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[FL] Welcome to the next session of our course on Practical Machine Learning. In this               

session we will go through some of the machine learning concepts visually, so that it is easier                 

for you to understand or get intuition for this concepts. We will use a neural network                

playground as a tool to visualize machine learning algorithms. 
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So, we have a tool called neural network playground with a very interesting tagline, “tinker               

with neural network right here in browser do not worry you cannot break anything”. So, let us                 

let explore bravely without worrying about things getting broken up. 
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So, before we begin, let me tell you a few things about this particular tool since most of you                   

are new to this. So, in the previous session, we look at we talked about componentized view                 

of machine learning model where we say that we need training data when we set up the                 

model, we train the model and we evaluate the model performance. In training the model, we                

define the loss function and we also define what kind of algorithm will be used. So, if you are                   

using gradient descent or any of its variant, you have to set up things like learning rate and                  

we might also have to set up regularization in order to control the model complexity. 

So, we studied all these things in the previous sessions. Let us try to use those things in                  

practice and see how they affect the training of our machine learning models. So, here on                

your left, you see a pen where we can define different kinds of data. So, you can think of this                    

a simulative data set, so the one that is highlighted here is the data which has got clear linear                   

separation between two classes. So, we have a positive class which is denoted by blue color                

and negative class denoted by the orange color. 
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So, we have four different data set one which is linearly separable, one which is not linearly                 

separable. 
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Or rather the remaining will be data sets are not linearly separable but have varying degrees                 

of complexities. 
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We will see how to make use of techniques like future crosses to fit a model over here. We                   

will be using this neural network playground later with neural networks, where you will see               

how some of the things that we construct by hand in traditional machine learning algorithms               

have it is kind of taken away by the use of neural network. So, we can choose the data set                    

here in this paint, we can specify what is the ratio of training and test. So, remember if we                   

talked about training test split and you can specify in what, what percentage you want to split                 

training and test data. 

So, we have a slider here that defines how much data is used for training and how much data                   

is used for testing. So, here you know we are going to use let us say 70 percent data for                    

training and 30 percent data for testing. Then we can also add noise to this data set. So,                  

currently in its current form of the screen, you can see that this does not have any noise, it has                    

got 0 noise. 

As you add more and more noise you will see that the points will so the classes gets polluted                   

with point from the other class. So, this is like 45 percent noise and 50 percent noise you will                   

see that there are some of these negative points that are present among positive class and vice                 

versa. So, noise is; so with noise we can actually simulate the real life data set, which                 

generally contain some noisy labels. 

 



 

And finally, since this neural network playground uses mini batch gradient descent, we also              

get to see set the batch size. So, let us so we can you can also expand by setting the batch                     

size, let us say it to 16, then you can simply press the generate button that will generate a data                    

for us, then you know here. So, each of these data points has two features which is X1 and X2                    

and you know this is the part where we build a model. So, currently we are using a logistic                   

regression model and logistic regression model is set up by having one output layer which               

has got sigmoid activation. So, this will be clear to you, once we get into neural network. We                  

had briefly seen neural network so, you kind of know what is activation and what is output                 

layer. 

So, here we use one output layer and we use sigmoid activation over there. We can also                 

specify a bunch of other parameters like learning rate, regularization, right now we are not               

using any regularization, but you can use either L1 or L2 as regularization. We can also you                 

know fix up the rate of regularization which was denoted by parameter lambda as we saw in                 

the previous class and we can define the problem type. Here we are defining classification as                

a problem type 

So, you can think of this particular part defining the hyper parameters of our model. And this                 

is where we visualize you know the prediction, how the model is what kind of prediction it is                  

giving. And this particular part you will see learning course appearing when we start training               

and you will be able to see test loss and a training loss. And this is the button where; this is                     

the part where we control or where we so, if you press the play button, the model starts                  

training, you can see that. See this you can stop the training, you can revert to the initial                  

situation. And you can use this particular button to see what happens how model train               

stepwise. So, you can see what happens in the first step, second step and so on.  

So, let us try to solve this problem. With a setting where we use 70 percent data for training                    

and 30 percent data for testing we have a data set without any noise and we are using batch                   

size of 16, and let us see we are using learning rate of 0.3. We can explore is we can see how                      

learning rate affects the loss or the convergence. We saw that learning rate affects the               

convergence. If you have two small learning rate, it takes longer to reach the minima, and if                 

 



 

you use very high learning rate. There is a possibility that you will never converge because                

you might be oscillating across minima’s and you will never reach the convergence. 

So, we will have to you know find a sweet spot between two extremes, we do not want to                   

have too low learning rate or not too high learning rate, but we want to have sufficient a large                   

learning rate, so that we can safely train our model in an efficient manner. By safety I mean it                   

does not do oscillations or anything like that.  
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We would also you know try bit different regularization along with regularization rates. So,              

let us see what happens. So, so what do you see is, so we have then we have you know reset                     

everything. And now what you see is if the model is initialized with some weights, so there is                  

a weight of 0.46 on X1, and there is a weight of; there is a negative weight on W2 on X2, this                      

is, it is W2 and this is W1. And you can see that the width of the line defines the strength of                      

the weight. So, you can see that as things appear right now X1 seems to be a stronger                  

predictor over X2; X2 seems to be weak predictor because the line is quite faint and it has got                   

and yeah. So, and the color of the line tells you the sign of the weight. So, this color is                    

slightly orangish, so this will have negative, this is the weight will be negative and this                

weight will be positive. 

 



 

(Refer Slide Time: 10:00) 

 

Let us start stepping through the model. We can see that the error reduces gradually on                

training loss and test loss. 
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Now, it has slow down. You can see that training loss is moving towards 0 as we go through                   

more epochs. So, you can see that after 27 epochs, the training loss is 0.001 and test loss is                   

 



 

0.002. Now, so we achieve this state after 24 epochs, if you go if you reduce your learning                  

rate let us reset and see what happens. 
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You can see that the points are you know the weights are randomly initialized, now there is a                  

high weight on X2 and low weight on X1. So, this is the initial stage, let us start stepping                   

through. You can see that it is kind of learning very slowly. If you play this further, you can                   

see that it takes longer; it has already taken more than 500 epochs, and it is not even near to                    

any of the numbers that we got from our first experiment. You can see that it is training very                   

slowly let us go to the other exchange. 
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Let us use the learning rate of ten, which is very high. And you can see that it in one epoch                     

we manage to get to the zero loss. If you reduce it to 1, you can see that pretty much 1 epoch                      

we are able to achieve very low training and test loss. You can see that when we use 0.1, in                    

first seven epochs we reach very close to zero loss. So, now let us try to increase the noise                   

level and see how algorithm response to this. Now, we got loss which is much higher than                 

what we were getting previously and it is obvious because we have some of the points that                 

are misclassified. And you can also check the weights here on each one of them. If we                 

increase learning rate, we are able to train faster.  
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So, we are not able to get a zero error rate so, what we can do is we can increase the                     

complexity of the model, and try to learn some more complex representation, so that our               

losses are reduced. So, one way of increasing the complexity is by raising the polynomial               

degree of the original input features. So, here what we will do is, we will raise the power of                   

X1 and X2 and also add an interaction term and see how it affects the performance. 
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So, you can simply click on this to add the second the square of X1, we can add we can click                     

on this to get a square of X2, and we can click on this to get interaction term. And now let us                      

try to train again. 
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You see now when I used learning rate of 10, we can see that there are oscillations let us play                    

it back and see how the oscillation plays out, we can see that it is oscillating. 
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So, of course, this is the very high learning rate, we will bring it down to 0.3 and see what                    

happens 
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So, now you can observe that the; so, in the initial two experiments, we had a boundary                 

which was linear, but now you can see that we have boundary which is non-linear. We have                 

boundary which is slightly curved and this kind of complex boundary we were able to add,                

because we added these interaction features. 

The overall separator is you know linear combination of all the individual separators and you               

can see different weights here. So, let us try to train even more slowly and see what happens.                  

You know which seem to have reached I mean we are not able to get it below that. So, let us                     

add couple of more terms which are signs of the original features and we will try to. You can                   

see that now we have boundary which is even more interesting even more complex than the                

previous ones. 
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So, let us try to add regularization and see the effect of regularization. We will start with L2                  

regularization. Before doing that, let us once run the whole thing and note down the weights.                

So, you can see that X1 and X2 are strong positive weights, and then there is some weight on                   

the sin(X). And then all other elements do not have that high weights because they are quiet                 

faint, you can make it out based on their width. So, let us say we use L2 regularization with                   

regularization coefficient of 0.1, let us see what happens now. 

You can so probably learning rate is a bit higher. Yeah, you can see more complex boundary                 

getting learnt and it is very interesting to see that it is using now small weights everywhere                 

else except for these two features. If we use L1 regularization here, let us see what happens.                 

If I use L1 regularization, L1 regularization has tendency to put zero weight to the features                

that are not important. And you can see that all these features got zero weights so, only                 

features that are important here is X1 and X2. So, so you can see that L1 regularization can                  

also be used for feature selection for getting the features which are probably more important               

in the classification task. 

And indeed L1 regularization is used for model feature selections. One of the way in which                

you can build machine learning models if you have enough competition power, is take your               

features, raise it to some degree of polynomial and use L1 regularization with sufficient              

regularization rate, to get feature selection in the process of training. So, the training will               

 



 

happen and you know most important features will get picked up. Later we will see that, we                 

do not have to construct the feature crosses by hand and neural network takes care of that                 

automatically. 
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So, let us try to go to another data set and try to see. So, unlike our previous data set, this data                      

set is non-linearly separable. So, even if you have a clean data without any noise, we cannot                 

just use the original features X1 and X2, because they simply do not have the capacity to                 

learn the complex boundary which is a circle in this case separating both the classes. So, what                 

we will do is, we will right away, we will actually train it once and see where we reach. We                    

can see that the training error is 0.49, let us add the interaction features and see where we                  

reach. 

And now let us retrain it again. You can see that within, so we are getting very low training                   

and test error. So, we are getting almost a perfect classifier which is a circle which is                 

separating two classes. So, we can stop it, and let us try to use L 1 regularization here with a                    

point one regularization rate and see what happens if you retrain this. So, you can see that we                  

have again achieved fairly low training and test error. And now you can see that only features                 

that are important are the squared features, which is called obvious because it is a circular                

decision boundary. So, squared features obviously, will have larger say. So, yeah so you can               

 



 

clearly see that you know here, we, we did feature crosses raised it to degree of two                 

polynomial and we simply apply L1 regularization which give us these two features. 

Let us try to apply L2 regularization and see what happens. Now, L2 regularization also got                

us fairly similar training and test error, but you can see that L2 regularization does not assigns                 

zero weights to the features, instead it assigns weights which are very small. So, this is one of                  

the differences that you can note that you can observe in L1 and L2. I would suggest not to                   

change the activation type here because we are solving this is the classification problem              

sigmoid is a right activation type, but I would suggest you I would strongly encourage you to                 

change the learning rate and regularization rate, try to add more noise in the data and see                 

whether you can feed the model and how the model looks like after getting you know fairly                 

low training and test error. 
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So, let us try on the final data set which is XOR data. This is the one more interesting data set                     

you can see that the classes are in the XOR situation. So, let us hope with a simple linear                   

classify. So, we add interaction features or the second order polynomial features. And we can               

do the training and see what happens. So, quickly it went down to reasonably low error and                 

we can see that you know we have a complex decision boundary. And the most important                

 



 

feature is the interaction feature that helps us predict this particular thing, all other features               

have very small weights around zero. 

So, now if you apply, if we do not regularization, still we see that this is the most dominating                   

feature. If you use L1 regularization, we can see that all the features having driven to weight                 

of 0, only one feature which is the most important feature which is the interaction feature has                 

got a strong positive weight, and we are able to separate the two classes. So, this was a nice                   

visual way of intuitively learning how machine learning algorithms perform under different            

data sets and different noise added to the data set. 

So, in this session, we looked at linearly separable data set, a non-linearly separable data set                

and XOR data set, and applied classification technique on them to classify points into the               

correct classes. We also studied how we can use the interaction features and L1 and L2                

regularization in the context to you know to control the model complexity. 

Hope you enjoyed learning this session with us. This brings us to an end of machine learning                 

refresher using neural network playground. In the upcoming session, we are going to do a               

similar refresher for deep neural networks. We will start with the basic primer on deep neural                

networks. We will follow that with some mathematical foundations of deep learning through             

coding and we will also visualize some of the concepts of neural networks and their               

application to different data set to neural network playground.  

 


