
Database Systems 

Prof. Sreenivasa Kumar 

Computer Science and Engineering Department 

Indian Institute of Technology-Madras 

 

Lecture-11 

Example Queries in Relation Model and Outer Join Operation 

 

In the last few lectures I have talked about various relational algebra operators and in the towards 

the end of last lecture, I was asking you this question whether all these relational algebra 

operators are essential and then we discussed this point that. 

(Refer Slide Time: 00:51) 

 

The few just about the 5 operators the select, project, cross product, union and difference are the 

constitute the complete set of operators in the sense that we can these are the necessary and 

sufficient set of operators, we can realize other operators through these operators, but in practice 

in addition to sigma, the selection projection, we use join operations and then of course also use 

intersection, union and difference. 

 

So, that at this stage we will not really bother about how they get internally translated to each 

other, but this is from a theoretical interest at least 5 are necessary okay. So, in this class in this 

lecture, basically I want you to be a little bit active and then you know, solve a few of these 



queries. So, and then I want you then we will realize one particular feature of relational algebra 

and see that certain things cannot be done in relational algebra. 

 

So, I will present to you a series of queries and I encourage you to kind of keep the schema 

diagram ready with you. So that you know you can try and formulate relational algebra queries 

for these examples, and then we will see how exactly you will do okay. 

(Refer Slide Time: 02:26) 

 

So, here is very simple query. So, please try to do this, we try the list of female PhD student. So, 

if you want to see the schema, it is here. 

(Refer Slide Time: 02:41) 

 



This relational schema is here and the query was retrieve the information about female PhD 

students. So, under normal circumstances I will go around and then look as to what you are 

doing in your own book but I do not know whether. So have this schema with you on one page 

of the notebook, so that you can refer to it. So, any way the general information is here and then 

the degree information is here. 

 

So, all that you the information that you need for this particular query happens to be there in one 

this one. 

(Refer Slide Time: 03:16) 

 

So, let me go back to that, retrieve the list of female PhD students. So, this can be done as 

opposed to would have done it. So by just doing a selection on appropriate attributes, so selection 

with so in the student relation, we have all this information. So all that you have to do is to 

impose the conditions that the degree should be PhD and sex should be F, this is also similar, 

obtained the name and roll number of all female BTech students. 

 

Where is the so it is also there in the student relation name and roll number of all female BTech 

students. So, this is also there in the student relation. So, only thing is here we did not. So since 

the query was not specific saying that you know get only this information about students, we just 

got we you know finished this with just the selection without any projection okay. 

 



Whereas here since this query is very specific saying that get the name and roll numbers of all 

female BTech students we are also what they need to project the appropriate attributes pi roll 

number, name and then degree course BTech sex equals F. Now obtain the roll number of 

students who have never obtained in E grade. To try this out, where is this information about. So 

we are asking for roll numbers of students. 

 

And who have never obtained a E grade. So this information is there in what is the relation in 

which this information is there enrollment, right. In enrollment it is there. Try it out, the query is 

asking for roll number of students who have never obtained an E grade, please write the query in 

your notes, I hope you have been reading along. So, what does it mean to say that they have 

never obtained any E grade. I think it is simple right. 

 

So, in whatever courses they have done so far information is there, they have never obtained in E 

grade anything is everything is other than E and the enrollment has roll number, course Ids 

semester year and grade. And recall that you know for the current semester courses the grade 

will be null and for all the completed courses the appropriate grade will be there. Now, let me see 

what you have done. 

 

How many of you have done this, just raise your hands if you have written it like this, raise your 

hands one. So, you have not written anything, is that the case or have you written something in 

your notes okay, how many of you think that this is solving the query, what is it saying grade is 

not equal to E and from the enrollment and project the roll number right. 

 

The roll number of students who never obtained any grade at that is what we want, how many of 

you think that this will solve this problem, how many of you think that it will not solve the 

problem 1 2 3 okay, several of you know that it does not solve the problem. Why does not it 

solve the problem here is the roll number of students who have obtained. So, what if the student 

has done several courses and one of them he has obtained in E grade. 

 

And in some in another of the courses is obtained a non E grade, if he has not obtained non E 

grade at least one non E grade the roll of the student will turn up here in the result of this query, 



and this is not what we are looking for. We are looking for students who have never obtained an 

E grade. So if a student has obtained at least one grade which is not E that students roll number 

will come here. 

 

Whether or not he has obtained an E grade or not right. So, this is not solving the query. So, the 

roll number of students who are never obtained an E grade is not being so. So, how do you 

proceed with this. This is not correct, this is incorrect right. So any ideas of how to correctly 

solve this. So, basically we have to get hold of the people who have obtained an E grade in at 

least one course that is easy. 

 

Because we can do a great equal E, and then get all of the students who obtain in E grade in at 

least one course, then we know that these are the people's we do not want. These are the people 

who we do not want. So we know whom we do not want we can set up the people whom we 

want by doing what set difference, we can do a set difference. So, you can get the set of students 

who have obtained E grade in at least one course doing grade equals E on enrollment. 

 

And get the roll numbers and then from the set of all students, so we give the benefit of doubt for 

the students who are currently registered and all that so null grade and all that. So okay, we 

ignore that. So we from the set of whole roll numbers, all the roll numbers we subtract this roll 

number of students who have obtained an E grade then we will get the correct roll numbers, the 

roll numbers of people who have never obtained an E grade okay. 

 

So even though sometimes the statement might look very simple, it might you know, a simple 

solution you are not currently think about it and then get the answer. Good okay let me proceed 

with some more. 

(Refer Slide Time: 11:39) 



 

This is simple. So you can basically do the obtain the department IDs for departments who have 

no lady professors. This is very similar. Also try it out. Very similar to the existing one, the 

previous one. You can find out the departments that have a lady professor and then do a 

subtraction again. So, this is the set of departments that have at least one lady professor and here 

is the set of all departments and you can subtract. 

 

This is easy try it obtained roll number of male students who have obtained at least one S grade. 

This kind of at least one, this kind of an existential check, right. So, whether that student satisfies 

some condition or not. So, this is easy to enforce. So, you will be able to handle that by just okay 

in this case I have wanted to demonstrate that we can use intersection to do this okay, the 

information about grades is in enrollment, whereas the information about gender, gender is not 

the student. 

 

And so you have to do selection there, selection here and project roll number so that they are 

union compatible and then to the intersection okay. 

(Refer Slide Time: 13:38) 



 

So, here is another interesting query okay. This you can try it out actually this I just wanted to 

illustrate that, in some situations like this, you need to get information from multiple relations 

and then you know, obtain our step by step way of writing the relational algebra query. So obtain 

names and roll numbers of students who have got S grade in CS3700 course offered in there is 

notice here all the only thing is that it is the information that we need is spread over multiple 

relations. So you will have to pull it from multiple relations. 

 

And then appropriately take care of renaming etc. offered in 2017 on semester along with his or 

her advisor name .So, what are all the relations that we need to answer this question. Since we 

need names and roll numbers of students we need of course the student relation and who have 

got S grade and so on so of course, and so we need enrollment relation and along with his or her 

advisor name. 

 

So advisor is a professor and advisor name is required okay, advisor Id is present in the student 

relation which is a foreign key. So, advisor name is not present in student relation and so again 

so you will need the professor relation to pull the advisor name into the advisor name okay. So, 

let me illustrate the process of you know generating these temporary relations and then naming 

them appropriately. 

 



Again we have done this in an example of here. So, required students, roll numbers is from the 

enrollment, I will find out the set of students who have obtained an S grade in the CS3700 course 

in the year 2017 and semester odd. Project the roll numbers do a selection on enrollment and 

project programs, so this is the required roll number students, but then we know need their 

names. 

 

We only have roll numbers, we need their names and we also need their advisors names. So 

require students name and advisor Id. So I appropriately named it this temporary relation. So roll 

number, we rename this roll number, name and advisor okay, I will take this required student roll 

numbers and then do a natural join a student because there is a common attribute, which is his 

roll number. 

 

Here there is only one attribute. The schema has only one attribute whether the student has a lot 

of attributes and roll number is the common attribute. So we can do a natural join, to join and 

then pick up the information about students that matches the required students roll numbers and 

project name of the student and advisor and the advisor is an advisor Id right. And so, we now 

we rename these things because so essentially the attribute name will contract with the attribute 

name in employee and then the professor relation. 

 

And so we will rename it as sName. So finally, result has roll number, student name as required 

and advisor name right along with his advisor name and so we have advisor name, and then how 

do we get that this required student advisor Id join with professor on the join condition advisor Id 

is equal to employee Id right. So if you join with an advisor Id equals employee Id we will get 

appropriate combinations from this roll number name advisor. 

 

So the advisor details we need now, so as well as details are available in professor relation and so 

we do a join with on this advisor which is need renamed as advisor Id. So advisor Id is employee 

Id that is a joint condition and then finally we project the SName which comes from this and 

name which comes from the professor relation. Finally get me things. So this style of writing is 

something which I want you to adopt okay. 

(Refer Slide Time: 18:57) 



 

So let us proceed with one more interesting query, this is I call the transitive closure kind of 

queries. So, let me show you how what this query is. So, we will focus on the prerequisite 

relation, there is one prerequisite relation if you prerequisite it has prerequisite course and course 

Id. So if data structures is the prerequisite for databases systems so there will be data structures 

course Id here and then databases course Id as a tuple okay. 

 

So now the query here asks for the direct or indirect prerequisites of the course CS767. What are 

direct, so you would understand this direct all those which are available as directly prerequisites 

of CS767 okay, and now those courses might have some other prerequisites. So those are the 

indirect prerequisites of 767. So the indirect prerequisites or prerequisites of a prerequisite course 

for CS767 okay. 

 

Now, so we want all these kind of prerequisites at all levels to be reported. You can imagine that 

7 767 is one course and its prerequisites are there at one level and the prerequisites of that those 

courses are there at the second level, etc. So, we want all these prerequisites to be reported that is 

what is in the queries asking for obtain the courses that are either direct or indirect prerequisites 

of the course 767. 

 

So, let us attempt how to solve this. So, level one prerequisites, how do we get level one 

prerequisites. So, you take the course IDs 767 is given to us and then do a selection on 



prerequisite relation, then all the rhos correspondent, which have 767 as the course Id will be 

selected and then you project the prerequisite courses from there. So, those are the first level 

prerequisites for the course 767 say 767. 

 

So now we are renaming this as level one prerequisites and with cId 1, rename this attribute as 

cId 1. I hope you get the idea now. So our idea now is to take this and then how do you get the 

second level ones. How do you get the second level prerequisites, can you get it from of course 

this will be useful, right but then what else is needed, my question is how do you get the next 

level prerequisites using relational algebra opera, where is that in which relation has that 

information. 

 

There is only one relation right here. We have concerned about all information is there in only 

one relation, the prerequisite relation, that is all. So how do you use the prerequisite relation now, 

again, is the question. So how to use the prerequisite relation along with this now join. okay, 

good. So you have to join this with the prerequisite again what is the joint condition. Let us try 

and figure out, what is the joint condition. 

 

What should cId 1 be compared to course Id that is good. So, if you combine again do another do 

a join now with prerequisites and then enforce this join condition that course it is now equal to 

cId 1 then basically what we are doing now is to and then project the prerequisites, we are now 

obtaining the level 2 prerequisites right. So, level 2 prerequisites are like this. So, take the 

prerequisite and then join it with course Id equals cId 1 with this level one prerequisites. 

 

So, the level 1 prerequisites is a small bunch of courses that are prerequisites of 7 767. So now 

the course it should match with one of these things, if it matches, then those rhos will contain the 

prerequisites of the prerequisites of 767 right. Now, that is good, but then obviously, you can do 

it for level 3 also in a similar way you can do it for ;level 3 also, but then how many levels are 

there, how do you know how many levels okay in this particular example, you might say that 

okay. 

 



There are only 8 semesters in BTech course then probably there cannot be more than 8 levels. 

And so I will go and then do this 8 times in them can be, but in general the spirit of this question 

is that for example, to illustrate the same concept, in Elmasri and Navathe book, they use the 

employee and supervisor. They give one particular person from John and ask for all the people 

who are either directly reporting to John or indirectly reporting to John supervised by John or 

directly supervised by John or indirectly supervised by John. 

 

So, in such cases like this, it is not normally possible to put a appearing we may not know the 

number of levels. So, if you know the number of levels as k, level k with prerequisites can be 

obtained. Repeat this k number of times you will get level k prerequisites but in general, we can 

solve this query, because this is in some sense is asking for the transitive closure of this 

particular binary relation called prerequisite of. 

 

Something is a prerequisite of something else and it is the transitive relation. And so, you would 

have studied transitive closures in the script, biometrics right. So, this query is indirectly asking 

for the transitive closure of the binary relation. So, that kind of a thing is not really possible for 

relational algebra, because it does not have any looping mechanism basically, the prerequisites at 

all levels be cannot be obtained as there is no looping kind of mechanism okay. 

 

So, this is a limitation of relational algebra framework and will later on see when we discuss 

SQL whether we can get over this okay. So I suppose the concept is clear that we cannot do 

transitive closure kind of curious okay. 

(Refer Slide Time: 27:19) 



 

So moving on I want to briefly talk about other kinds of joints that are also kind of relevant in 

practice and we will see. So, these joints that I have discussed so far theta join, equi joint, natural 

joint, they are all called the inner joins. Because the result of these operations contain only the 

matching tuples okay. Now sometimes matching means the condition the 2 tuples that satisfy the 

joint condition from the left operand, the right operand, the combination that satisfies the joint 

condition. 

 

The only those will be available in this choice, in some situations, you know, we want to take a 

relation and retain all the tuples in that relation whether or not they satisfy the joint condition, 

you know are in combination with some tuple or not, we want to retain all the tuples in one left 

hand side, let us say and, you know in case a particular tuple joins with the tuples on the right 

hand side relation and the joints means it satisfies the joint condition. 

 

Then we want to kind of paired up with the attributes of the appropriate tuple okay, and if it does 

not, we will only the keep null values for all the other attributes in the joint, so, that kind of joints 

are what are called outer joints. So, when all tuples in relation r or relation s are both are needed 

in the result. So, they are these 3 kinds of outer joints. So, what is called left outer join which has 

the joint symbol with these little lines on the left hand side. 

 



Whereas the right outer join has the joint symbol with these things in the right hand side and the 

full outer join has a funny looking symbol like this okay, so, let us look at some examples of this 

okay. So to define left outer join, so basically r left outer join s what it does is keeps all tuples in 

the first or the left relation r, this relation in the result and for some tuple t in r if no matching 

tuple is found in s, then all the s attributes of the tuple t are made null in the result. 

 

So, what is the scheme of the result, it is the scheme of the left hand side relation and the scheme 

of the right hand side relation concatenated together right. So, there will be some s attributes, 

there will be r attributes followed by s attributes. So, every tuple in the result there will be r 

attributes followed s attributes. So, if the one tuple from the relation instance r matches say one 

or more tuples from s then those combinations will be there in the result okay. 

 

And if some tuple does not match with any tuple in s, then what we do is we simply paired up 

with null values and then keep the tuple there anyway. So, that is what they left outer join is so, it 

keeps all the tuples in the first irrespective of whether they combined with the tuple in s or r, in a 

similar spirit the right of the joint what it does is to do the same kind of thing for the right hand 

side at things. 

 

So, if necessary they all attributes are all made null in this case, in a full outer join, what happens 

is tuples from both relations r and s are there in the result, but then, you know, in case the they do 

not match with appropriate tuples from s, then they will be simply padded with null values, the 

appropriate attributes will be paired with will be simply made as null values okay. 

(Refer Slide Time: 31:57) 



 

Here is some instance data for the examples, so has the same bunch of students, Mahesh, 

Amrish, Oiyush, Deepak, couple of Maheshes and all Giridhar same of okay, now look at this 

situation. Some students do not have advisors okay. 

(Refer Slide Time: 32:36) 

 

Now so student left outer join, advisor equals employee Id. So we want to keep all students, we 

do not want to throw away students and in case the advisor is present we want to get hold of the 

name of the advisor, roll number, name and name of the student and advisors name. That is what 

we want. So professor name, student name, the roll number. So in some situations, it is not 

matching. 



And so if you go back to the data, so for this Amrish there is no matching tuple, the null does not 

match with anything. There is no matching tuple, the same is the case with Deepak, there are no 

matching tuple. So we still want to report all the students and if it matches, if, for example, CS01 

Giridhar is the advisor for 2 students. Mahesh and Piyush and so we get him here like that, okay. 

So I suppose in some situations where we want to keep the information in one relation intact. 

 

And then attach the appropriate information from the other relation, this is kind of very useful 

okay, so moving on we have the same case. Now we want to do with professors, I want to keep 

all the advisor names. And in case they are advising some students, we would like to get the 

details of the students, in case they are not advising any students will simply put null. 

 

So that at least the head of the department knows that who are all not advising students. So they 

will try to assign some students to those faculty. Good so, and in a similar way you can go 

through these things, the full outer join will basically what the left outer join was doing for the 

student and the right outer join was doing for the professor it will do both okay. So we get all 

students and listed out here and all advisors listed out here. 

 

So in case the student does not have any advisor, it will be null value, in case the advisor faculty 

member does not have any student it will be null values here okay. So this is called full outer join 

okay. So okay. So to kind of sum up, what we have done in the relational algebra is to look at the 

various operators. We have introduced selection projection, cross product okay. Since cross 

product we have introduced but then we realized that cross product is almost always followed up 

by selection. 

 

And so there is a combined operation called it join and then we have various kinds of join equi 

join, natural join equi join all that the division operator and now the outer joins. So with this we 

have kind of completed the set of algebra operations, what I want you to do is to practice 

expressing queries using these operators okay. And we will conduct a tutorial one of these days 

maybe this week or early next week will conduct a tutorial. 

 



But we should not wait for the tutorial. Please practice how to express queries using relational 

algebra, operators is very, very much important and in some textbooks they also introduce what 

are called little extended relational algebra operators which involves you know, aggregating data 

okay. So, that means like for example, on a particular column which has some numerical values. 

 

You want to report the average of that column that is called computing in aggregate on that 

particular column okay. So, there may be so such kind of things of course, are present in SQL 

whether we should discuss them in relational algebra context or not is more like a, you know, 

pedagogic kind of decision. I have chosen not to introduce those operators right now okay. When 

we come to SQL, we will discuss how to actually do aggregations, and all that. 

 

So, for fundamental understanding of the relational algebra model, those are not very essential. 

So, we will go ahead with this set of relational algebra operators. So, an important thing that we 

have realized through examples today is that there are certain kinds of queries the trans to closure 

kind of closure which cannot be expressed easily let us cannot be expressed in relational algebra 

operated. 

 

Because it is a it is an expression language. It is not a full-fledged programming language. It is 

an expression. It is a okay, so, please, but it is wonderful, and it is a very nice that we can indeed 

represent almost all the queries that we want to express using just about half a dozen kind of 

operators. 


