptual thing. Now physically, it has to be stored as a each of those tuples might be stored as 



a single record, or each of those tuples might be stored as 2 records. We do not know exactly 

how it happens okay. 

 

So there is a bunch of ways probably 1 file or probably 2 files or 3 files that are kind of 

implementing this relation okay. So that details are actually here. How is this related, mapped to 

actual physical right. Now, that detail is there in this particular layer box. And so, if the basically 

this physical data independence is basically achieved by suitably modifying this mapping, if you 

create a new file now at the physical layer. 

 

Then we will record the details, will modify the details of this logical level physical level 

mapping suitably to reflect this new situation that we now have a new file and so and so relation 

that was not using this particular file will no use that etc. whatever is the appropriate 

modification will have to record it here. And with that we will be able to, now any application 

that was using relation are 1 will continue to work. 

 

Because now the software the RDBMS package can looking while you know, servicing the 

request for version R1 will go through these mappings, new mappings and then look up the 

appropriate files okay. So that is how logical physical data independencies achieved. In a similar 

spirit we have okay. 

(Refer Slide Time: 38:30) 

 



So, another similar notion is this notion of logical data independence. So, the ability to change 

the logical level schema without affecting the view level schemas and the application programs 

is what is called logical data independence. Now, why do you need to do this in the first place. 

For example slightly you know adding a new attribute to some relation, because then the 

designers have now realized that they also need to keep track of this new attribute, which was not 

earlier thought of it is a term. 

 

Now that has to be added. And certain attribute has to be deleted, let us say. So if these 

requirements come, then how do we handle them. That is the thing that we are talking about. So 

of course, if you add a new attribute, then to add some relation, then what we would like to do is 

that with this situation we like is that there should be no need to change the programs or the 

views that do not require to use this new attribute. Obviously, things that want to use this new 

attribute will have to be changed because this is what has come into picture. 

 

So those things that are not using this new attribute can continue to be used as they are in a 

similar way, if we delete an attribute all those are programs that you know use the remaining data 

there should be no need for changing them. Whereas, the ones that are using this particular 

deliverable it obviously has to be changed. So, how do we achieve this logical data 

independence. Again, it is the views which are on the top layer, again not defined in terms of the 

lower level relations okay, as I was briefly mentioning earlier. 

 

Views are basically nothing but virtual relations. So, those views would be defined in terms of 

the actual relation that there are the logical layer, we will see how exactly we will start to be 

defined when we go into the relational data model in detail. So, the logical data independence is 

achieved by looking at the real view level to logical level mapping and then suitably modifying 

that mapping we will be able to achieve this logical data independence okay. 

 

So, are there any questions on these three schema architecture, it is a kind of a abstraction, layers 

of abstraction that are provided within the RDBMS package or the DBMS system. Of course, if 

you look at some RDBMS they may not provide you know, the ability to create views. Okay so 

they kind of implemented the RDBMS in a partial manner. They think that okay, the users of 



their RDBMS may not really require views and things like that we are not probably handling 

such large enterprises. 

 

So they may, you know, optionally not provided. But the ability to create views is part of SQL 

standard. And so any RDBMS package has to implement the SQL standard. And, and so it 

should be impossible, it should be available okay. 

(Refer Slide Time: 42:44) 

 

Now, let us look at the development process of a database system. How exactly we are going to 

do the development of a typical database okay. The first thing is we have to collect the 

requirements, we have to sit with the users end users of this information system and collect our 

requirements and for this and there are 2 kinds of things that we have to collect. First thing is 

what is called the data model the data model requirements. 

 

That means, what are the various pieces of data to be stored and their interrelationships, this 

information and this is typically presented using a conceptual level conceptual data model like an 

E/R model, E/R model is entity relationship model. You also have some alternatives actually at 

the conceptual level model which is UML I am sure you would have heard about UML also 

unified modeling language. 

 



UML is more used when you focus on you know, large scale software development. Whereas in 

the in the database world, the entity relationship model is more popular both of them are 

conceptual level data models. So, these data model requirements are presented in the form of E/R 

model. And then there is what is called the functional requirements from the end users that were 

to collect. 

 

Functional requirements are what are the various kinds of operations that need to be performed 

as part of the running of the enterprise, like for example, in focusing on the library database 

system they routinely have to do these activities, right acquiring a new book, enrolling a new 

user. New students come into picture. So they have to enroll new users issuing a book to the 

user, recording the return of the book from a user. 

 

All these are their functional requirements, they have to have these things. Now, each of these 

functional requirements will translate to an application program. The application program is 

written in some high level language like Java or C++. And it typically would have some 

graphical user interface and things like that. And it collects whatever parameters it wants to 

collect from the end users. 

 

And then interacts with the database server through SQL and do the appropriate modifications in 

the database server and then get back to the end user. So we will see how exactly application 

programs have to be developed much later in the course. But these are the application program 

requirements, these are functional required. So, these are the 2 kinds of requirements that will 

need to collect before we start designing a database. 

 

Now, once the data model requirements are collected, you would typically represented in a entity 

relationship model and this model we will see more details about this model in the in the next 

module. Basically, it also has a diagrammatic representation. So, we draw the diagram for the 

information system. And then the main aim here is to ensure that we have collected the correct 

requirements. And the end user also understands what exactly he wants okay. So, that is the 

requirements collection phase. This is a very important is. 

(Refer Slide Time: 47:08) 



 

Then in the next step, we will convert the data model into a representational data model which is 

the relational data model. So, whatever is the information that we collected as per the 

requirements of the database, we will internally have to will first have will have to convert that 

into the relational data model and choose an RDBMS system and then create the database. So, 

we will study as to how exactly one has to convert the information that is there in the conceptual 

data model into the representational net model when we study both these models in detail. 

 

And then convert the functional requirements into application programs, programs in high level 

language that typically use what is called embedded SQL. So we will have to see how we can 

embed SQL into a high level program, they typically use embedded SQL to interact with the 

database and actually carry out the required tasks. So these are the various steps that are involved 

in the development process of a database system. 


