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Gradient Descent

[FL].  In  this  session,  we will  study about  optimization  algorithms and their  roles  in

machine learning. We will specifically study an optimization algorithm called Gradient

Descent  and  its  variation  mainly:  minimize  gradient  descent  and  stochastic  gradient

descent.

(Refer Slide Time: 00:45)

We studied what is called as loss function of machine learning model. We use symbol J

w, b. So, loss function is parameterized by w and b, which are parameters of our model.

So, just to remind you our model that we considered for linear regression was as follows:

y = b + w1 x 1 + w 2 x 2 ……w m x m

Here,  we  have  training  data  with  m features  and  we  have  modelled  with  m  +  1

parameters  and  these  are  the  list  of  parameters.  So,  we  can  think  of  model  as

parameterized by b, w1, w2, ……w m. 



We will use w as a vector to represent, all these m weights. So, that is why we say that

the loss is the function of parameters and in case of linear regression the loss function

looks something like this.

J (w ,b)=
1
2
∑
i=1

n

(hw ,b (x
(i)
)− y(i)

)
2

Let us consider there are there are  m+1 parameters. Let us say this is the loss, this is

parameter w1, this is parameter b and there will be several such kind of parameters. Let

us say w2, w3 …….wm. And loss will be a surface in m + 2 dimensional space. So, it will be

some kind of a hyperbola kind of a shape. In order to understand this; we will take a

simplified model and try to visualize the loss function in the 2D space. 

(Refer Slide Time: 05:24)

Let us take a simplified model where there is a single parameter.  Our data is of the

following form: So, we have data D is we have this pairs. We have the feature and the

label. We have n such data points. So, we can compactly present this as:

D={(x(1), y(1)
) ,(x(2) , y (2)

) , .... ,(x(n) , y(n)
)}

We have ordered pair of features and labels, and there are n such kind of ordered pairs.

Each data point has a single feature which is represented by x1 and or y is a real number.

So, this is a regression problem and the model that we use is y = b + w1 x1.



So, the loss function is

 J (w,b )=
1
2∑i=1

n

(hw,b (x (i ) )−y (i ))
2

. 

We  compute  the  difference  between  the  actual  value  and  the  predicted  value  is  a

predicted  value  minus  the  actual  value  and  we  take  square  of  the  difference.

Geometrically, these loss function look something like this. So, we have J (b, w1) or the

loss on y axis. We have weight w1 on one axis and b which is a bias on the other axis.

It is a bowl shape function right. So, what will happen is we have to find out optimal

point on this bowl. We have a model, where we have input x1 and we want to predict

value y. Each of this point on this surface if you take this particular point, this particular

point; let us show some data points here these are data points. 

If you use this particular point over here, this point would correspond to a line, this point

is represented by two numbers which is w1 and b and for w1 and b it gives us a specific

loss and our model also has two parameters which is w1 and b. So, for this specific value

of w1 and b we get such a model. If we select another point on this surface, let us say this

particular point, it will represent some other line. So, let us call this as point 1 and let us

call this as point 2. 

If you choose some other point it might represent some other line. Let us call this as

point number 3. This is essentially a line which is (w1
(3), b(3)). And for each one of them

there is a loss and in order to recall what the loss is; so, for this particular line for the

third line the loss is essentially a distance between the actual value and the predicted

value. We calculate the difference and we take square of the difference. So, we find out

all this differences and sum them up and that represents our loss.

If we sum all this numbers up that you will get a loss corresponding to (w1
(3), b(3)). which

is some number on the y axis which is a loss. This is very important to understand the

duality in the loss space and in the model space. So, point in the loss function represents

a model  and we want to  get  a  model  that  gives  us the minimum possible  loss.  Our

objective is to find a model or model parameters in such a way that the loss incurred due

to those parameters is minimized. 



You must be wondering that you can also try some kind of a brute force approach where

you will explore this particular space and try to find out points that gives the minimum

value of loss. But this is not really efficient. If we take let us say a parameter space or the

loss function with m parameters with the value of m being very large and large m’s are

kind of their routine in our day to day machine learning problems. So, if you are trying to

solve this problem in the context of m which is some large number then you know a

brute force is almost impossible. So, we cannot really do brute force. So, we have to do

something more intelligent. 

And you know the way we are phrasing this particular problem, we are saying that we

want to find the values of parameters in such a way that the loss function is minimized.

So, this is a minimization problem find w and b or find parameters such that the loss

function is minimized. Let us see how to do that and let us first develop the intuition of

it,  and then get  into the details  of our first  optimization  algorithm which is  gradient

descent which is work hours of machine learning algorithms we will see that in a minute

after understanding the intuition behind it. 

(Refer Slide Time: 13:44)

So, what is our learning problem? The learning problem: Find w and b such that loss is

minimized and loss we represent with J(w,b). Let us try to understand how we can do

this intuitively. So, what I will do is I will again consider our linear regression model, y



is equal to b + w1 x1 and in order to give order to keep the expression simple we will

assume that b = 0, so we get very simple model which is y = w1 x1. 

Now, our job is to find out now the optimization problem is find out w1 such that J (w1,

b) is minimized. So, there is exactly one parameter here because you have already said b

= 0, so there is exactly one parameter.  And now we will first visualize how the loss

function looks like. So, loss function is parameterized the value of w1. For each value of

w1 we get some loss, job done.

We have a mean squared error or a squared error as a loss function. So, you can see that

it is a bowl shape function. This function in the language of mathematics is called as a

convex function. So, what we will do is, so essentially what is happening here is for each

of the value of w1 there is a corresponding value of the loss, and you can visually see that

this is the point where loss is minimized where there is a the value of loss is minimum. 

So, since this is a problem with a single variable or with a single parameter we can

visually find it. But the problem here is if we have multiple parameters, we cannot even

visualize the loss function, how can we algorithmically or how can we programmatically

find out this particular point. So, what is given to us is: we essentially know the loss

function,  and  we  want  to  find  out  the  value  of  the  parameter  such  that  the  loss  is

minimized. 

Now, there is this particular method which is called as gradient descent that helps us to

do this programmatically.  Let us try to understand gradient descent intuitively before

getting into the details of the steps involved in the process. We first initialize the value of

w1 to some random value. So, for this particular value of w1 there is a loss associated

with it. So this is the point where my initial guess landed. So, my initial guess is this for

the value of w1 and at this point what we do is we calculate the loss.

So, what is it representing? I am selecting, I am randomly setting the value of w1 to some

parameter. This will actually define a model for me. So, remember the duality of the loss

space and the model space, so we have x1 here and we have y here. Let us say these are

the points and we have model which is a line passing through the origin. 

This is a difference between the predicted values and the actual values. We calculate

square of the difference and sum them up across all the points and get loss corresponding



to this particular model. Now, so the first thing that we did is we randomly initialize w1,

then we calculate the loss value. Now, this is the point where we want to reach. 

How do we really reach this point from here? Now, think of this and as a task that is

analogous to, let us say climbing down from the mountain top. So, what happens is while

we are climbing down the mountain top,  we are let  say at  a specific  point,  we look

around and find out what is a direction that will  take me down to the valley.  So, in

gradient descent we exactly do it at a particular point on the loss surface. 

So, at this point what we will do is we will calculate the slope or the direction in which I

should be moving. So, let us say this is a slope, this point. So, this is a tangent to this

point. So, we can calculate slope of this tangent. And we get the direction of the slope.

So, we will move in the direction that is opposite to the slope. So, the slope is negative

here, we will move in the negative directions. So, first is we calculated the loss. Second,

we calculate the gradient.  And once we know the gradient,  the next question is how

much we move from the original point so that we reach the valley.

So, there are multiple options that we have. We can move or we can step, we can have a

longer strides or we can take shorter strides. So, the length of the stride is decided by a

parameter  called  learning  rate,  which  we denote  by  α.  So,  learning  rate  helps  us  to

control how long strides are we going to take from a particular point. Let us say if we are

at this point and if we have some learning rate, we are going to take a stride and we will

end up over here. So, this becomes our new point. 

And what we do is we repeat the same process that we did at this point at this point, we

first  get  the  predictions  on this  particular  model,  we calculate  the  loss  and then  we

calculate the gradient. In order to get the loss, we should also have predictions. We need

to  get  predictions  at  every  point.  As  you  can  see  here  this  is  a  prediction  for  this

particular point, so predicted value and actual value; because in order to calculate loss we

need to know what is the actual value and what is the predicted value.

So, we first make the predictions with the value of the parameter. We substitute that in

the model and we do the predictions, and based on predictions we calculate the loss. And

after calculating the loss we calculate gradient of the loss. So, we will again do the same

thing at this particular point and we see that it is a direction of the slope. So, we will be

moving in this direction by taking some step. So, let us say we come here. Now, you can



see that as we approach this particular point which is the point whether loss has got the

minimum value, as we go closer and closer to that point the derivative or the gradient

will become smaller and smaller. 

At this particular point the gradient will be 0 because it is a minimum point. So, you can

see that as we as we move closer to the minima, the gradient value will become smaller

and smaller. So, we have a constant learning rate. So we calculate gradient, we have

learning rate. And then what we do is we have new point. So, let us say 

w1
(new) = w1

(old) -  α . gradient

So,  we  can  see  that  when  learning  rate  is  constant,   gradient  becomes  smaller  and

smaller. 

So,  we will  be making eventually  our  stride  will  become shorter  and shorter  as  we

approach the actual minima. So, this is how this is how we reach to this particular point.

Now, you can you can work yourself, you know you can take a pause here and you can

work out yourself how this particular calculation work if I randomly initialize the point

over here. You can see that the gradient, this is the direction this is the slope and we will

be moving in the opposite direction of gradient. 

So,  we  will  be  since  gradient  is  positive  here,  we  will  be  moving  in  the  opposite

direction.  So, what will  happen is since gradient is positive at this point,  we will  be

effectively moving in the opposite direction because this is the value of w1
(old), we are

going to subtract something from it. So, we will be moving in this particular direction, if

I am starting from here. 

On the other hand, when we started from here, here the gradient was negative and since

we are going to move in the negative direction of this. So, you can see that gradient is

negative,  this  negative  and  negative  becomes  positive.  So,  we  move  in  the  positive

direction or we have some value we are adding something to it, so we are getting a value

which is greater than the old value. So, if we start from here we are going to get the value

of w1, which will be greater than the previous value. If we start over here we will get

values of w1 which will be lesser than the previous value. So, this is the intuition behind

gradient descent. 



Let us write down steps in gradient descent. 
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We will try to generalize the gradient descent for m parameter case. So, when we are

trying to establish the intuition of the gradient  descent we did it intentionally with a

single parameters, so that it is easy to geometrically show what is happening. But when

we  go  to  the  to  the  m  parameter  setting  it  becomes  difficult  to  visualize  what  is

happening. 

Let us consider a setting where we have m plus 1 parameters in the model b, w1, w2 ...

wm, and we are trying to solve for a regression, so the model is:

 y = b + w1 x 1 + w 2 x 2 ……w m x m 

So,  this  is  a  linear  combination  or  linear  combination  the  parameter  and the  feature

value.  And this  is  short  form,  these  are  short  hand form of  writing  the  model,  and

obviously, our loss function is:

 J (w,b )=
1
2∑i=1

n

(hw,b (x (i ) )−y (i ))
2

So, the first step is we randomly initialize b, w1, w2 ... wm. 

So, we randomly initialize all the parameter values. Then, we are going to repeat until

convergence. We first use all this parameter values and we predict ŷ for each data point



in  training.  So,  we  calculate  ŷ(i) or  the  predictions  first,  then  we  calculate  loss,  we

calculate loss which is J (b, w). 

We know that the predicted value and we know the actual value based on that we can

calculate the loss. Then we calculate the gradient of the loss.  We will we will see how to

calculate gradient of loss. Fifth step is 

b(new) := b(old) - α . gradientb 

So, gradientb, gradientw1 and we do it for all the parameter values. Update b, w1, w2, wm

simultaneously. 

We are calculating this gradients with respect to each of the parameter values. notice that

this is not an equal to sign, we are using some kind of us other notation where the effect

of this is we are setting the value of b to a new value which is coming from the equation

on the right hand side in this case which is this equation. And when we are calculating

gradient with respect to w1, we are not going to use this b(new), we will still be using the

value b  (old) and all the old values for all other parameters. And we change the values

from old to new right at  the end in the step number 7.  So,  this  is what is called as

simultaneous update. 

So, this is important to note that all this parameters have to be updated simultaneously at

the  end  of  the  loop.  And  then  you  again  go  back  to  this  two,  we  check  for  the

convergence, and we essentially repeat. After this step is we get a new point on the on

the loss surface and we repeat the same process at that particular point in the loss surface.

So, this is a sketch of gradient descent algorithm for your reference. We have not yet

talked about how to determine the convergence of this or how to calculate the gradients

which we will see in the next session [FL]. 


