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Lecture – 37 

Customizing tf.keras – Part 2 
 

In this session, we will review some of the main concepts behind tf.keras. You have been                

using tf.keras quite extensively in this course so far and now we want to study how to                 

customize tf.keras. 
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Before getting into customization it is a good idea to take a step back and review all the                  

concepts of tf.keras that we have been using so far. 

So, in this lecture what we will do is we will start with how to build a simple model with                    

tf.keras, how to perform training and evaluation where we will read data from multiple              

sources like NumPy using tf.data.Dataset and we will see how to perform evaluation and              

prediction. We will also see how to define custom callbacks which are very important in               

obtaining interesting insights from training. Finally, we will look at how to save and restore               

the model and run the model in multiple GPU settings. 
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Let us begin with setup. We will import TensorFlow 2.0 and in order to use keras you have to                   

import keras package from TensorFlow. 
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Let us begin by reviewing how to build a simple model with keras. So, we assemble layers to                  

build simple model. A model is usually graph of players. The most common type of model is                 

stack of layers, it is called tf.keras.Sequential model. 
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To build a simple fully connected network as we have seen in numerous occasions in this                

course we do the following. We define our model to be a sequential model and then we go on                   

adding layers in the model. First we add a dense layer with 64 units in it and we use relu as an                      

activation function. We add another layer with 64 dense units and finally, we have another               

layer which is output layer with 10 units. It uses softmax as an activation function. 

Now, what we will do is we will learn how to write advanced models. The couple of ways in                   

which we can write advance model – first by implementing layers and models with              

subclassing or by using the functional APIs. 
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Some of the common arguments are activation, weight initializer and bias initializer; weight             

initializer is referred to as kernel initializer. Then, we also specify the regularizers in the               

layer. 
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So, we can see that here we can use activation using a simple string or using expanded name                  

like tf.keras.activations.sigmoid. So, that is the long form of sigmoid activation. 



We can see above that we are adding l1 regularization with a regularization factor of 0.01;                

here we are adding a bias regularizer which is l2 regularizer with a factor of 0.01. We can                  

also define the way to initializer to be orthogonal in this case. We can also initialize bias in                  

the layer. 

After the model is constructed we configure its learning process by calling the compile              

method. In compile method we specify the optimizer to be used then the loss function and                

metrics. 
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The optimizer object specifies the training process. We use optimizers like Adam or             

stochastic gradient descent. There are multiple loss functions that are defined already in             

tf.keras package. The common choices include mean squared error, categorical cross entropy            

loss and binary cross entropy loss. The loss functions are specified by name or by passing                

callable object from tf.keras.losses module. Then we will also specify metrics use to monitor              

the training. We can use string names or callables from tf.keras.metrics module. 
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Let us use a small data set which is in memory in NumPy array to train and evaluate model.                   

We use the fit method for training the model. Here you define a NumPy data with random                 

distribution. You have 1000 examples each with 32 features. 
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And, the output is again 1000 examples and there are 10 classes. We randomly initialize both                

labels and examples and train the model. 



The fit function takes three important arguments. Epochs which is the number of times you               

have to iterate through the training set. 
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Then the batch size, and validation data on which we can calculate some of the metrics of                 

interest. 

So, we can specify the validation data with validation data and the corresponding labels apart               

from epochs and batch size. 
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If we have a large data set on which we want to train the model we use Dataset API for                    

scaling to large data sets or multi device training. We pass tf.data.Dataset instance to the fit                

method. 

Let us look at a concrete example of the same. We create a dataset from tensor slices where                  

we have data and corresponding labels and we batch the dataset in the batch of 32 examples                 

each. We fit the model for 10 epochs. Since the data set yields batches of data we need not                   

specify batch size along with other arguments in the fit function. We can also use dataset for                 

validation. 

In the same manner, we define a validation dataset just like the training data and we specify                 

validation dataset in the validation data argument. We use evaluate method for evaluating the              

performance of the model and predict method for inference. Here we use evaluate method to               

find out loss under training data. In this part we calculate the loss on the training data when                  

the data was stored in memory through NumPy arrays and in this particular part of the code                 

we demonstrate how we can calculate the loss on the training data when we need the data                 

through dataset API. 

Finally, we use predict for inference. 
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We use callbacks for customization and extending the behavior of model during the training              

process. We can also write our own callbacks or use some of the existing tf.keras.callbacks. 

One of the well known callbacks is ModelCheckpoint which is used for saving the model at                

regular intervals. You can also use LearningRateScheduler for dynamically changing the           

learning rate. EarlyStopping scheduler can be used for stopping the training when validation             

performance has stopped improving and we can use TensorBoard callback for monitoring the             

behavior of the model during the training process. 
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To use the callback we generally specify the callbacks in the fit function. So, we can define                 

one or more callbacks in the callbacks list and then pass it callbacks list in the callbacks                 

argument of the fit function. Here we use EarlyStopping and TensorBoard callback.            

EarlyStopping callback has patience of 2; that means, it will wait for 2 epochs for validation                

performance to improve and it monitors validation loss. So, if validation loss does not              

improve for 2 epochs, it will stop the training. And, this particular callback writes the               

TensorBoard logs to the logs directory. 
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You can look at the content of the directory to check if TensorBoard logs have indeed been                 

written. Let us examine the content of logs directory. You should see that there are train and                 

validation folders. If you look in the training folder, you will see that the events are already                 

logged in and these events can be used and visualized through TensorBoard. 
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There are situations where a TensorFlow model is training for too long or after training the                

model we want to share the model with other collaborators in such cases we need to have                 

functionality for saving and restoring the model. 

TensorFlow provides support for saving and restoring the models. So, model can be saved in               

one of the following forms. You may choose to only save the weights of the model; in that                  

case you will be responsible for building the same architecture of the model and then using                

the weights to initialize the model. Or you may choose to only store the architecture of the                 

model. Or you may choose to store both the architecture and weights of the model.  

In addition to that you can save the model in different formats. You can save the model in                  

JSON or in YAML files or in some other formats like H5. Let us train the model and save the                    

weights of the model in the weights directory and after saving the model we can restore the                 

state of the model by simply calling load_weight function and specifying the file where the               

weights are stored. 

The weights are saved using save_weights method and the weights are stored in weights              

directory with the file name my_model. Let us check the content of the weights directory.               

There is a weights directory present and in weights directory you can see my_model and               

there are two files that are present which are produce storing the weights of my model. 

By default the models weights are stored in TensorFlow checkpoint format. Weights can also              

be saved to HDF5 format that is the default for multi backend implementation of Keras. Now,                

you can see that since we requested TensorFlow to save weights in HDF5 format, you can see                 

a file with extends with the file with extension h5 over here. 
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You can also simply save the model configuration in JSON format you say model.to_json()              

and we get a json string. 
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We can pretty print this json string and you can see the backend is tensorflow, the class name                  

is Sequential and we can see the configuration of layers we can see that there are there is a                   



dense layer with batch input shape, data type, number of units and so on. Also, it is towards                  

the keras version in which the model is defined. 

We can recreate the model from the JSON file by simply using models.model_from_json             

method. We can serialize the model to YAML format simply using model.to_yaml method.             

We can recreate the model from this YAML format. 
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You can save the entire model to a file. 
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It will store both architecture and weights to the file. In order to save everything you simply                 

call the save function on model and that will save the entire model in HDF5 format. 
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You are often required to train TensorFlow models on large data in practice. The models that                

we define are also complex in terms of number of parameters. In order to train this complex                 

models faster, we use hardware accelerators like GPUs and TPUs. 



We can use multiple GPUs for training TensorFlow models. For that we define a distribution               

strategy. So, one of the distribution strategy is MirroredStrategy that is supported by             

TensorFlow and we construct the model in the context of this particular strategy. Let us               

concretely look at what is happening here. 
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Say in MirroredStrategy we have a single machine with multiple GPUs, and we need to use                

all the GPUs to train model on a large dataset. So, for this particular scenario, we use                 

MirroredStrategy. MirroredStrategy is a synchronous training strategy. 
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In order to use mirrored strategy what we do is in the scope of the strategy to be a                   

MirroredStrategy and in the scope of the strategy we define our model and specify the               

optimizer. 
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And, then we train the model on that data as usual. 
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So, when model.fit is called internally the data is copied on multiple GPUs and training is                

carried out on multiple GPUs and then the output is combined from multiple GPUs to come                

up with the weight update. This is how we can train machine learning model in a multi GPU                  

setting. 

In the next class, we will be studying more details of this distributed training strategies. So, in                 

this session we reviewed on the main concepts behind Keras; we looked at how to define the                 

model in Keras; how to specify optimizers; how to save and restore the model; how to use                 

callbacks and how to use distributed training for Keras model. In the next session, what we                

will do is, we will study how to customize the Keras models using functional APIs and by                 

writing models and layers by subclassing. 


