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Lecture - 32
Text Generation with RNNs

[FL]. We will study how to use LSTM models for generating text. We will be training

LSTM on the text written by Shakespeare character by character.
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« Text generation with an RNN

So, we are going to use the dataset from Andrej Karpathy’s writing of Unreasonable

Effectiveness of Recurrent Neural Networks. The problem that we are going to solve is

given a bunch of characters. What is the most likely next character?

For example, if we give sequence of character the model has to predict what is the next
character? So, in this case if model predicts “e” as the next character will have
Shakespeare word completed. We can generate longer sequences by calling the model

repeatedly.
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So, just to give you an idea this is the sample output of the model trained for 30 epochs,

we started the model with letter ‘Q’ and model went on.
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Why some of the sentences are grammatical most do not make sense? The model has not
learned the meaning of words, but consider the model is character based when training

started the model did not know how to spell an English word or that word where even a



unit of text. So, given this background, this is really an impressive performance. You can

see that the structure of the output is very similar to the structure of the play.

The blocks generally begin with a speaker name in all capital letters followed by the
dialogues. So, this is very similar to what you see in the Shakespeare plays. And the
model is trained on a small batch of text 100 characters each and is able to still generate

longer sequence of text with coherent structure.

(Refer Slide Time: 03:12)

l Note! - Windows Journal = %T

i v bt Actoes Took e »

\ 5 » ( IR T ; -

e a0 Jelv (T T BN EEY 44 NFTEL
ne

OO«

So, just to give you an idea here we are using the following RNN architecture. So, we are
starting the model with a single letter ‘Q’ and you are asking model to generate the next
letter. The model is generating output, the output is the next letter and that letter is again
fed into the second node which you generating the next letter and that letter is fed into

the next node and so on. So, these how we get the text generated from RNN.

So, here we are giving a single input the so, this is one-to-many model architecture that

we are using here.
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While some of the sentences are grammatical, most do not make sense. The model has not leamed the meaning of words, but consider
o The madel s character-based. When trainieg started, the model 6id net know how 10 spell an English word, of that words were even o usit of text
o The structure of the output resembles a play-blocks of text generally begn with a spesker name, in ol capita letters similr 1o the dataset

« As demonstrated below, the model Is trained on smal batches of text (100 characters each), and is stil able to generate a longer sequence of text with

coberent structure,

~ Setup

v Import TensorFlow and other libraries
rvag !

© fron _futwrn_ tamcet ibsolute_fmport, divisicn, peint_function, unicode Litwals

wncept Exception

pass
{apert tanserflow a8 tf
inport nupy a8 19

inpeet o8
inpoet tine

v Download the Shakespeare dataset

Change the following ine to run this code on your own data

path_to_fle » t4,kees

Let us import TensorFlow on other libraries; make sure you are using TensorFlow 2.0 for

this example.
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+ Download the Shakespeare dataset

Change the fellowing ine 10 fun this code 06 your own dita

|

path to_file » t.keras. vtile. got_fllo( shakespeare. tet’, "MUtpa://storage. peoglaapis. con/dounlond tensorflow. org/data/ shakespesre. it ')

La004s.con/donrlond tansar o coq/data/shakesannre a8
- 05 ts/step

v Read the data

9( ). decode(encodings ' itf-3')
haracters in it

h of tet is 4
ors’ format (1

* long:
prist (‘Length of text: () ¢

© Lengh of text: 1115394 characters

9 charac!

" peint(s

6 riest citizen

We will download the Shakespeare data set. We can look at the text; you can see that

there are about 1.1 million characters in the data set.
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v Read the data

First book i the text

code(encodings'utf-3')
acters in it
format(len(taxt))

6 Lengh of text: SIISIN characters

taleka o it 250 chracers s

So, length of the text is about 1.1 million characters. We can look at first 250 characters

with this particular access mechanism.
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{200
Before we procesd any further, hear me speak

sonaf, spuak

0 ¢ unigee characters
* Process the text

v Vectorize the text
Before raning we need to map strings to a rumerical representation. Create two lookup tables: cne magping characters to numbers, and another for numbers to

characters

So, you can see that these are first 250 characters. So, the number of unique characters in
the file are 65. So, our job is to predict one of the 65 characters for a given sequence of

characters.
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> 65 unigue characters
* Process the text

v Vectorize the text
Before traning we reed to map s47ings 1o a rumenical representaton. Create two lookup tables: one magping characters to numbers, and anothes for numbers to

characters

Text b it w rg.aeray([chaedide[e) for ¢ n taxt)

Now we have an integes representation for each character, Notice that we mapped the character as Indexes from 0 1o 1en (unique

The predicted character is the most likely character to be following in the sequence.

So, as we studied earlier we cannot process the string as it is. So, you have to convert

string into a numeric representation. So, we use embeddings for converting text into

numeric representation.
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o' 16,
v 7,
’ 18,
6,
' how the frst 13 characters from the text are magped to dntege
prist ('} ===+ characters magped to 1at ==+ > (}'.format(repr(text(:13]), text as_in(:13))

So, here we are defining few helper functions to assign a unique id to each of the

character.
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v The prediction task

v Create training examples and targets

You can see that the first 13 characters around mapped to their integer representation. So,
the prediction task here is given a character or a sequence of character what is the most

probable next character? These are task you are training the model to perform.

The input to the model will be a sequence of character and we train the model to predict
the output, and the output is going to be the following character at each time step. Since,
RNNs maintain an internal state that depends on the previously seen element given all

the characters computed until this moment, what is the next character?



(Refer Slide Time: 07:32)

Ao = * NPTEL

)

v Create training examples and targets

ansor_shices unetion 10 convert the bext veck

So, let us try to understand how to create training data for this task. So, we will divide
the text into example sequences each input sequence will contain, sequence length
number of characters from the text. For each input sequence the corresponding target
contains the same length of text except, it is shifted by one character to the right. We

break the text into chunks of sequence length plus one character’s.

For example, if the sequence length is 4 and our text is “Hello”. The input sequence
would be “Hell” and the target will be “ello”. Let us say we have word hello and a
sequence length is equal to 4. So, we take a chunk off sequence length plus one letters.

So, hello is exactly 5 words.

So, we take hello we construct the training data which has got first 4 characters ‘h’, ‘e’,
‘I’, ‘I’. For ‘h’ we expect the model to predict ‘e’, for ‘I’ you want to predict ‘I’, for ‘e
you want to predict ‘I’, this ‘1’ we want to predict next ‘I’ and this ‘I’ we want to predict
‘0’. So, 4 input ‘h’, ‘e’, ‘I’, ‘I’, we want to predict this particular output. So, thus for the
input sequence “Hell”, the target sequence is “ello”, which you just shifted by one

character to the right.

So, to do this first we use tf.data.Dataset.from_tensor slice() function. We convert text

vector into a stream of character indices. And then we use indexed to character mapping



to obtain the character corresponding to each index. So, you can see that first 5

characters are First here.
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So, the batch method let us easily convert these individual characters to sequence of
desired size. So, simply called the batch method provide the length which
sequence_length + 1. So, let us run this; so, these are first five sequences, each with 100
characters. So, now, letter for each sequence we will duplicate it and shift it to form the
input and the target text by using the map method to apply a simple function to each

batch.

So, you want to take this sentence, we want to shift it by one letter. we am going to apply
this particular transformation to each and every example in the data set. So, for that we
use the map() method. So, in the sequences we use the map method and we call split

underscored input under scored target function.

All that it does is it shifts it by one. So, we can see that we use in the input text you have
everything, but the last character and target text starts from the second character

onwards.
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any ferthar, haar me spesk, \n\nALL: \nSpeak, speak,\n\nFirst
W proceed any further, hear me speak.\n\AALL:\nSpeak, speak.\n\afi

Let us print the first example of input and target value. So, you can see that these are the
first example that you have a sentence and the target is copy of the same sentence except
that the first character is missing. And one character has gotten added at the end of the

sequence.
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v Create training batches Y

We used t£, duta 1o spit the text into manageable sequences. But before feeding this data into the model, we need to shufe the data and pack 1 into batches.

atanet, shuf1e(BPPER_SIZU) batch(BATON SI2N, érop_remaindersTrue)

So, each index of these vectors are processed as one time step; for the input at times step

zero the model receives the index of ‘f” and tries to predict the index of ‘i’ as the next



character. At the next time step it does the same thing, but RNN considers the previous

step context in addition to the current input character.

(Refer Slide Time: 13:43)

.\nwl-d X | © tetcustne X | P Ted guension X t. o X P Tmewieskore X | o meswiesiys X | @ CCMetmods X | 4 -ﬁ
{) C & colbresearchgooghe com i
: EL

oxpected output: 88 ('t
Stp 4

input: 58 ('t
expected output: 1 (

So you can see that for letter ‘F' you want to predict ‘i'. So, we give the index of ‘F' as
input and it is expected to produce the index of ‘i' as an output. Given index of ‘i’ is and

input is expected to predict index of ‘r’ as an output and so on.
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v Create training batches

Wie used £ data to spit the text into manageable sequences. But before feeding this data into the model, we need 1o shuffe the data and pack 1t into batches.

O datcrOataset shapes: ((BETI0),T(64,10M)), types: (tf.intéd, tf.inted)>

~ Build The Model



So, let us create training batches. So, far we used tf.data to split the text into manageable
sequences. But before feeding this data into the model we need to shuffle the data and
packaged into the batches. We use the batch size of 64. We use buffer size of 10000 for
shuffling.

So, we shuffle the data set and then we batch it. Note that your setting drop remainder is
= True and this will essentially drop any of the elements that are left in the last batch. So,
look at the shape of the data set. So, it is a tuple each with 64 x 100 dimension. So, these

are essentially the input and the target sequences.
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+ Build The Model

Let us build LSTM model for solving the problem. Here we use tf.keras.Sequential
model, which has got three layers. The first layer is an embedding layer, which maps
each character to a vector of embedding dimensions. In this case you are used LSTM
with a fixed number of units you are set return sequence is equal to True; that means, you

will not output from each node.

And we also said stateful = True; stateful essentially passes the output of the last
character in the batch to the first character in the next batch. You are using a specific
recurrent initializer called glorot uniform. We pass the output of LSTM through a dense

layer containing number of units equal to the vocabulary size. We are doing this because



we want to predict one of the 65 characters which is the size of the vocabulary in this

context. So, this is a function for building the model.
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return model

« Try the model

Now fun the model 10 506 that it behaves &8 expected.

Let us build a model. For each character model looks up the embedding runs LSTM. One
time run the LSTM, one time step with the embedding as input and applies dense layer to

generate the next character.
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ing. runs the GRU one timestep with the embedding a5 inpit, and apphes the dense layer to generate logts

Now fun the model 10 see that it behaves 3 expected
First check the shape of the output
[24] for irput_example_batch, target,

wxample_batch_predictions » mod
print(example_batch prediction

teh n dataset. take(}
example_batch
5120, sequesce_length, vocad 3ize)")

O (IR o (datorsize, 5

ocab_size
o o

In the above example the sequence length of the rpu .Jﬂ:nf"tW-‘ce*ta’vte'u‘\tv’m:-.‘;f’.)'h«‘4;"'

© ool somry()

O rodel: “sequential”

Layer (type) Output Shape Pares o
enbedding (Imbedding) (64, None, 254 16640
1ste (LSTH 64, None, 1024) S246976



Let us try the model let us check the shape of the output. In this case you can see that we
have a 3D tensor here, we checks 64 x 100 x 65; here 64 is a batch size 100 is a sequence
length and 65 is the size of vocabulary. In the above example the sequence length of the

input is a 100 but the model can be run on inputs of any length.
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Let us look at the summary of the model; we can see that the model has 5.3 million
parameters a very large number of parameters indeed. To get the actual prediction from
the model we need samples from the output distribution to get the actual character
indices. This distribution is defined by logits over the character vocabulary. Note that it
is important to sample from this distribution as taking argmax of the distribution can

easily get the model stuck in a loop. Let us try the model on first example of the batch.
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~ Train the model

At thes pont the problem can be treated a3 a standard classiication prodlem. Gven the previcus RNN state, and the input this time step, predict the class of the

next chaeacter

v Attach an optimizer, and a loss function

So, these are the sample indices, which is a prediction of the next character index at each
timestep. Let us decode this to see what model has predicted. Note that you are not
trained the model so, this is still an untrained model. So, you can see that currently the
next character prediction is not really working that great we are getting quite random
characters as next corrector. So, let us try to trained the model and see if we can get

better results with the model.
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~ Train the model

roblem can be treated as a standard classiication problem. Gaven the previous RNN state, and the input this time step, predict the class of the

v Attach an optimizer, and a loss function

The standard ¢, keras, Josses. sparse_categorical_crossentropy loss function warks in 1N case because 1 i apphed acsoss the last dmwnsion of the

pr

Because our model returns logits, we need 1o set the from_logits flag




So, at this point the problem can be treated as a standard classification problem. Given
the previous RNNs state and the input this time step we want to predict the class of the
next character. We use sparse categoricalcrossentropy loss, in this case because it is
applied across the large dimension of the prediction because our model returns logits we
need to set the from.logits flag. So, we define a loss() function and then calculate the

loss.

(Refer Slide Time: 21:15)

v Configure checkpoints

50 4, keras. callbacks. HodelCheckpaint 1o ensure that checkpoints ae saved during training

So, you can see that the prediction shape is 64 x 100 x 65, where 64 is a batch size 100 is
a sequence length and 65 is the size of the vocabulary and the scalar loss is 4.17. Let us
configure the training procedure using model.compile() method we will use Adam
optimizer over here. We will use model checkpoints to ensure that the checkpoints are

saved during the training.
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Configure the traning procedure using the t. keras. Model , conpile method. Wel use tf. keras.optinizers Adam with defoult arguments and the loss
function

[30) medel. compile(:

s’ losselons)

» Configure checkpoints
Use 8 84, keras, callbacks ModelChackpaint 10 ensure that checkpoints e saved durng training

Ery

Jein(chackpoint dir, “ckpt_{epoch}’)
Backetf, keras callbacks Model Chackpoint

acheckpoint prefix,
Pt onlysTron)

v Execute the training
To keep training time reascoable, use 10 epachs b train the model. In Colab, set the runtime 10 GPU for faster training
] 0080

] history » model.fit(dataset, epochseEPOCHS, callly

so{ checkpoint_callback])

e w0 o oMmoEE . t0e o]
So, we give the checkpoint directory and provide the checkpoint prefix.
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(callbacks ModelChackpoint

v Execute the training
To keep training time reasonable, use 10 epochs to train the model. In Colab, set the runtime 10 GPU for faster training.
] 00080

] Mstory » model.fit(dataset, epochseEPOONS, callbackse{checkpoint_callback])
~ Generate text

v Restore the latest checkpoint

To keep this prediction step simple, use a batch size of 1 x
Because of the way the RNN state is passed from trmestep 1o trmesten, the model cnly accepts 8 fued batch s2e once buit

Torun the model with a dfferent batch_s5.2e, we need 10 rebuld the model and restore the weights from the checkpoint
] tf.train. latest_checkpolat(checkpoint_¢ir)

wodel « build_sodel(vocab_size, esbesding dis, ren_uaits, batch sizesd)

Let us train for 10 epochs and note that we are using GPUs here for faster training.
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145 Bas/step - loss! 2.6576
* 138 Mas/step + loss: 19437
« 105 Mas/step « loss: 1.6778
= 135 Thws/step - loss: 15307
* 138 Thes/step + loss: 1.4463
= 108 Thes/step + lovs: 10849
= 135 Thas/step - loss: 1IN
s ma/seep - doss: 129m R
- M5 Toms/step - loss; 12404

sssssassassnnans] - 145 T905/step - loss! 1.2288

~ Generate text

v Restore the latest checkpoint

To keep this prediction step simple, use a baich size of 1

Because of the way the RNN state is passed from tmestep 10 timestep, the model cely accepts 8 funed batch size once bult

To run the model with a dfferent Bateh_s520, we need 10 rebuld the model and restore the weights from the checkpoint

Now, that our model is trained let us look at how to generate that text from the model.
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]+ 145 Toms/step - loss: 12992

* 148 Tma/step « loss: 1264

= Ms Toms/step - loss: 1,220

~ Generate text

v Restore the latest checkpoint

To ke this prediction s1ep simpie, use § baich size of 1

Because of the way the RNN state is passed from tmestep 1o tmestep, the madel only accepts 8 fred batch sze once bult
To run the model with a dfferent Batch_size, we need 10 rebuld the model and restore the weights from the checkpont
[34) . train, Latest_chackpoiat(chackpoint gir)

©  /training chackpoints/ckat 10" 3

rtvogl
© el » build model (vocab size, embedding di, ren

t5, batch_s:

model, bod,

ta(tf, tradn, latest_chackpoint(checipoint ¢ir))

wodel. buile(tf, Tensorshasa([1, Nomw]))

sodel. summary()

We will restore the latest checkpoint of the model.



(Refer Slide Time: 22:39)

1. buile(tf. Tonscrshape([1, Nonw))

© ool somary(

O rodel: “sequential 1*

Pares #

16640

5246976

66628

And we will proceeding let us check the model summary. You can see that the model that

is restored from the checkpoint is exactly same as the model that we built and the model

that we trained a few minutes earlier
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Let us try to understand how do we generate the text. So, we start by choosing the start

string, we initialize the RNN state and we set the number of characters to generate. We

get the prediction distribution of the next character using the start string; using the start



string and the RNN state then we use a categorical distribution to calculate the index of

predicted character.

We use this predefined character as our next input to the model. The RNN state returned
by the model its fed back into the model, so that it now has more context instead than

only one word.

After predicting the next word, the modified RNN states are again feed back into the
model, which is how it learns as to get more context from the previously predicted
words. Looking at the generated text you will see the model knows when to capitalize

make paragraphs and imitates a Shakespeare like writing vocabulary.
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With a small number of training epochs, it has not yet learned to form coherent

sentences.

So, let us look at how to code in python. So, we specify the number of characters to
generate, we convert our start string to its number. This is the array that we will be
storing our result; you specify the temperature value low temperature results in more
predictable text. If you want more surprising text we need to set up higher temperatures.
Temperatures we use batch size of 1, you first obtain the prediction from the model. We

remove the batch size dimension we use categorical distribution to predict the word



written by the model. We get the prediction id; we pass the predicted word as the input to
the model.

So, input_eval is get expanded by including the predicted word and we append the
predicted character to do generated text. So, we run this in the loop to generate in this

case about thousand characters. Finally, we return the generated text.

(Refer Slide Time: 26:16)

You can improve the results, if the results are not good you can improve them by
increasing the number of EPOCHS. You can also expand with a different start string or
try another RNN layer to improve the model accuracy. Other way to improve the model

accuracy is by setting appropriate temperature parameter.

So, LSTMs or in general RNNs are very powerful models are being used extensively for

sequence mining problems.



