
Database Systems

Dr. Sreenivasa Kumar

Department of Computer Science and Engineering

Indian Institute of Technology – Madras

Lecture – 15

Correlated Subqueries

(Refer Slide Time: 00:23)

Towards the end of last lecture, I was talking to you about how in an SQL query, we will be

making use of what are called sub-queries or nested queries. Basically, this feature of having

nested queries will allow us to break down the computation, break down the specification

into logical units and then specify them using independent queries and then make use of the

results of a sub-query in the outer query.

So, while doing that we needed operators for comparing or making use of the results of the

sub-query. So, we have talked about this in the last class. These are the kind of operators that

we make use of the results of a sub-query. If S is a sub-query, then we can put in this kind of

an expression, v op ANY S, and we have seen what are the various operators that are allowed

and what are the meanings of all these operators.

So, in a short form for =ANY, NOT IN is equal to <>ALL, and in general, we can also have

the v, which is generated, which is kind of produced by the main query. It is possible that this

particular v, also a tuple, in which case, the S is generating compatible tuples. So, v is

normally a single attribute, but while using this IN and NOT IN, it can be a tuple of

attributes, in which case, the same kind of semantics will apply.

So, basically if there is a tuple and if we are using ANY, then we are basically there is exactly

equal tuple in the result produced by S, similarly for Not Equal To. So, moving on in this

lecture, I want to focus on a few more features of SQL, the query part of SQL.

(Refer Slide Time: 03:13)

There is a notion called correlated or uncorrelated nested queries. If the nested query result is

independent of the current tuple being examined in the outer query. So, this requires some

explanation. What do you mean by current tuple being examined in the outer query. Recall

that, the meaning of the basic block is that at any point of time, you know, we are considering

a particular combination of tuples of relations that are mentioned in the FROM class.

So that is the current tuple under consideration. So if the result is a nested query is

independent, you know, it does not care about the current tuple being examined in the outer

query, then such a query is what is called an uncorrelated query, whereas if this is not the

case, we call such a nested query as a correlated query. Its result is in some sense correlated

with the current tuple being considered in the main query.

I will give examples of these things and then you can try to understand. If it is an

uncorrelated query, then the advantage we have is that the nested query can be computed only

once and its result can be made use of in the main query. Whereas, if it is a correlated nested

query, then the nested query needs to be recomputed for each of the tuple combinations. You

can also call it a row being examined in the outer query.

So, this difference is of great value when we are actually looking at the efficiency of running

of the queries. So, if you detect that, the nested query is an uncorrelated query, then we can

actually keep the computation, run it, take its result, store it somewhere and reuse it. So, lets

now start looking at the example of this.

(Refer Slide Time: 05:55)

So, I will keep the examples simple, you know, kind of illustrate the main point we are

looking at. So, get the roll number and name of students whose gender is same as their

advisor’s gender. You may wonder, why you want this information, but just for illustration

purpose. So basically, I am now looking at whether, you can see that as I am kind of looking

at various student tuples, I must then make use of the value of the sex attribute and then

check with the advisor’s attributes appropriately.

So that is where the correlation comes into picture. So, this can be specified easily like this,

select the roll number name from the student. Here you can see that, we are using s. advisor.

So this sub-query, which is checking whether the gender of the professor is same as the

gender of the student whom he is advising or she is advising. He is making use of the table

alias that is there in the outer query. That is the only way you can check that condition.

So this also brings into the focus that this table alias that is there in the outer query. That is

the only way you can check that condition. So, this also brings into the focus that this table

alias that we introduced in the FROM class are accessible to the sub-queries. They are

accessible and they can be made use of in the sub-queries. So, in the sub-query now, I am

doing select f. sex from professor f, where f. empID is the s. advisor.

That means, this particular professor is the advisor for the current student under

consideration. So, your question is if this nested query, what does it generate. It generates 1

tuple, so in which case is = ALL is required are not. So, it does not matter right even if you =

ALL or = ANY, it would be the same actually. The effect will be the same. So, you could

actually replace it by ANY or you could also just use IN. So, this is basically producing the

one value and then we are checking whether this particular thing.

The main point I am trying to illustrate here is that, this sub-query is correlated because its

value or whatever it produces depends on the current student under consideration. So,

compare this with the query that we had where we said, get whole of all student advisors who

are female professors, and then we used a sub-query to figure out who are all the female

professors and then checking whether the advisor or the student, the employee ID is present

in the employee IDs of the female professors.

So that sub-query, you know, kind of independently run without bothering about what is the

current student I am considering, because that sub-query was basically just generating the

empID of all female professors. So that is an example of uncorrelated query whereas this one

is formulated and in this kind of formulation, this sub-query result will depend on the current

tuple being considered for student, so it is an example of the correlated query.

So, that is the difference between the correlated query. We will see some more examples of

this correlated query as we go along. Now, let me take you to a very interesting operator

called the EXISTS operator.

(Refer Slide Time: 11:12)

So, in a SQL, there exists an operator called EXISTS, and so what is this operator. It

basically allows you to check whether a particular sub-query is producing non-empty results

or producing empty results. So, that is all it does, but it is very useful and in some sense plays

the role of existential quantification, but it is very useful in some sense, you know, plays the

role of a existential quantification in SQL.

So, the EXISTS operator is expressed like this EXISTS(S) where S is a sub-query, but

usually it has to be used inside. This now becomes a new predicate thing. So, you can use it

in a WHERE class of a query, and so S becomes a sub-query of that particular query. So, this

EXISTS(S) is true if S has at least one tuple and is false if S contains no tuples.

It is very simple and we will start using it now. Get the employee Id and name of professors

who advise at least one women student. So, we will try to get a sub-query of all the women

advisees of this current professor under consideration and then check whether that particular

set is empty or not. That is the idea of trying to use an EXISTS operator. So, select f. empId,

f. name from professor f and now here comes the sub-query.

What is this sub-query doing, go through this select s. rollNo from student S where the

student advisor is the current professor under consideration (f.empId) and this student is a

woman. So, essentially what it is doing, it is producing the set of roll number of woman

advisees of the current professor and then we are checking whether is this set empty or not.

If this set is empty, then this particular empId is not advising at least one woman student and

so should not be produced in the output and so if this thing is null set, then EXISTS null set

would be false and so for that professor this predicate will be false and you will not be

producing that professor in the output and if there is at least one member here in the result of

this sub-query, then EXISTS for this s is true and that professor will be listed as a professor

who is advising at least one woman student.

In all these examples, you must remember one thing that, I am using them to illustrate one of

these features or operators that are there in SQL, you can also express the same queries in

other ways. Every query can be actually be expressed in many ways and I am choosing the

way of expression using the features that I am introducing and it should not be assumed that

this is the only way to express the query.

So, you can express the same query in multiple ways. Remember that. Then, let’s move on,

this happens to be under correlated query because the result of the sub-query will depend on

the current professor under consideration. Unfortunately, while this EXISTS is something

like an existential quantifier, SQL does not have an operator for universal quantification. It is

really unfortunate that we do not have a universal quantification operation in SQL.

There are other query languages like object query language and x- query and little bit, you

know, query languages for more advanced data models, in which at the design stage itself,

they have a kind of incorporated the universal quantification because it is a really useful

quantification. So, as a result of this, while dealing with these queries that do involve

universal quantification, we will be kind of forced to convert that into existential

quantification, and then use EXISTS operator to check the conditions that we are looking for.

So, let me illustrate that point.

(Refer Slide Time: 17:08)

Before we go further, here is a NOT EXISTS operator, so if EXISTS operator exists, NOT

EXISTS will not be existing. Obtain the department Id and name of departments that do not

offer any 4 credit courses. So, you can basically do this query by asking whether the

department are producing the set of departments that are offering 4 credit courses and then

checking.

Let me show you the query. Department Id and name of departments that do not offer any 4

credit courses. So, here is a sub-query, what it does, is produce the 4 credit courses that are

being offered by the department under consideration. So, how does it do it. Select courseId

from course c where c. deptNo equals d. deptId. This will kind of ensure that the course is

being offered by the current department under consideration and further check that the credit

is 4.

So, this produce the set of courses, there are 4 credits and are offered by the department under

consideration. What is the department under consideration? It is this d. We will consider all

possible values for d right. So for each of these d, we are kind of computing what is the set of

4 credit courses offered by that particular department. If this is a set, which is non-empty set,

then that department does not qualify for us because we are asking for the departments that

do not offer any 4 credit courses.

So, that is why we put a NOT here and use a NOT EXISTS to get this condition that they do

not offer any 4 credit courses. So, this also happens to be a correlated sub-query. So, both

EXISTS and NOT EXISTS are very useful operators and most of the queries involving

existentially quantified predicates can be kind of easily specified using this EXISTS operator,

but queries with universally quantified predicates can only be specified after we actually

convert that predicate into something which uses existential quantifiers. So let me illustrate

that. This is a very interesting part of the queries.

(Refer Slide Time: 20:42)

We have looked at this query earlier also when we were talking about tuple relational

calculus. You have not looked at tuple relational calculus. This is the example I was

discussing when the power went off. So, determine the students who are enrolled for every

course taught by Prof. Ramanujam and assume that Prof. Ramanujam teaches at least one

course.

So, why do you think that it involves a universal quantifier, because we are specifying that

these students whom we are interested in are enrolled for every course taught by Prof.

Ramanujam. So, one way of handling this, I mean, the way to handle this since SQL does not

have the universal quantifier, we will rewrite this into something like this. Determine the

students who are such that there does not exist a course taught by Prof. Ramanujam which is

not enrolled by the student.

So, which semantically means the same thing that the student is enrolled for all courses

taught by Prof. Ramanujam. Determine the student who are such that there does not exist any

course that is taught by Prof. Ramanujam which this particular student has not enrolled into.

So you can see that this is equivalent to the condition asked to check in this query and now

since it uses EXISTS, we can express this in SQL. Before I move on to SQL, I will show you

how we did this in double relational calculus. Just recall that slide here.

(Refer Slide Time: 23:42)

Same query in TRC, we did it like this. I want to go through this, I explained this thing

earlier. So essentially what we are doing here is use this implication and universal quantifier

and express this condition what are looking for is that for all courses taught by prof.

Ramanujam, the student under consideration has done that. So, this translation is somewhat

easier and direct translation of the condition.

So, every course taught by Prof. Ramanujam has been done that. So this translation is

somewhat easier and direct translation of the condition that. So every course taught by Prof.

Ramanujam has been done by. The way we express this, if the antecedent of this implication

checks this is the course taught by Ramanujam and the consequent checks whether the

student has enrolled for it.

And this is the universal quantifier for all courses, we are checking that if the course is taught

by Ramanujam, then the student has enrolled in that. So, this you can is a more direct way of

translating the query. Fortunately, we could do that because we have universal quantification

in our hand, and of course, implication also is present and so we could do that. Now, take it

as an exercise and then write down the

Where clause part of this predicate logic and put two negation symbols in front of it. If you

put two negation symbols in front of it, it is logically equivalent to the same thing of that

expression and then push one of the negations inside then see that you will get an equivalent

expression that uses only existential quantifiers. So, let me now show you how you can deal

with this in SQL. Determine the students who are enrolled for every course taught by Prof.

Ramanujam.

So, pass this slowly. There is a double negation, so it will be a little bit confusing, but that is

inevitable. The logic that we are encoding here in the condition is that, there does not exist

any course that is taught by Prof. Ramanujam, which is not enrolled by the student under

consideration. So, select roll number, name from student s and something does not exist, what

is that. Course taught by Prof. Ramanujam, which is such that the student is not enrolled for

it.

Such a course does not exist. So that is easy to express, so select t.*. * is basically saying that

get me all attributes. From teaching t, professor p, recall that this teaching information, who

is teaching, what is available in the teaching relation and so we get the appropriate

combination of teaching tuple and the professor tuple by doing the employee IDs is same in

both the tuples, make sure that, and the name of the professor is Ramanujam.

So this will kind of fix the combination of the teaching and professor tuples, appropriate

combination of teaching tuples such that the course is being taught by Prof. Ramanujam and

then we are checking that in the enrollment tuples, e. courseId is same as t. courseId , that this

is the course that is being taught by Ramanujam and the student has enrollment. There is

NOT EXISTS here, remember that.

In such an enrollment tuple where the combination of roll number, s. roll number is the roll

number of this particular student under consideration. Remember that, there is no other S

anywhere here. The course of this the entire sub-query. Remember again, what is that we are

checking, so under this sub-query, what we should get, a course taught by Ramanujam, which

is not enrolled by the student. There does not exist such a course, that is the job of this outer

NOT EXISTS.

So this sub-query is checking for the set of all courses taught by Ramanujam, which are not

enrolled by the student. That is exactly what we are doing here. So, we are checking that

enrollment tuple corresponding to the student under consideration, with the corresponding

courseId does not exist. Okay any question here, because this is what we have to pass on.

What I advise you to do is to kind of, you know, take some sample values of courses taught

by Prof. Ramanujam, some two or three of them and then run through this using a paper-

pencil simulation and then figure out that.

So you can take the combinations of student doing some subset of the courses and student

doing all of the courses. Then you figure out that this indeed will ensure that the student is

actually enrolled for every course that is taught by Prof. Ramanujam. Now, let me show you

a similar kind of a query, which again involves universal quantification.

(Refer Slide Time: 31:15)

Determine the students who have obtained either S or A grade in all the pre-requisite courses

of the course CS7890. It is known that CS7890 has at least one pre-requisite. Again, this also

involves checking some kind of condition for all the pre-requisites of a particular course. I

will leave it this as an exercise for you to figure out that the same kind of a translation into

existential quantification is required here and then you can express it like this.

We are asserting that there does not exist any pre-requisite of CS7890 such that the student

under consideration has not got either S or A grade in such a course. So that is what this part

of the query is doing. This query is ensuring that the course under consideration p is a

prerequisite of CS7890 and this part of the query is checking whether the student has got S or

A and there is a NOT EXISTS here.

So, the way you can convince yourself about is to assume that say the course has some three

pre-requisites, C1, C2, C3 and then assume that some student has done two of them, has got S

or A, two of them and then what happens to the student. You can run through this and then

you will be able to figure out that student will not qualify. So the point I am trying to

illustrate is basically that for those kind of queries that do involve checking conditions, kind

of involve the universal quantifier, you re-write the X condition essentially using double

negation.

And then use the EXISTS operator to express that opposite condition and I have given two of

the queries, so that you can get this point across and I urge you to practice kind of such

queries. So, you can also study this query and then come up with any questions that you may

have in the next class so that we can clarify it. It is important to understand how to express

these kind of condition SQL.

Of course, my advice is for you to try and express this in tuple relational calculus first, so that

you kind of ready with the condition you want to express and convert into SQL. So that is

about this aspect of the EXISTS operator and the way it helps us expressing in both

expressing conditions that are involving existential as well as universal quantifiers.

(Refer Slide Time: 35:45)

So moving on, the WHERE clause can sometimes be missing in the SQL query. If that is the

case, essentially you will take it as a condition that is always true. So, in the interpretation in

the basic block of SQL, the WHERE is a kind of a filter. For all those combinations, in which

the WHERE condition is true, we are going to use that to produce the result. So if the

WHERE clause is missing, then what we will do I, assume that all combinations satisfy the

condition. So, it is a kind of true condition.

Essentially, no filtering is done on the cross product of FROM clause relations. So, a simple

example of that could be get the name and contact phone numbers of all departments. So

select name from department. You do not have to put any condition here.

(Refer Slide Time: 36:45)

The next set of operators actually have to do with this Union, Intersection, and Difference

operations. So, these operators can be made use of in SQL as well. Essentially, what we need

here is that the two operands for these have to be Union compatible. Recall this notion of

UNION compatibility, we have used it in relational algebra.

So essentially, the results of two sub-queries can be UNION, or you can use them for

INTERSECT, and things like that, but then, both the sub-queries should produce results that

are UNION compatible. Not only that, here we make even stronger assumption, that there

should have the same attribute names in the same order in both the operands. This is one

aspect. The other aspect is that the results of these operators are sets actually.

It may be slightly confusing, but these are sets, that means, duplicates will not be there. So, in

some tuple exists in A and also exists in B, then A UNION B will have only one copy of that

tuple. It will not have duplicate copies. So, it produces sets. Let me quickly show you some

simple examples for illustrating this and then we will close the lecture.

(Refer Slide Time: 38:47)

Obtain the roll numbers of students who are currently enrolled for either CS2300 or CS2320

courses. Obviously, you can just do it by putting these two condition in the WHERE clause,

we kind of illustrate how to use UNION. Current semester of 2019 and SELECT rollNo from

the enrollment where the course Id is this, it is the keyword UNION and the other thing is

exactly the same.

But this course is replaced by CS2320. Of course, is kind of equivalent to, you can put this or

here in the condition. So the same example I have used in order to illustrate INTERSECT and

also their difference.

(Refer Slide Time: 39:40)

So, I will skip this.

(Refer Slide Time: 39:48)

EXCEPT. So the keyword used for difference is EXCEPT. So this EXCEPT this. So, here is

query. Obtain the roll numbers of students who are currently not enrolled for CS2300 course.

So, you can get all students who are currently enrolled and then subtract the students who are

currently enrolled for CS2300. So, with that we will close for today, and I will continue this

discussion on SQL by bringing in what are called aggregation operators in the next class.

It is going to be very interesting, because they will be used for data analysis and other things,

so we will see how we can express aggregations, but remember one thing, please keep

practicing this stuff as we talk and look at more examples and express. You already have

some set of queries with you and you can take queries from exercises, express them and

clarify it.

