Practical Machine Learning with Tensorflow
Dr. Ashish Tendulkar
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture — 37

Customizing tf.keras — Part 2

In this session, we will review some of the main concepts behind tf.keras. You have been

using tf.keras quite extensively in this course so far and now we want to study how to

customize tf.keras.

(Refer Slide Time: 00:34)

() tf.keras_overviewipynb B ® sae & o

File Edit View Insert Runtime Tools Help

']

+ Code + Tex & Copy to Drive Connect = # Editing A
Tableofcontents Code snippets Files X

v tf.keras
tf.keras

s

Build a simple model

Configure the layers

We have extensively used tf Key
tf.Keras before learning how to

tf keras is TensorFlow's implem

and train models that includes {ige*

it

ughout the

the Keras #

tfor 1

execution, tf.data pipeline
sacrificing flexibility and

Train and evaluate

Train from NumPy data

Before getting into customization it is a good idea to take a step back and review all the

concepts of tf.keras that we have been using so far.

So, in this lecture what we will do is we will start with how to build a simple model with
tf.keras, how to perform training and evaluation where we will read data from multiple
sources like NumPy using tf.data.Dataset and we will see how to perform evaluation and
prediction. We will also see how to define custom callbacks which are very important in
obtaining interesting insights from training. Finally, we will look at how to save and restore

the model and run the model in multiple GPU settings.

(Refer Slide Time: 01:31)

o overvwn oyt Cobat % () e gl kjoolabi s X 1 Cooniasionipyns - Cate % | 4 - ‘Q:"
O ooy b " qg & @ Ej_

+ Code + Text £ Copy to Drive «+ Connecting = £ Editing v

QTIU Uan | INUUETs idal INVIUUES 13051833 SUPPUIL IV TEHBUITIUNESPELINL TUNLUUHaInty, susilas sayes

> execution, f. data pipelines, and Estimators. tf keras makes TensorFlow easier to use without
sacrificing flexibility and performance. k
. OIRNORE 3 |
.':°:. # Mote: Select 'GPU' hardware accelerator

sty

from _future__ import absolute_import, division, print_function, unicode_literals

try:
%tensorflow_version only exists in Colab.
Xtensorflow_version 2.x
except Exception:
pass
import tensorflow as tf

We need to import keras from tensorflow package.
from tensorflow import keras

@ TensorFlow 2.x selected.

Let us begin with setup. We will import TensorFlow 2.0 and in order to use keras you have to

import keras package from TensorFlow.

(Refer Slide Time: 02:05)

T 1 Conipsbonipyrts - Colit % | 4 -
ot A 4 % @
EL

+ Code + Text 4 Copy toDrive v %?:: I| * JEdtng v

-

3 keras version from PyPl, Check tf.keras. _version_

« When saving a model's weights, tf. keras defaults to the checkpoint format. Pass

save_format="h5" to use HOFS (or pass a filename that ends in . h5).
ORI |

~ Build a simple model

Sequential model

In Keras, we assemble layers to build models. A model is (usually) a graph of layers. The most

common type of model is a stack of layers; the SRLE L=) model,

Tobuild a simple, fully-connected network (i.e. multilayer perceptron) as we have seen in numerous
occassions in this course:

Let us begin by reviewing how to build a simple model with keras. So, we assemble layers to
build simple model. A model is usually graph of players. The most common type of model is

stack of layers, it is called tf.keras.Sequential model.

(Refer Slide Time: 02:34)

; RAM 3
+ Code + Text & Copyto Drive v Disk : v fEtng v

common type of model is a stack of layers: the tf. keras. Sequential model.

To build a simple, fully-connected network (i.e. multi-layer perceptron) as we have seen in numerous
occassions in this course;

RN « 3 |

° from tensorflow.keras import layers

model = tf.keras.Sequential()

Adds a densely-connected layer with 64 units to the model:
model.add{1ayers.Dense(64, activation='relu'))

Add another

model,add(layers.Dense(6d, activation='relu'))

Add a softmax layer with 18 output units:

model , add{layers.Dense(18, activation='softmax’))

We will learn how to learn how to write advance models by -

+ Implementing layers and models from scratch with subclassing.
s Functional APIs

To build a simple fully connected network as we have seen in numerous occasions in this
course we do the following. We define our model to be a sequential model and then we go on
adding layers in the model. First we add a dense layer with 64 units in it and we use relu as an
activation function. We add another layer with 64 dense units and finally, we have another

layer which is output layer with 10 units. It uses softmax as an activation function.

Now, what we will do is we will learn how to write advanced models. The couple of ways in
which we can write advance model — first by implementing layers and models with

subclassing or by using the functional APIs.

(Refer Slide Time: 03:52)

@. o T |G ISR AR | . TF Gty oo -ﬁ
O | & coabreenduogiecon i bt b . L q % f
EL

+ Code + Text & CopytoDrive v ng\:: : * JfEtng v

> » Configure the layers

There are many tf. keras. layers available, Most of them share some common constructor
arguments:

« activation: Setthe activation function for the layer. This parameter is specified by the name
of a built-in function or as a callable object. By default, no activation is applied.

¢ kernel_initializer and bias_initializer: The initialization schemes that create the
layer's weights (kernel and bias). This parameter is a name or a callable object. This defaults to
the "Glorot uniform” initializer.

* kernel_regularizer and bias_regularizer: The reqularization schemes that apply the
layers weights (kernel and bias), such as L1 or L2 reqularization. By default, no regularization is
applied.

The following instantiates tf. keras, layers.Dense layers using constructor arguments:

Some of the common arguments are activation, weight initializer and bias initializer; weight

initializer is referred to as kernel initializer. Then, we also specify the regularizers in the

layer.

(Refer Slide Time: 04:12)

@ st o % (C) tlemms giivb ool - X 1# Camorssonipyrs - Cobie: % | 4 -,ﬁ
C & colbressindpooge com i " bt keni " YA, o ¢ i
EL

+ Code + Text & Copy to Drive v r;\;.: : * fEtng W

* KErnel_reguiarizer aiiy 0135_regUuiarizer: |11 [EyurdiZauun SCIIeEs U appry ue
layer's weights (kernel and bias), such as L1 or L2 reqularization. By default, no regularization is

applied.
The following instantiates tf. keras, layers.Dense layers using constructor arguments:

LRV « B T

° # Create a sigmoid layer:
layers.Dense(64, activation="sigmoid')
Or:
layers.Dense(64, activationstf.keras.activations.sigmoid)

A linear layer with L1 regularization of factor 8.01 applied to the kernel I'l‘rlli!'::
layers.Dense(64, kernel_regularizer=tf.keras.regularizers.11{0.01)) |

A linear layer with L2 regularization of factor 8.01 applied to the bias '.re\tlnfr:
layers.Dense(64, bias_regularizer=tf.keras.regularizers.12(0.01))

A linear layer with a kernel initialized to a random orthogonal matrix:
layers.Dense(64, kernel_initializer='orthogonal')

So, we can see that here we can use activation using a simple string or using expanded name

like tf.keras.activations.sigmoid. So, that is the long form of sigmoid activation.

We can see above that we are adding 11 regularization with a regularization factor of 0.01;
here we are adding a bias regularizer which is 12 regularizer with a factor of 0.01. We can
also define the way to initializer to be orthogonal in this case. We can also initialize bias in

the layer.

After the model is constructed we configure its learning process by calling the compile
method. In compile method we specify the optimizer to be used then the loss function and

metrics.

(Refer Slide Time: 05:37)

¥

% 0"."--" i iojoolabe #f % 1 Coomizronipyr - Colt: % | 4 . 'b

C @ colbresesrh poogle.com 1 % 9 4

: RAM I :
+ Code + Text 4 CopytoDrive v Disk I * fEHitng W

3 « optimizer: This object specifies the training procedure, Pass it optimizer instances from the
tf.keras.optimizers module, such as tf. keras.optimizers.Adamor
tf.keras.optinizers.SGD. If you just want to use the default parameters, you can also
specify optimizers via strings, such as ‘adam' or 'sgd’.

« 1oss: The function to minimize during optimization. Common choices include mean square
eror (mse), categorical_crossentropy, and binary_crossentropy. Loss functions are
specified by name or by passing a callable object fromthe tf.keras. losses module,

» metrics: Used to monitor training. These are string names or callables from the
tf.keras.metrics module.

+ Additionally, to make sure the model trains and evaluates eagerly, you can make sure to pass
run_eagerly=True as a parameter to compile

The following shows a few examples of configuring a model for training:

Confipure a model for mean-squared error regression.

The optimizer object specifies the training process. We use optimizers like Adam or
stochastic gradient descent. There are multiple loss functions that are defined already in
tf.keras package. The common choices include mean squared error, categorical cross entropy
loss and binary cross entropy loss. The loss functions are specified by name or by passing
callable object from tf.keras.losses module. Then we will also specify metrics use to monitor

the training. We can use string names or callables from tf.keras.metrics module.

(Refer Slide Time: 07:02)

@ vvwa oo Colat %) e glbvi ooisbs - X 1 Costomiprionipms - Calkte % | 4 -
C & coubreeirpodge com 0 & . W g+ 05
EL

+ Code + Text 4 Copy toDrive v F:)?:: : v fEdtng v

L1 MO AT TS RIS AR TR AL WY]

» Train from NumPy data

For small datasets, use in-memory NumPy arrays to train and evaluate a model. The model is "fit” to
the training data using the fit method:

+ v ol
° import numpy as np

data = np.random.random((1000, 33))
print ("Data:")

print (data.shape) |

print (data)

print ()

labels = np.random, random((1008, 18))
print (“Labels:™)

print (labels,shape)

print (labels)

Let us use a small data set which is in memory in NumPy array to train and evaluate model.
We use the fit method for training the model. Here you define a NumPy data with random

distribution. You have 1000 examples each with 32 features.

(Refer Slide Time: 07:32)

@ en ot Cot x| () AR B .| o 1Y Commmmtniyr - Col .| -
C @ colabresssrch googie tom, ! RN g ¢« B
EL

i RAM
+ Code + Text & Copy to Drive " Disk : * JEdtng W

prane quniay anope

5 & print (data)

& print ()
labels = np.random. random((1068, 18))
print ("Labels:")
print (labels.shape)

print (labels)
print ()

model.fit{data, lahéls, epochs=10, batch_size=32)

we Data:
(1eee, 32)
[[®.79343106 ©.2881393 ©.37411851 ... ©.22574847 ©.73025726 0.44843786]
[@.4376523 ©.8942346 ©.82945213 ... 8,25297894 8.77675256 8.97955323]
[8.5718266 ©.11376123 ©.63794567 ... ©.3168671 @.55467635 0.42728446]

[8.55386654 8,50741201 ©,94354966 ... ©,17339316 @,75723153 @.57857205]
fa 77747834 @ 7R319919 @,89709468 ... 0.95146751 0.2966917 0.44713345]

And, the output is again 1000 examples and there are 10 classes. We randomly initialize both

labels and examples and train the model.

The fit function takes three important arguments. Epochs which is the number of times you

have to iterate through the training set.

(Refer Slide Time: 07:59)

vevwa x () ke gt iojrolats 1. % F Comaripwonipynt - Cot % | & - 0.8
&
-l § colaburesindgoogie com, U ! . VI o ¢]_

+ Code + Text 4 Copy toDrive v F;)’T:': : + | FHitng v

« batch_size: When passed NumPy data, the model slices the data into smaller batches and
iterates over these batches during training. This integer specifies the size of each batch, Be
aware that the last batch may be smaller if the total number of samples is not divisible by the
batch size.

+ validation_data: When prototyping a model, you want to easily monitor its performance on
some validation data. Passing this argument—a tuple of inputs and labels—allows the model to
display the loss and metrics in inference mode for the passed data, at the end of each epoch.

Here's an example using validation_data:

[] import numpy as!np

data = np.random.random((1808, 32))
labels = np.random,random((18€8, 18))

val_data = np.random.random((100, 32))
val_labels = np.random,random((10@, 18))

Then the batch size, and validation data on which we can calculate some of the metrics of

interest.

So, we can specify the validation data with validation data and the corresponding labels apart

from epochs and batch size.

(Refer Slide Time: 08:24)

: RAM ;
+Code + Test & CopytoDrive oy v /FEtng v

J

v Train from tf.data datasets

Use the Datasets API to scale to large datasets or multi-device training. Pass a tf.data.Dataset
instance to the it method:
rV R i

Instantiates a toy dataset instance:

datas 1nst .
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(32)

model .fit(dataset, epochs=10)

Epoch 1/18

32/31 [s==ss===ssszssszssssssssssssss] - @s 6ms/step - loss: 78293.3820 - cati

If we have a large data set on which we want to train the model we use Dataset API for
scaling to large data sets or multi device training. We pass tf.data.Dataset instance to the fit

method.

Let us look at a concrete example of the same. We create a dataset from tensor slices where
we have data and corresponding labels and we batch the dataset in the batch of 32 examples
each. We fit the model for 10 epochs. Since the data set yields batches of data we need not
specify batch size along with other arguments in the fit function. We can also use dataset for

validation.

In the same manner, we define a validation dataset just like the training data and we specify
validation dataset in the validation data argument. We use evaluate method for evaluating the
performance of the model and predict method for inference. Here we use evaluate method to
find out loss under training data. In this part we calculate the loss on the training data when
the data was stored in memory through NumPy arrays and in this particular part of the code
we demonstrate how we can calculate the loss on the training data when we need the data

through dataset API.

Finally, we use predict for inference.

(Refer Slide Time: 11:10)

i v gy %) tedamece il ioiebi - % 1 Comtaniprionigys - Colite % | 4 - B

A RAM ?
+ Code + Text & Copy to Drive v Disk : * JfEHitng W

PESULL = WUUEL P UL LUaLE; UaLLI_31LE=0E)

3 ° print({result.shape)

£ (1808, 18)

+ Callbacks

A callback is an object passed to a model to customize and extend its behavior during training. You
can write your own custom callback, o use the builtin tf. keras. callbacks that include:

s tf .keras.callbacks. Mddel Checkpoint: Save checkpoints of your mocel at reqular intervals.

+ tf.keras.callbacks.LearningRateScheduler: Dynamically change the leaming rate.

« tf.keras.callbacks.EarlyStopping: Interrupt training when validation performance has
stopped improving.

» tf keras.callbacks. TensorBoard: Monitor the model's behavior using TensorBoard.

Touse atf.keras.callbacks.Callback, pass it to the model’s fit method:
We use callbacks for customization and extending the behavior of model during the training

process. We can also write our own callbacks or use some of the existing tf.keras.callbacks.

One of the well known callbacks is ModelCheckpoint which is used for saving the model at
regular intervals. You can also use LearningRateScheduler for dynamically changing the
learning rate. EarlyStopping scheduler can be used for stopping the training when validation
performance has stopped improving and we can use TensorBoard callback for monitoring the

behavior of the model during the training process.

(Refer Slide Time: 12:13)

= " % () tindamec gt icjoolab - X T Costomipsionipyr - Cole % | 4
L RAM K

+ Code + Text 4 Copy toDrive v Disk I v /# Editing
* tf.keras.callbacks. LearningRateScheduler: Lynamically change the leaming rate,
s tf.keras.callbacks.EarlyStopping: Interrupt training when validation performance has
stopped improving
« tf.keras.callbacks. TensorBoard: Monitor the model's behavior using TensorBoard.

Touse atf.keras.callbacks.Callback, pass it to the model's fit method:

[1 callbacks = [

Interrupt training if 'val loss’ stops improving for over 2 epochs
tf.keras.callbacks.EarlyStopping(patience=2, monitor="val_loss'),
Write TensorBoard logs to "./logs’ directory

tf.keras.callbacks. ren-;'oraénard'(log-_dir: '.flogs')

model.fit(data, labals, batch_size=32, epochs=5, callbacks=callbacks,
validation_data=(val_data, val_labels))

)\ Train on 1880 samples, validate on 180 samples

To use the callback we generally specify the callbacks in the fit function. So, we can define

one or more callbacks in the callbacks list and then pass it callbacks list in the callbacks

argument of the fit function. Here we use EarlyStopping and TensorBoard callback.

EarlyStopping callback has patience of 2; that means, it will wait for 2 epochs for validation

performance to improve and it monitors validation loss. So, if validation loss does not

improve for 2 epochs, it will stop the training. And, this particular callback writes the

TensorBoard logs to the logs directory.

(Refer Slide Time: 13:18)

By v ot % () tekamacc gihvbiojoolib - X ¥ Comtomipionipmb - (bt % | 4
NI colb e googie com U k ¥ |

: M :
+ Code + Text 4 Copyto Drive v F})?sk : v fEdtng v

I
3 ° nodel.fit(data, labels, batch size=32, epochs=5, callbacks=callbacks,
d validation data=(val_data, val labels))

) Train on 1008 sanples, validate on 109 samples

Epoch 1/5
WARNING: tensorflow:Method (on_train_batch_end) is slow compared to the batch
1000/1008 [====] - @s 374us/sample - loss: 299625,
Epach 2/5
1000/1008 [====] - @s 162us/sample - loss: 309249.5(
Epoch 3/5
1000/1000 [====] - @s 159us/sample - loss: 325611.6(

<tensorflow.python.keras.callbacks . History at @x7f9bc6319588>

~ Save and restore

You can look at the content of the directory to check if TensorBoard logs have indeed been
written. Let us examine the content of logs directory. You should see that there are train and
validation folders. If you look in the training folder, you will see that the events are already

logged in and these events can be used and visualized through TensorBoard.

(Refer Slide Time: 14:08)

e oot % () inkemmcgtubionais g X | < 1 Comminonpys -Cale x | ‘Q
i

+ Code + Text & Copy to Drive v + JEtng W

~ Save and restore

= Save just the weights values

Save and load the weights of a model using tf.keras.Model.save_weights:

[] model = tf.keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(32,)),
layers.Dense(10, activation='softmax')])

nodel.compile(optimizer=tf keras.optimizers.Adam(@.201),
loss="categorical_crossentropy’,
metrics=["accuracy'])

There are situations where a TensorFlow model is training for too long or after training the
model we want to share the model with other collaborators in such cases we need to have

functionality for saving and restoring the model.

TensorFlow provides support for saving and restoring the models. So, model can be saved in
one of the following forms. You may choose to only save the weights of the model; in that
case you will be responsible for building the same architecture of the model and then using
the weights to initialize the model. Or you may choose to only store the architecture of the

model. Or you may choose to store both the architecture and weights of the model.

In addition to that you can save the model in different formats. You can save the model in
JSON or in YAML files or in some other formats like HS. Let us train the model and save the
weights of the model in the weights directory and after saving the model we can restore the
state of the model by simply calling load weight function and specifying the file where the

weights are stored.

The weights are saved using save weights method and the weights are stored in weights
directory with the file name my model. Let us check the content of the weights directory.
There is a weights directory present and in weights directory you can see my model and

there are two files that are present which are produce storing the weights of my model.

By default the models weights are stored in TensorFlow checkpoint format. Weights can also
be saved to HDF5 format that is the default for multi backend implementation of Keras. Now,
you can see that since we requested TensorFlow to save weights in HDF5 format, you can see

a file with extends with the file with extension h5 over here.

(Refer Slide Time: 17:33)

@- veovwn gy - Cost % () Hnameos gt iojooleba - X ¥ Comtomiprionipmns - Colat: % | 4 =
C cobiesarhpngie con, i 1 bt q % i
EL

+ Code + Text 4 Copy toDrive ottt v fEdtng v

Disk 1
115
> O
F @ logs sample_data weights

~ Save just the model configuration

A model's configuration can be saved—this serializes the model architecture without any weights. A
saved configuration can recreate and initialize the same model, even without the code that defined
the original model. Keras supports JSON and YAML serialization formats:

[1 #Serialize a model to JSON format
Json_string = model.to_json()
Json_string

@ *{"class_name": "Sequential”, "config": {"name": "sequential 2", "layers": [{’

You can also simply save the model configuration in JSON format you say model.to _json()

and we get a json string.

(Refer Slide Time: 17:46)

i1 ovevwn oyd - Colad % () ndmeoc gébud kyjcolab w1 X 1 Covtonipsionipyrts - Colst: % | 4 =
C colbressupoogie com, i " " ’ - g & A
EL

+Code + Text & CopytoDrive v rg:: : * JFEHitng v
‘class_name': ‘Sequential’,
? o ‘config': {'layers': [{'class_name': 'Dense’,
6 | ‘config': {'activation': 'relu’,
‘activity_regularizer': None,
'batch_input_shape': [None, 32],
'bias_constraint': None,
‘bias_initializer': {'class_name': 'Zeros’,
‘config': {}},
‘bias_regularizer': None,
‘dtype’: ‘floatil’,
‘kernel_constraint’: None,
‘kernel_initializer': {'class_name': 'Glort
‘config': {'seed’: !

"kernel_regularizer': None,
‘name’: 'dense_9',
‘trainable’: True,
‘units': 64,
‘use_bias': True}},

iul ; I i

We can pretty print this json string and you can see the backend is tensorflow, the class name

is Sequential and we can see the configuration of layers we can see that there are there is a

dense layer with batch input shape, data type, number of units and so on. Also, it is towards

the keras version in which the model is defined.

We can recreate the model from the JSON file by simply using models.model from json
method. We can serialize the model to YAML format simply using model.to_yaml method.

We can recreate the model from this YAML format.

(Refer Slide Time: 18:56)

B wvwm crd () tendamsce gt irslabe w0 % 11 Coomiasionigyrt - Colit. % | 4 @
el oy

; RAM !
+ Code + Text 4 Copy toDrive v Disk : + fHitng v

° fresh_model = tF.keras,models.mode]_from_yaml{yam]_string)

Note: Subclassed models are not serializable because their architecture is defined by the Python
code in the body of the call method.

» Save the entire model in one file

The entire model can be saved to a file that contains the weight values, the model's configuration, and
even the optimizer's configuration. This allows you to checkpoint a model and resume training later—
from the exact same state—without access to the original code.

|
[] #Create a simple model
model = tf.keras.Sequential([
layers.Dense(1@, activation='softmax’, input_shape-(32,}),
layers.Dense(18, activation="softmax’)

])

You can save the entire model to a file.

(Refer Slide Time: 19:00)

vt Gt % |) Vnbamoc gV R 3 | <o T Commirionh- ol % | -
b risirch ogie com 1 il b & v . . a + 0B
EL

+ Code + Text 4 Copy toDrive v ng\:: : v A Edtng v

1Ne entire MoOe! can De 5aved 10 a TIle INal CoNtaing e WeIgNT vailies, e MOae! s conmguraton, ana
) even the optimizer's configuration. This allows you to checkpoint a model and resume training later—

from the exact same state—without access to the original code.

[1 # Create a simple model
model = tf.keras.Sequential([
layers.Dense(18, activations='softmax’, input_shape=(32,)),
layers.Dense(18, activations'softmax’)

model. compile(optimizer="rmsprop’,
loss="categorical_crossentropy’,

metricss[‘accuracy'])
model.fit(data, labels, batch_size=32, epochss5)

Save entire rrm!(-‘il to a HOFS file
nodel.save('my_model.h5")

Recreate the exact same model, including weights and optimizer.
nodel = tf.keras.models.load model('my_model.hS')

It will store both architecture and weights to the file. In order to save everything you simply

call the save function on model and that will save the entire model in HDF5 format.

(Refer Slide Time: 20:13)

@ v ot (ol %) e gl yjoolab it X 11 Costominwionipyrd - Colst % | 4 = ﬁ
C & cosbreeshaopiecony " " = & & |
EL

+ Code + Text 4 CopytoDrive v F;?:: : v fEditing v

ONE RV |
+ Multiple GPUs

tf . keras models can run on multiple GPUs using tf. distribute. Strategy. This APl provides
distributed training on multiple GPUs with almost no changes to existing code.

Currently, tf. distribute. SLENELSGEE is the only supported distribution strategy.
MirroredStrategy does in-graph replication with synchronous training using all-reduce on a single
machine, To use distribute, Strategys, nest the optimizer instantiation and model construction
and compilation in a Strategy’s .scope(), then train the model.

The following example distributes a tf. keras.Model gcross multiple GPUs on a single machine.

First, define a model inside the distributed strateqy scope:

[1 strategy = tf.distribute.MirroredStrategy()
You are often required to train TensorFlow models on large data in practice. The models that

we define are also complex in terms of number of parameters. In order to train this complex

models faster, we use hardware accelerators like GPUs and TPUs.

We can use multiple GPUs for training TensorFlow models. For that we define a distribution
strategy. So, one of the distribution strategy is MirroredStrategy that is supported by
TensorFlow and we construct the model in the context of this particular strategy. Let us

concretely look at what is happening here.

(Refer Slide Time: 21:20)

Pt - Windws Murnal -

Tl 1
T T AEEEENES SCEE EE% NPTEL

Say in MirroredStrategy we have a single machine with multiple GPUs, and we need to use
all the GPUs to train model on a large dataset. So, for this particular scenario, we use

MirroredStrategy. MirroredStrategy is a synchronous training strategy.

(Refer Slide Time: 21:49)

wa gpodr - Coat % () Hnamanc g /ool 1 X 1F Costomiasionipyrts - Colet % | 4 =
> colabomssanc oogie com hut it ks o P q % A
EL

+ Code + Text & CopytoDrive v %?:: : * JFEHitng v

TS TUIUWINY SASTTIPIE UISUIUUIES @ LT RENES . MUUEL auiuvas HIVINE QFua Uil a snyie macine,

First, define a model inside the distributed strategy scape:

[] strategy = tf.distribute.MirroredStrategy()
with str‘ategr.scop*():
model = tf.keras.Sequential()
model.add(layers.Dense(16, activation='relu’, input_shape=(18,)))
model.add(layers.Dense(1, activation='sigmoid'))
optimizer = tf.keras,optimizers.SGD(®.2)
model.compile(loss="binary _crossentropy’, optimizer=optimizer)

model. summary ()

() Model: "sequential 4"

Layer (type) Output Shape Param #

In order to use mirrored strategy what we do is in the scope of the strategy to be a
MirroredStrategy and in the scope of the strategy we define our model and specify the

optimizer.

(Refer Slide Time: 22:10)

ot Cost x () vl gt ool - X T Comominianipym - ol % | 4 =
§ colabresearch poogle com, i it bt v e i 2 g 4 Ei.

; M I fal
+ Code + Text & Copy to Drive v F;‘sk i * fEtng W
s s
» v Non-trainable params: @

- AL

Nest, train the model on data as usual:

[1 x = np.random.random((1024, 18))
y = np.random.randint(2, size=(1024, 1))
x = tf cast(x, tf.float32)
dataset = tf.data.Dataset.from_tensor_slices((x, y))
dataset = dataset.shuffle(buffer_size=1024).batch(32)

model . fit(dataset, epochs=1)

8 WARNING:tensorflow:Entity <function Function._initialize_ uninitialized_variab:
WARNING: Entity <function Function._initizlize uninitialized variables.<local:
/2 [1 - 35 78ms/step - loss: 8.7899
ctensorflow. python . keras.callbacks History at @x7fd9laBedafe:

And, then we train the model on that data as usual.

(Refer Slide Time: 22:21)

—— % | () Vinkemcgiiul kol B+ % 1 Comumiasionhyn - (ol % - o
e +
EL

+ Code + Text & CopytoDrive J n,;": :. * fEHitng v
b [38] model . summary()
Model: “sequential_4"
Layer (type) Output Shape Param #
dnse s (Dense) one, 16) m
dense_16 (Dense) (None, 1) 17

Total params: 193
Trainable params: 193
Non-trainable params: @

Next, train the model on data as usual:

So, when model.fit is called internally the data is copied on multiple GPUs and training is
carried out on multiple GPUs and then the output is combined from multiple GPUs to come
up with the weight update. This is how we can train machine learning model in a multi GPU

setting.

In the next class, we will be studying more details of this distributed training strategies. So, in
this session we reviewed on the main concepts behind Keras; we looked at how to define the
model in Keras; how to specify optimizers; how to save and restore the model; how to use
callbacks and how to use distributed training for Keras model. In the next session, what we
will do is, we will study how to customize the Keras models using functional APIs and by

writing models and layers by subclassing.

