Practical Machine Learning with Tensorflow
Dr. Ashish Tendulkar
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 36
Customizing tf.keras — Part 1

We just learnt how to perform a specific operation on the device that we intend to use.

(Refer Slide Time: 00:20)

: RAM
+ Code + Text & Copy to Drive v Disk : * JEtng W
%= t*.r‘andom.unifor‘fn({wao, 1608]) :

? o assert x.device.endswith("GPU:8")
time matmul(x)

4 On CPU:
168 loops: 3831.95ms

On GPU:
mloops ¢ 633.75ms

+ Part 2: Customize tf Keras Sequential API

Customization opportunities:

« Model .
+ Loss function
+ Training Loop

Let us move on to understand how to customize tf.keras sequential API.

(Refer Slide Time: 00:28)

P cvervem gy ok % |) thndamene et ool vt % l . " X - B
-_' cokab ressrch googie com; ¥ a4 &

RAM I

+ Code + Text 4 Copy to Drive v Disk I v fEdtng v
_> Customization oppartunities:
+ Model

+ Loss function
« Training Loop
* Metrics

Let's learn how we can carry ot these customizations in this section.

+ Writing custom layers

Layers provide higher level of abstraction for implementing ML models. Many machi
models are expressible as the composition and stacking of relatively simple layer
provides both a set of many commaon layers as a well as easy ways for you tow
application-specific layers either from scratch or as the composition of existi

There are customization opportunities in model, in writing a new loss function or training
loop or using a new metric for measuring the performance of the model. Let us learn how to

carry out this customization in this section.

(Refer Slide Time: 00:54)

=

gi s oyt Gl % |) finssssoc b miraiabi - % F oo . e % e - Q
g

EL

+ Code + Text 4 Copy toDrive v F;)’?;': : v | FHitng v

> Layers provide higher level of abstraction for implementing ML models. Many machine leaming

' models are expressible as the composition and stacking of relatively simple layers, and TensorFlow
provides both a set of many common layers as a well as easy ways for you to write your own
application-specific layers either from scratch or as the composition of existing layers.

[1 #1Inthe tf.keras.layers package, layers are objects. To construct a layer, i
simply construct the object. Most layers take as a first argument the number |
of output dimensions / channels.
layer = tf.keras.layers.Dense({108)
The number of input dimensions is often unnecessary, as it can be inferred
the first time the layer ik used, but it can be provided if you want to
specify it manually, which is useful in some complex models.
layer = tf.keras.layers.Dense(12, input_shape=(None, 5))

Example layers are Dense (a fully-connected layer), Conv2D, LSTM, BatchNormalization, Dropout, and
many others. The full list can be found in the documentation.
We will first study how to write custom layers. As you know layer provides high level

abstraction for implementing machine learning models. Many machine learning models are

expressed as composition and stacking of relatively simple layers. Tensor flow provides both

the set of many common layers as well as easy ways to write your own application specific
layer either from scratch or as a composition of existing layers. We have already used layers

in various machine learning operations.

These are typical statement that we have seen many times in this course. So, this particular
statement defines a dense layer with 100 units. We can also specify sometimes the input

shape along with the number of units in the layer.

(Refer Slide Time: 02:01)

. RAM ;
+ Code + Text 4 Copy to Drive v Disk I + FEdtng v

ot time the Layer 15 Use

/ided 1t you want to

in some complex models.

ally, which is 1

layler' = tf:k?ll:as.llay'ers.nensp(!i‘.‘, input_shapes=(None, 5))

Example layers are Dense (a fully-connected layer), Conv2D, LSTM, BatchNormalization, Dropout, and
many others. The full list can be found in the documentation.

DR

ly call it.

51))

a layer, si

¢ To use r,
layer(tf.zeros([18,

11 variables

i Ve Val
layer,variables

The variables are also accessible through nice accessors

So, there are layers like dense layer, conv 2D layer, LSTM, batch, normalization, dropout and
many other layers are already defined by keras. In order to use layer, we simply call layer
something like this. Here we call layer with a tensor which is a matrix which is 10x5 matrix
of zeros. Layers have many useful methods, we can inspect all variables in the layer using

layer.variables.

A trainable variables can be checked using layer.trainable variable. The variables have

weights and biases.

(Refer Slide Time: 03:23)

overven gyl - Calae % | () thrkmece it jooleie w1 % ¥ Comonipion i - (ot % [-
colab e poogie com, 1 ¢ gyt /oy e foolat I T a4 B
EL

A]
+Code + Texdt & CopytoDrive v F;?;‘: - * JFEHitng W
¥1n a layer using "layer.variables and trainable variables using
b # "layer.trainable variables . In this case a fully-connected layer
- # will have variables for weights and biases.
layer.variables

9 [<tf.Variable 'dense_1/kernel:@' shape=(5, 10) dtype=floatd2, numpy=
array([[-0.41144824, 0.46608728, ©.4826869 , -9.43939823, 0.08398247,
-8.32591325, -8.39347252, ©.61383%7 , 0.21282744, 6.45471781],
[2.12710994, -0.83871363, 0.39759976, 0.16387296, 0.62781316,
0.84633373, -0.570649 , -0,53870165, ©.27773976, ©.17358983],
[-8.32601127, -0.3841657 , ©.3988257 , 0.4298411 , -0.04686528,

! -9.48858804, -0.23975444, ©.4600548 , -0.3196772 , @,.31846815],
[-0.8657537 , -8.34420308, ©.58001167, ©.11683856, ©.16799235,
-8.8145483 , ©.30891485, -0.10194778, ©.08636934, 0.01687668],
[.3809435 , ©.5368225 , -0.32597678, -0.62807584, 0.5353629 ,
-9.22743767, ©.18951966, ©.59870975, -0.61498296, -8.55999714]],

dtype=floati2)>,

<tf.Variable 'dense_1/bias:@’ shape=(18,) dtype=float32, numpy=array([€., .

We can see that there are variables and biases. So, we have a variable tensor that shape of

5x10 and we have 10 biases.

(Refer Slide Time: 03:57)

@: v gyl - (e % | () tindanecc gliubioslabi e X <3 11 Lmnimoupy at X -E
O § coibrseathaoogk co t < oothui o HACAT TS g % i
EL

RAM I

+ Code + Text 4 Copy to Drive v Disk I v fEdtng v
5 ° -0.9145483 , ©.30091485, -9.18194778, ©.88636934, B.81687668],
[0.3889435 , 0.5368225 , -0.33597678, -08.62887584, 0.5353629 ,

-8.22743767, ©.18951966, ©.59870975, -©.61498296, -8.55999714]],
dtype=floati2)s,
<tf.Variable 'dense_1/bias:@’ shape=(18,) dtype=float32, numpy=array([e., @.

[1 # The vapiables are also accessible through mice accessors
layer.kernel, layer.bias

~ Implementing custom layers
The best way to implement your own layer is extending the tf keras.Layer class and implementing:

« _init__, where you can do all input-independent initialization
« build, where you know the shapes of the input tensors and can do the rest of the initialization

We can also access variables separately; for example, all the variables can be assessed using

layer.kernel and biases can be accessed with layer.bias.

(Refer Slide Time: 04:12)

eyt G % |) ndemmc gt iobe ot % < 1 Lmimeonips (o & -y
colsbmeearch google com i x " " b : a % s
EL

RAM I

+Code + Texdt & CopytoDrive v Disk I * S EHitng v
drray| || =Y. SLl1le40L4, V.4D0DUDSLD; U.40L000Y ; 0. 43T390L3; O.003T0L87,
> ° -9.32591325, -0.39347252, ©.6138397 , @.21282744, 8.45471781],
o [8.12710994, -8.83871363, @.39759976, 0.16387296, @.62781316,
B 0.84633373, -0.570649 , -8.53870165, 0.27773976, 0.17358983],

[-0.32601127, -8.3041657 , ©.3988257 , ©.4298411 , -0.04686528,
-0.48858804, -0.23975444, @.4600548 , -0.3196772 , @.318d6915],
[-0.0657537 , -0.34420308, ©.58001167, ©.11603856, 0.16799235,
-9.0145483 , ©.30091405, -9.18194778, ©.08636934, 0.081687668],
[2.3989435 , ©.5368225 , -8.33597678, -0.62807584, @.5353629 ,
-9.22743767, ©.18951986, ©.59878975, -8.61498296, -8.55999714]],

dtype=float2)s,

<tf.Variable 'dense_1/bias:@’ shape=(18,) dtype=float32, numpy=array([e., @.

~ Implementing custom layers

The best way to implement your own layer is extending the tf keras Layer class and implementing:

We can see that we get the same output. The difference is that when we use .variables, it
gives us both kernel and bias. And we can separately ask for kernel and bias using .kernel and

.bias accessors.

(Refer Slide Time: 04:38)

eyt -Gl % |) tidamsor it ol - % | r——— - . _ﬁ
T i colbreearhpoogie com i " " it ! AP e g % 1
- i

+Code + Text & CopytoDrive 4 F;‘;: : * JEtng W

=)

» Implementing custom layers
The best way to implement your own layer is extending the tf keras.Layer class and implementing:
« _init__, where you can do all input-independent initialization
+ build, where you know the shapes of the input tensors and can do the rest of the initialization
+ call, where you do the forward computation

Note that you don't have to wait unbil build is called to create your variables, you can also create
them in __init__ However,
+ The advantage of creating them in build is that it enables late variable creation based on the
shape of the inputs the layer will operate on.
+ On the other hand, creating variables in __init__ would mean that shapes required to create
the variables will need to be explicitly specified.

We can also implement our custom layer. In order to implement custom layer, we extend
tf.keras.layers class and we implement the constructor. We implement build and a call

function. The call function does the forward computations.

(Refer Slide Time: 05:19)

Toted - Windws Kurnal -

g b L O T ik EEEEEEES SCEE EES

NFTEL.

¢ 3

So, in order to give you an example, a unit in a dense layer takes input. So, essentially it does
two operations; one is linear combination followed by non-linear activation. So, this is an

example of a forward computation which is done in the call method.

(Refer Slide Time: 05:52)

- A

mo gl foslaba - X 1 . £ 4+ Q

1w []_

: RAM I
+Code + Text 4 CopytoDrive v Disk 1 v fEdtng v

« call, where you do the forward computation
Note that you don't have to wait until build is called to create your variables, you can also create
themin __init_ However,

+ The advantage of creating them in build is that it enables late variable creation based on the
shape of the inputs the layer will operate on.
« On the other hand, creating variables in __init__ would mean that shapes required to create
the variables will need to be explicitly specified.
RN

° class MyDenselayer(tf.keras.layers.Llayer):
def init (self, num outputs):
super (MyDenseLayer, self)._init_ ()
self.num_butputs = num_outputs

def build(self, input_shape):
self . kernel = self.add weight(“kernel”,
shape=[int(input_shape[-1]),
self.num_outputs])

We do not have to wait until the build function is called to create variables, we can also create

them in the constructor. However, the advantage of creating them in build is that it enables

late variable creation based on the shape of input that layer will operate on. On the other hand

creating variables in the constructor would mean that shape required to create the variable

will have to be specified explicitly.

So, in this particular case we are defining MyDenseLayer which extends the layer class. And

you can see that we have implemented three methods. One is the constructor; in constructor,

we first call the constructor of the base class, we specified a number of outputs with a

variable num_outputs.

(Refer Slide Time: 07:00)

ot vy - ik % |) Winlammic ghhb ool B+ X <0 1 Cmonipmonioyn ¢ B - Q

R M :
+ Code + Text 4 Copy toDrive v ng\sk : v fEdtng v
WE_ANAt_{3TATy e U pua g
3 ° super (MyDenseLayer, self). init_ ()
: self, pUm_outputs = num_outputs

def build(self, input_shape):
self. kbrnel = self.add_weight{“"kernel”,
shapes[int(input shape[-1]),
self.num_outputs])

def call(self, input):
return tf.matmul{input, self.kernel)

layer = MyDenselayer(10)
print(layer(tf.zeros([18, 5])))
print(layer.trainable_variables)

+ Part 3: Automatic Differentiation

Automatic differentiation is a key technigue for optimizing ML models.

Then in the build stage, we specified the kernel. And in kernel, we have added weights in the
kernel, which has the desired shape. And in the call function, we simply perform matrix
multiplication of the input with the kernel or the weight vector. Here we define
MyDenseLayer with 10 units; we pass the input shape of 10x5 to the layer. Let us print the

layer and a trainable variables.

(Refer Slide Time: 07:53)

& colsbreseanchgoogle com 1 . a4 B
B

+ Code + Text 4 CopytoDrive v ngx:: : v fEdtng v
3 ° tf.Tensor(
- . [[e.0.0.0.0. 0. 0 0.0 0.]
O [e.0.08 0.2 0. 8 0.9 0.]
[0. 6. 0.06.0.0.8, 0,0, 0.]
[6. 6. 0.0.0.0,0, 0,0, 0.]
[0.6.0.6.0.0.0, 0.0, 6.]
[6. 0.9 06.0.0.0, 0.0 0.]
[0. 6. 0.0.0.0.0, 0,0, 80.]
[0.6.9.06.0.0.9, 8,0, 80.]
[0.6.0.6.0.0.8, 0.0, 6.]
[e. @, 8. 0. 8. 8, 8. 8. 8. 0.]], shape=(18, 18), dtype=floati2)
[<tf.Variable 'my_dense_layer/kernel:@" shape=(5, 10) dtype=float3Z, numpy=

array([[-0.32001123, 0.11250168, -8.85596644, -.18789443, ©.5139765 ,

8.5028984 , -9.51144665, ©.24888927, ©.30698937, 0.01643449],

[0.18431318, -.5054576 , ©.5927029 , ©.39367622, -9.20295268,

8.21703804, ©.02711099, 0.2551868 , -0.11220354, -0.05674704],
[-0.25876293, -0.34490213, -8.2798915 , ©.22823161, -D.55698945,
§.34733707, 0.6250866 , 0.08313856, ©.80255197, -0, 26657426

So, we can see that the layer was called with input shape of 10 cross 10.

(Refer Slide Time: 07:59)

s overveem oyl - Colab X | () Boebemece gl iofrolabe s X <2 1 Lo i - Cole ¥ o - ‘Q:'
C i colbmssintupoog com ; o a4 @ Ej_

+Code +Tedt 4 CopytoDrive v F;;:: : * fEditing v

> 0 array([[-8.32001123, 0.11259168, -0.05596644, -0.18789443, 0.5139765 ,
- 6.5028904 , -0.51144665, ©.24888927, ©,30698937, ©.81643449],
'a) [8.18431318, -0.5064576 , 0.5927029 , 0.39367622, -8.20295268,
6.21703804, ©.02711099, @.2551868 , -9.11220354, -8.05074784],

[-8.25876293, -9.34490213, -0.2798915 , ©.22823161, -B.55098945,

8.34733707, ©.6250866 , ©.99313656, ©.80255197, -8.26657426],

[-8.41719693, -B.47256535, ©.20195943, -8.2010327 , 0.80666124,

-0.09231025, -0.20246565, -6.17186993, -0.09944874, -B.34376624],

[-6.18898605, ©.6@435253, -0.3147853 , -B.5567689 , -0.30421394,
-9.4573393 , -9.38381582, -8.2628897 , ©.5407323 , 8.383113%]],

dtype=float32)»]

+ Part 3: Automatic Differentiation

Automatic differentiation is a key technique for optimizing ML models.

« 0o ccomomE . vl
You can see that your variable tensor by calling .trainable variables on layer.

(Refer Slide Time: 08:29)

+ Code + Text 4 CopytoDrive v ng\:: : v fEdtng v

~ Part 3: Automatic Differentiation
Automatic differentiation is a key technique for optimizing ML models.
IR R |
~ Gradient tapes

TensorFlow provides the tf.GradientTape AP for autematic differentiation - computing the gradient of
a computation with respect to its input variables,

« Tensorflow ‘records” all operations executed inside the context of a tf. GradientTape ontoa
"tape’. A

« Tensorflow then uses that tape and the gradients associated with each recorded operation to
compute the gradients of a recorded’ computation using reverse mode differentiation.

Having defined the custom layer; the next opportunity for customization lies in defining our
own training loop. As you will remember from earlier classes; the main operation in training

is to calculate the gradient and perform parameter update based on the gradient value.

Usually, these gradients are hand calculated, but tensorflow provides a way to automatically

calculate these gradients based on the forward computation.

Tensorflow provides tf.GradientTape API for automatic differentiation. It computes the
gradients of computation with respect to its own variable. Tensorflow records all the

operations executed in the context of tf.GradientTape onto a tape.

(Refer Slide Time: 09:27)

= + - -Q
L
i . RAM I A
+ Code + Text £ Copy to Drive v Disk 1 F Editing v
3 "tape’.
« Tensorflow then uses that tape and the gradients associated with each recorded operation to
compute the gradients of a “recorded’ computation using reverse mode differentiation.

For each example shown here, we will construct a computation graph and work out the derivatives
We compare the manually calculated derivatives with automatic differentiation.

Any computation wrapped in a tape is recorded, and after the operations have happened you can
request gradients from any Tensor to any variable:

k
] x = tf.Variable(1.0)

with tf.GradientTape() as tape:

VAL i

Z=y* 3
dz_dx, dz_dy = tape.gradient(z, [x, y])
print(dz_dx.numpy()) # 4.0
print(dz_dy.numpy(}) # 2.0

Then it uses that tape and the gradients associated with each recorded operation to compute
the gradients of a recorded computation using reverse mode differentiation. Let us take an

example of how this particular thing operates.

(Refer Slide Time: 09:55)

Toted - Winddws Kurnal -

e .
P P) R T L AEEEEEE EE EE%

NFTEL-
= i e
q‘a e s
/
& .
_— = a2
e 4
P |
d a2
= __l\';rf'” d.#\

So, let us say, we have x=3, y=x’ and z=y+3. Let us use computation graph to represent the

relationship between x, y and z.

The computation graph corresponding to the relationship between three variables x, y and z
can be seen above. We perform forward computation, in the forward computation what we do
1s; we pass the values of the variable through this particular graph to obtain the value of z. It
is concretely in this graph we set x to 3, we raise the power of the value of x by 2, we get the

output of 9 over here. We add this 9 and 3 to get 12 at z.

Now, in machine learning we are interested in calculating the derivative of the loss that we
normally see in the final step of neural network with respect to each of the input variables.
So, we are modeling that particular situation with this toy example. In the context of this

example we are interested in finding derivative of z with respect to x.

And in order to calculate this particular derivative, we use the chain rule of derivative; where
we will take derivative of z with respect to y, which is known and derivative of y with respect
to x. And with this chain rule of calculus, we calculate the derivative of z with respect to x.
So, derivative of z with respect to x is calculated as the derivative of z with respect to y and

derivative of y with respect to x.

dz — dz &
dx dy " dx

So, we can now, we can see that Z—; is 1, because the derivative of y with respect to y is 1 and

derivative of constant with respect to y is 0. From % we get 2x. So, x equal to 3, this value

this value is 6. So, this derivative computation is done in a reverse mode differentiation
where, we start this variable we calculate the derivative of this with respect to y. And then we

calculate the derivative of y with respect to x to obtain derivative of z with respect to x.

So, in the backward pass, we use reverse mode differentiation to calculate the derivative of z
with respect to x. So, gradient tape is used to record the forward operations and then it uses
the gradients associated with each recorded operations to compute the gradient of a recorded

computation.

(Refer Slide Time: 15:28)

o Galab % | €) ok i " % 2 x B = Q
G . RAM ot
+ Code + Text & Copy to Drive v Disk 1 v # Editing v
x = tf.Variable(1.0)
? ° with tf.GradientTape() as tape:
Vimi D
1=y *2

dz_dx, dz_dy = tape.gradient(z, [x, y])
print{dz_dx.numpy()) # 4.0
print{dz_dy.numpy()) # 2.0

4.8
2.8

If you want to request a gradient from a tensor to another tensor, then you need to tell the tape to
watch the source tensor:

£ = tf.constant(1.0)

with tf.GradientTape() as tape:
tape.watch(x) # Since "x° is not a variable we must explicitly "watch® it.
Yomog ¥R G

Let us take a complete example; we define x to be a variable and in the context of gradient
tape we perform two operations. First we raise the power of x by 2 and then we get y as a
result and again we raise the power of y to 2 and we get z. So, here we have the following

situation.

(Refer Slide Time: 15:57)

Pocrte] - Windws Kurnal -

et Ackors Teck Hele
o s PR Rt S EEEENEEE i'ER EEW

NFTEL

So, x=1, y=x’ and z=)”. So, we started with x equal to 1, we raise the power to 2, we get y we
again apply the power operator to get the value of z is where we get y. So, this is the forward

computation.

And we can calculate the derivative of the recorded computation with respect to the input

variable with reverse mode differentiation. So, in this case % is equal to Z—; into % , by the

chain rule. So, Z—; is 2y and ﬁ is 2x. So, y as we know is x*. So, this derivative is 4x°.

So, you can see that, since x is equal to 1, we get % to be 4 and £ to be 2. So, since X is
x dy

equal to 1 £ is equal to 4x* = 4. And Z—; is equal to 2y = 2x* which is 2 into 1 squared is
equal to 2. So, % is 4 and fl—; is 2.
&z

Let us run this to verify. We can see that £ is 4 and 2’—; is 2. So, note that here x was defined

dx

as a variable. We can also request a gradient from a tensor to another tensor.

(Refer Slide Time: 19:12)

i, iy G % |) o gkl - X - « B - ol

+Code + Text & Copyto Drive v fEditng v
WEICN INe S0Urce tensor;

° x = tf.constant(1.8)
with tf.GradientTape() as tape:
tape.watch(x) # Since "x* s not a variable we must explicitly "watch" it.
=y w3

dy_dx = tape.gradient(y, x)
print{dy_dx.numpy()) # 2.0

) 2.8
By default, the resources held by a GradientTape are released as soon as GradientTape.gradient()
method is called. To compute multiple gradients over the same computation, create a persistent

gradient tape. This allows multiple calls to the gradient() method as resources are released when
the tape object is garbage collected. For example:

[] x= thconstantl*.ﬂi

Let us look at the example. Here x is a tensor and we raise the power of X by 2 to get y. And
now we are interested in calculating derivative of y with respect to x. Note that x is a tensor

and y is also a tensor.

Now, since you are interested in calculating derivative of y with respect to x, which is a

tensor, we add tape.watch and add tensor x to the watch list. By doing this we are able to

calculate the derivative of y which respect to x with the gradient tape. And we perform both

this operation in the context of gradient tape and then calculate the gradient using

tape.gradient method. Let us run it and check it out. And you know that y is x square, so
dy

derivative — will be 2x and x is equal to 1 that is why the value that we see here is 2.

(Refer Slide Time: 20:31)

EL

. RAM z
+ Code + Text 4 Copy to Drive " e v A Edtng v

method is called. To compute multiple gradients over the same computation, create a persistent
gradient tape, This allows multiple calls to the gradient () method as resources are released when

the tape object is garbage collected. For example:

[1 x=tf.constant(3.0)
with tf.GradientTape(persistent=True) as t:
t.watch(x)
yax*x
zay'y
dz_dx = t.gradient(z, x) # 108.0 (4*x"3 at ¥ = 3)
dy_dx = t.gradient(y, x) # 6.0

print (dy dx)
print (dz_dy)
print (dz_dx)

del t # Drop the reference to the tape

So, by default the resources held by gradient tape are released as soon as the gradient
tape.gradient method is called. To compute multiple gradients over the same computation, we
create a persistent gradient tape. We create a persistent gradient tape, this allows multiple
calls to the gradient method as resources are released when the tape object is garbage

collected. Let us look at the example of using a persistent tape.

So, we simply add persistent equal to true to gradient tape method and then perform the
forward computation in the context of this persistent gradient tape. Since, we are interested in
calculating derivative of z and y with respect to x, we first add the tensor x to the watch list
and then perform the remaining forward operations. So, here we obtained y by multiplying x
to itself or in other words, by squaring the value of x and z is obtained by squaring the value

of'y.

Let us look at what is the gradient at x is equal to 3. So, we know that the gradient of z with
respect to x is 4x°. So, that is why at value of x=3, x’=27, and 27 time 4 gets us 108 as the

value of gradient.

We know that the gradient of y with respect to x is essentially 2x that is why at x equal to 3,

we get the value of 6. Let us print all the three gradients, which is the derivative of y with

respect to x, derivative of z with respect to y and derivative of z with respect to x. And

finally, we delete the reference to the tape using del command.

(Refer Slide Time: 23:28)

ot G % | £) skemecc R st B % 0 1f Commarangs (o x| -
oot st g com 511 o ‘ 4o @
EL

i M .

+ Code + Text & Copy to Drive v ng\sk : - /' Editing
PG Uy _uAj
3 print (dz_dy)
= print (dz_dx)

v

del t # Drop the reference to the tape

O tf‘Tenso‘f‘[ﬁ,B, shape=(), dtype=floati2)
tf.Tensor(2.8, shape=(), dtype=float32)
tf.Tensor(108.8, shape=(), dtype=float3l)

» Recording control flow

Because tapes record operations as they are executed, Python control flow (using 1fs and whiles for
example) is naturally handled:

[1 def f(x, y):
output = 1.8
for i in range(y):

So, we obtained results as per our expectations.

(Refer Slide Time: 23:35)

" s ey - Calate % |) Hihamsos gt iroliba - % 1 Gt " x % s
'J W colab resainch poogie com, l g

+ Code + Text 4 Copyto Drive \/ F:)’T;': : « JEtng v

DELAUME 1aPES ISWUIU UPEIaULD 83 UIEY dIT EATLULEY, YUV CUTIUW TV (UBINY 4T3 Qi Wil 1E2 1w

_> example) is naturally handled:

[] def f(x, y):
output = 1.0
for 1 in range(y):
if 1 >1andi<5:
output = tf.multiply(output, x)
return output

def grad(x, yl):
with tf.GradientTape() as t:
t.watch(x)
out = f(x, y)
return t.gradient(out, x)

x = tf.convert_to_tensor(2.9)
assert grad(x, 6).numpy() == 12.0

assert grad(x, 5).numpy() == 12.0
assert grad(x, 4).numpy() == 4.9

We can also record forward operations even in the presence of the python control statements

or loops. So, this is an example where we first define a tensor containing value 2. And then

we define a function called grad; the grad function essentially defines a couple of forward
computations in the context of gradient tape and the computation that we carry out is defined
in function f. f runs the computation in a loop that repeats y times and if the value of 1 is
greater than 1 and less than 5. It performs the multiplication operation. It multiplies the

output with x.

(Refer Slide Time: 25:12)

B s svewn oyt Caste % |) enhamacs phutinslate @ % # - « BB - aJE
colsbreseardh pooge.com 5 &]_

L RAM I

/il | / Edting v

+ Code + Text £ Copy to Drive
o FEE\‘H“H t.é;;diént[out, X)
x = tf.convart_to_tensor(2.9)
assert grad(x, 6).numpy() == 12.8

assert grad(x, 5).numpy() == 12.8
assert grad(x, 4).numpy() == 4.9

+ Higher-order gradients

Operations inside of the Gradientfape context manager are recorded for automatic differentiation. If
gradients are computed in that context, then the gradient computation is recorded as well. As a result,
the exact same APl works for higher-order gradients as well. For example:

[1 x=tfVariable(1.8) # Create a Tensorflow variable initialized to 1.8

with tf.GradientTape() as t:
with tf.GradientT ; x

The gradient tape can also be used in the presence of loops or control statements. We can also

use operations inside gradient tape to calculate higher order gradients.

(Refer Slide Time: 25:24)

i cvvem oy Calsk % | (€ rniomecs gl skl - % 1 Casion wob - Colae % oo -
6;‘53 C & cosreesnhisogitcon i ' M q % ﬁ

: M :
+ Code + Text 4 CopytoDrive v r;?“ : v fEditng v

the exact same AP works for higher-order gradients as well. For example:

[1 x=tf.Variable(1.8) # Create a Tensorflow variable initialized to 1.8

with tf.GradientTape() as b
with tf.GradientTape() as t2:
y=x*x"x
Compute the pradient inside the 't' context manaper
which means the pradient computation is differentiable as well,
dy_dx = t2.gradient(y, x)
d2y dx2 = t.gradient{dy dx, x)

assert dy_dw.numpy() == 3.0
assert diy_dwl.numpy() == 6.8

In this section, we covered gradient computation in TensorFlow. With that we have enough of the
primitives required to build and train neural networks.

In this case, we are defining a nested gradient tape. So, there is an outer gradient tape in the
context of which there is another gradient tape and in the context of both these gradient tapes;
we are performing x* operation to obtain the value of y. In the context of inner gradient tape,
we can get derivative of y with respect to x. And in the context of outer gradient tape, we can

calculate the second derivative of y with respect to x.

(Refer Slide Time: 26:08)

@- eyl - Calah |) irwhamensc g ol ot - 3 1 o st ¥ L -
C coubresinpoog.con . r " a4 B
EL

. RAM I z
+ Code + Text 4 Copy toDrive v Disk I v A Eltng v
1 i e Y

In this section, we covered gradient computation in TensorFlow. With that we have enough of the
primitives required to build and train neural networks.

~ Part 4: Custom Training

Let's train neural networks from the first principle so as to acquire strong foundational
of the concepts, We use tf,Variable to represent weights in a model. A tf.Variable
a value and implicitly reads from this stored value. There are operations (tf . assign_sub,
tf.scatter_update, etc.) that manipulate the value stored in a TensorFlow variabl| :

[1 v=tf.Variable(1.0)
Use Python's “assert’

as a debugging statement to test the ¢

So far, we studied how to use specific devices to carry out tensorflow operations. Then we
studied how to write custom layers and we also studied how to perform automatic
differentiation to obtain gradients of loss functions with respect to input variables through
automatic differentiation. With these three concepts, we have some tools available to us for
writing custom machine learning algorithms. Let us use the concepts that we learnt in

automatic differentiation to write our custom training loop.

(Refer Slide Time: 27:06)

. RAM 1 ;
+Code + Text & CopytoDrive ;)Jmk . +« FEdtng v

a value and implicitly reads from this stored value. There are aperations (tf. assign_sub,

tf.scatter_update, etc.) that manipulate the value stored in a TensorFlow variable,

v = tf . Variable(1.8)

Use Python's "assert’ as a debugging statement to test the condition

assert v.rlumpy(} == 1.0

Reassign the value v
v.assign(3.9)
assert v.rlunlpy(} == 3.0

Use v in a TensorFlow "tf.square()” operation and reassign
v.as\ign[tf.ﬁqudr'o(vh
assert v.numpy() == 9.0

Fit a linear model

Let's use the concepts you have leamed so far—Tensor, Variable, and GradientT.

Here, we will train tensorflow model from first principles. So, we use variables for storing
weights of tensorflow model and then we use functions like assign to assign values to the
variable. In this case, we are assigning the value of 3 to variable v and here we are assigning
the value of square of v to v itself. So, let us run this particular code, we can see that the value
of v was initialized to 1 here, then we assigned a value of 3 and here we assigned a value of 9

to v. And note that we are using v.numpy function to obtain the value present in the tensor.

(Refer Slide Time: 28:06)

, RAM 1

Digk 1 * fEHtng v

+ Code + Tex £ Copy to Drive -
o assert v.numpy() == 9.0

Fit a linear model

Let's use the concepts you have leamed so far—Tensor, Variable, and Gradient Tape—to build and
train a simple model, This typically involves a few steps:

1. Define the model.

2. Define a loss function.

3. Obtain training data

4, Run through the training data and use an "optimizer” to adjust the variables to fit the data,

Here, you'll create a simple linear model, f(x) = x * W + b, which has two variables: W (weights)
and b (bias). You'll synthesize data such that a well trained model would havew = 3.@andb = 2.8,

What we will do is, we will define a linear model using the concepts that we have learnt so

far.

So, there are four different steps; we have to define the mode,l then loss function, then obtain
the training data and train the model. And how do you train the model? We use a specific
optimization algorithm for training the model. So, here in linear regression, we have a model
which is a linear combination of weights and the input along with a bias term to it. So, if x

into W plus b it has got two variables - W and bias.

(Refer Slide Time: 29:19)

B v vy gy - Gl % |) il gl icolabe o X . ¥ - B4
I : =
EL

; RAM
+Code + Text & CopytoDrive v Disk 1 v S Etng v

» Define the model

Let's define a simple class to encapsulate the variables and the computation:

[] tlass Model{object):
def _ init_ (self):
Initialize the weights to 5.8 and the bias to 9.8
In practice, these should be initialized to random values (for example, with
self.W = tf.Variable(5.0)
self.b = tf.Variable(@.0)

def __call_(self, x):
return self.W * x + self.b

model = Model()

assert model(3.8).numpy() == 15.8

O - T T Ty

So, what we will do is; we will first obtain synthetic data with W=2 and b=2. We will define

a simple class to encapsulate the variables in the computations.

So, in the constructor, we define variables W and b and we have set them to 5 and 0, in real
life or in practice, we randomly initialize these values. But for the sake of simplicity in this
example, we have set this variables to some fixed numbers. And in the call method we are
performing the forward computation where we are multiplying the input by the weights and

adding the bias term to it.

So, we have model over here. So, for value 3 we get value for input 3, we get output of 15.
We can see it above, the value of W is 5, x is 3. So, 5 into 3 is 15 and bias is 0. So, 15 plus 0

is 15, that is how we get the value of 15 when we pass 3 as the input to the model.

(Refer Slide Time: 31:01)

RAM I

+ Code + Text 4 Copy toDrive v Disk I v fEditng v

» Define a loss function

Aloss function measures how well the output of a model for a given input matches the target output.
The goal is to minimize this difference during training, Let's use the standard L2 loss, also known as
the least square errors:

RN RE » 3 T

def loss(predicted y, tarpet y):
return tf,reduce_mean(tf,square(predicted y - target_y))

+ Obtain training data

First, synthesize the training data by adding random Gaussian (Normal) noise to the inputs:

[] TRUEM = 3.0
TRUE b = 2.0
NUM_EXAMPLES = 1000

The next task is to define a loss function. Here we use standard L2 loss or a least square error.
And the way we define the least square error is we calculate the square of the difference
between the predicted value and the actual value. And we sum up this difference across all

the points in the training data. And this is how we define our loss function.

(Refer Slide Time: 31:35)

o pvesenipynt - Gl % | () tindommc gkt X o 1 L y x I
A RAM &
+ Code + Text £ Copy to Drive Disk : Z Edting | v

b [1 def loss{predicted y, target y}:
- return tf.reduce mean(tf.square{predicted y - target y))

» Obtain training data
First, synthesize the training data by adding random Gaussian (Normal) noise to the inputs:
R « 3 |
TRUE W = 3.8
TRUE b = 2.0
NUM_EXAMPLES = 1868
inputs = tf.random.normal(shapes[NUM_EXAMPLES])

noise -tf.random.nomal(shapa—{mm_?EMPLEs])
outputs = inputs * TRUE_W + TRUELD + noise

Before training the model, visualize the loss value by plotting the model’s predictions in red and the

e

The next step is to obtain the training data; here we synthetically generate our training data by

setting W to 3 and b to 2 and we generate 1000 examples by adding some noise to the

regression calculation. So, here we first define input, which is drawn from a normal
distribution, and then we have a noise which is again drawn randomly from a normal
distribution. And we obtain output by multiplying input by the true weight and add true bias

to it, that gives us output.

So, let us run these steps, let us define the model; let us define the loss, let us generate the

training data and let us visualize the training data before building the model.

(Refer Slide Time: 32:54)

. % |) vt + =
-
‘ s B
i , RAM b Edn
+ Code + Text & CopytoDrive v Disk I v f Hdting v
L]
15
> 0 s
0 'l"
5
0 L)
-5
=101 ®
-15
L

4 2 -1 0 1) 3
Current loss: 9.@16967

X
~ Define a training loop

So, you can see that for the chosen parameter values, we have loss of 9.01 and you can see
that, the points in the training that we generated are in blue whereas the red line or the points
represented with red lines are the predicted points. Having obtained the training data, the next

step is to train the model itself.

(Refer Slide Time: 33:38)

, RAM 1 Sl
Y Disk I b # Editing v

+ Code + Text £ Copy to Drive
+ Define a training loop

With the network and training data, train the model using gradient descent to update the weights
variable (W) and the bias variable (b) to reduce the loss. There are many variants of the gradient
descent scheme that are captured in tf. train.Optimizer—our recommended implementation. But
in the spirit of building from first principles, here you will implement the basic math yourself with the
help of tf.GradientTape for automatic differentiation and tf.assign_sub for decrementing a value
(which combines tf.assign and tf.sub):

RV |

def train(model, inputs, outputs, learning_rate):
with tf.GradientTape() as t:
current_loss = loss(model{inputs), outputs)
dW, db = t.gradient(current_loss, [model.W, model.b])
model.W.assign_sub(learning_rate * di)
model.b.assign_sub(learning_rate * db)

Let us define our custom training rule. We are going to use gradient descent to update the
weights. Normally in real life applications or examples that we have seen so far, we use one
of the optimizers from tf.train.optimizer. Gradient descent itself is available in the standard

keras package, but here we want to train the model from first principles.

So, we will be using gradient tape to calculate the derivative of the loss function with respect
to the input variables, let us see how do we do that. So, we calculate the loss in the context of
a gradient tape. So, since we calculate loss in the context of the gradient tape, it records all
the operation in the forward computation and when we call a gradient method on the tape, it
gives us the gradients. For example, here we have gradients of loss with respect to W and b.

Having calculated gradient you must remember to update value of W.

(Refer Slide Time: 35:02)

¥ Nated - Windonws Kural -
tﬂ%' bt Ak Tock e *
e b e P AT EEEREEEEN S ' EE EE% w8 NFTEL-
—
5
A :-‘\""'\ —
" e
|
o) A
D etk
rold) 3, ¢
| e b 2k
-}
|_C"‘.} o 4

W is said to WY minus learning rate times the gradient of the loss function with respect
to the variables. So, the gradient part, you get from the gradient tape. We call the gradient

method on the tape to obtain it. We do the same for b.

So, we assign W™ by subtracting from W, the learning rate into the gradient, and we obtain

b™¥ by subtracting from b, the learning rate into the gradient with respect to b.

(Refer Slide Time: 37:03)

- sveryars gyt - Cola % | () rnamece gt iojrolabi 3% ¥ Ciaiom . P4 '?
DN colib et pooge com L v g4 % 1
EL

+ Code + Text & Copy to Drive 2 K

Disk 1 * FEHtng v

3 ° def train{model, inputs, outputs, learning rate):
s with tf.GradientTape() as t:
current_loss = loss(model{inputs), outputs)
(W, db = t.gradient(current_loss, [model.W, model.b])
‘model.W.assign_sub(learning rate * d)
model.b.assign_sub(learning_rate * db)

Finally, lets repeatedly run through the training data and see how W and b evalve.

[] model = Model()

Collect the history of W-values and b-values to plot later
Ws, bs = [], []
epochs = range(18)
for epoch in epochs:
Ws . append(model . W. numpy())
bs . append(model.b.numpy())
current_loss = loss(model(inputs), outputs)

This is how we define a training loop, this is how we define the basic training operation; we

have to run this function repeatedly.

(Refer Slide Time: 37:15)

s svervnioh okt % |) indamoc b ol it % ¥ Comamimsson gy at: X Nl
C & coubrseandupeogie com i "

+ Code + Text & Copy to Drive AN

Disk ¥

i model = Model()
> [

Collect the history of W-values and b-values to plot later

Ws, bs =[], []
epochs = range(18)
for epoch in epochs:
Ws . append(model .W.numpy())
bs . append(model.b.numpy())
current_loss = loss(model(inputs), outputs)

train(model, inputs, outputs, learning rate=8.1)
print('Epoch %2d: W=¥1.2f be=¥1.2f, loss=%2.5f' %
(epoch, Ws[-1], bs[-1], current_loss))

Lot's plot it all
plt.plot({epochs, Ws, 'r',
epochs, bs, 'b')
plt.plot({[TRUE_W] * len{epochs), 'r--',
[TRUE_b] * len(epochs), 'b--"})
plt.legend(['W’, 'b', 'True W', 'True b']}
plt.show()

+ fEtng W

We have output the value of W, b and value of current loss. Finally, we also plot how W and

b changed and also plot the true value of W and b. Let us run this.

(Refer Slide Time: 37:45)

s st Gt % |) fnlemoc giiub avrolats - % 1 Cator - Colae: (e
C @ colbressind poogie.com i i

+ Code + Text & Copy to Drive v
CPULIT D0 WS008 USL.87; LUNEL.23712
3 O cfroch 7: He3.43 b:1.60, loss=1.35816
= Epoch 8: W=3.35 b=1.68, loss=1.23671
@ Epoch 9: W=3.28 b=1.75, loss=1.14967

RAM
Disk I

H —_—
= b
—ee True W
=== Trueb

oy

Z Edting v

We started W at 5 and b at 0 and as we get to 10 epochs, both W and b are getting closer to
the actual value of W and b. Here we define our own model, we also defined our own training

loop and then we also implemented the gradient calculation using gradient tape.

(Refer Slide Time: 38:23)

pveryars gyl - Cola - % | () Hramece gt joolaia - % o4 = ¢
@ 2 i colabresesrchgoogie com 4 % B

, RAM I

+Code +Text 4 CopytoDrive v Disk I v FEtng v
4 ° 1 ‘ /
D l
0 2 i § B
Homework

Run |RIS flower classification colab notebook for end-to-end ML process understandin
k

As a next step I would strongly encourage you to go through the iris flower classification
notebook for end to end ML process. So, in this session, we learn a number of concepts that
will help us in customizing the tensorflow functionality. We started with how to force
operations on accelerated devices, how to write custom layers, how to perform automatic
differentiation using gradient tapes, and we use the concepts learnt in automatic

differentiation to define our own custom training.

