Practical Machine Learning
Dr. Ashish Tendulkar
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 30
Recurrent Neural Networks (Part 2)

So, let us try to understand how the loss is computed in case of simple RNN.

(Refer Slide Time: 00:27)

“ Distributed Training of IF models - Windows Joumal - ??
.@...,~«-.,. Took e]
X i o r B 7-0-O¢F -~ M : -

o | 0% el-9 SEREEEN BN EEe A NFTEL-

We use the input, perform non-linear activation over linear combination to obtain the

output for each position.

So, we get the error at every position. So, for example, the loss at ¢

function of the actual value and the predicted value.

loss<t> zf(y<t>’ H<r>) = — y<t>log@<t>) —(1- y<t>)log(1 _ j\)<t>)

position is a

In case of classification we can use cross entropy loss. So this is the loss that we incur,

this 1s a cross entropy loss that we incur at each position in the sequence. So, the total

loss of the total loss due to the prediction can be obtained simply by summing across the

sequence length.

L(y.9) = 2 loss<>(y<>, 1<)

So, we obtained this loss at each position and in order to calculate the gradient of the loss
with respect to the input. We use an algorithm called back propagation. So, in case of

RNN; it is called as back propagation through time or BPTT.

So, each of these outputs are through this link dependent on each of the input variables
and the outputs of all the previous states. So, we use back propagation through time to
calculate the weights that minimize this particular loss. We know that simple RNNs
suffer from vanishing gradient problem and we also know that there is a neat trick that

was used to make changes in the architecture so that vanishing gradient problem can be

addressed.

So, let us look at the modified RNN architecture that takes care of vanishing gradient

problem; it is called as LSTM or Long Short Term Memory.

(Refer Slide Time: 06:51)

¥ g, Distributed Training of IF models - Windows Jounal - ?T

; e ot Acions Took et ¥

o5 O, B/ -0 9540~ ' ® 0&R

v‘ 09 el 95 (LI] R AR NFTEL-
(L gt

So, beginning with our simple RNN. We had this architecture for simple RNN where we
gave a feature vector corresponding to each position as input. We obtain output for each
layer and in addition to the input feature vector, we have a recurrent connection which is
the output from the previous node that is also used as an additional input for calculating

the output.

In order to solve the vanishing gradient problem faced by the simple RNNs because they
cannot really remember information from some previous node. We add a provision to
carry information from previous node and use that as an additional input while

calculating the output.

So, now in case of simple RNN, we just had the input vector of the particular position
and the recurrent connection. In case of LSTM, we have an additional input which is
carry which is some information from previous states. Now we have to figure out how to
decide which information to carry on the carry line. Let us try to understand how to
decide that particular information. We will be using the same strategy as simple RNN for

deciding what to carry in the next state. Let us understand that through a pseudo code.

(Refer Slide Time: 10:03)

v wm
>

So, the output will be computed based on the dot-products of the output from the
previous state or the recurrent connection along with its weight; the input vector and its
rate, the carry information in its weight and the bias term. We add all these dot-products

t™ position. In

and biases and apply non-linear activation on that to get the output at
order to decide what to carry further, we define three different non-linear activations on

some dot-products.

output_t = activation(dot(output_t, U_0) + dot(input_t, W_0) +dot(c_t, V_0) + b_0)

So, we define the first output i_t which sums up the output from the previous state or
from previous timestamp and its feature vector. Then this is the linear combination or
this is a dot-product between the feature vector of that position and its weight and the
bias term; f t is calculated by applying non-linear activation on the dot-product between
the output of the previous state and its feature vector and dot-product between the feature

vector and its weight vector and the bias, k t is again calculated in the same manner.

i_t =activation(dot(state_t, U_i) + dot(input_t, W_i) + b_i)
f_t =activation(dot(state_t, U_f) + dot(input_t, W_f) + b_f)
k_t =activation(dot(state_t, U_k) + dot(input_t, W_k) + b_k)

So, all these three numbers are calculated based on activation applied to dot-product
between the recurrent connection or the recurrent information and its weights; adding
that into a dot-product between the feature vector and its weight, adding that to the bias
term. And we decide a next carry is by multiplying 1 t with k tand c t with f t. ¢ tis

the carry coming in and this is the formula for deciding the carry for the next stage.
c_t+1l=i_t*k_t+c_t*f_t

So, let us try to demonstrate this in a picture. We will insert a small block to calculate
carry. So, here we calculate the new carry and that carry is passed on the carry line and
we also pass the state information coming from this box to the next box. So, these are
architectural details. Most of the time we find such kind of architectures by doing search

in the architecture space.

We will take this LSTM model and try to use this in practice to solve some of the
problems related to text and time series. So, this is the LSTM model; the only change
that we make is we use a carry information and we perform additional computations to
decide what should be carried to the next state. We learn the weights of feature vectors

used in all this calculation through the training of these LSTM models.

You can see that because of these different operations LSTM have far more number of
parameters as compared to simple RNN. But LSTM models are quite powerful and they
are showing state of the art results on lots of sequence learning tasks. Let us experience

LSTMs in action by going through some of the practical examples.

(Refer Slide Time: 17:15)

o : —_ Nigl

¥ Copyright 2018 The Temsenflow Auhers

Licensed under the Apache License, Version 2.0 (the “License”);

- Text classification with an RNN

So, let us use RNN models to obtain sentiment of movie reviews. In this example we will
use movie reviews from IMDB and we will use RNN classifier to predict the sentiment
of each of the movie reviews. The output here is binary; the review can either be positive
or negative. We begin by importing the necessary libraries and downloading the movie

review data set using tensorflow datasets.

(Refer Slide Time: 18:15)

Lk E =
ek 9
§0 5A Colas, ®
) Stensor! on 2.x
" et tiception: NPTEL
poss
inport tansorflow_datasets #s tfés
inport tensorflow »
© Tensorflow 2.x selected.
Import matplot]ib and create a heiper function to plot graphs:
(2] isport matplotlib.pyplet as plt
dof plot_grapha (history, string)
1ot (Mstoey. history(string])
pit.plot(hstory. hstory("val_"estring])
pit.xlabel("Epochs”)
pit.yladel(string)
pit.Jegend([string, "val_'estring])
plt.show()
~ Setup input pipeline
9e dataset is a binary classif i the have ether a positive of negative sentiment
Downicad the dataset using TEDS Thefdataset comes mith 8 inbualt subweed 1okenizer
(3] dotaser, info u tfds. Jond(" iach reviews/subucrdstk’, with infoeTrus,
3 _supervisedeTroe)
Train_dotaset, test dotaset » dataset|'traia’), cetaset|'test’)
€ oownloating and preparing dataset indd_revievs (39,23 M) to low_ ¥ 1.0,

rCorpes . [111005 11 005208855
orsce... | <0 100% 080 {00 050000, 14 45 M)

This data set comes with an inbuilt sub word tokenizer.

(Refer Slide Time: 18:24)

i [T >
+Tet @ CopyloDirve Vi mmo v/t
OV RRVS. . — | |

“ - : a NFTEL

[~ « —

As this 15 2 subwords tokenizer, it can be passed any strng and the tokenczer will tokencze &
[4] tokenizer o info. fastures| ‘tent’). encoder

[S) peist ('Vocabulary size: {}'.format(tokenizer.vocab_size))

nes

e Vecabulary

[6) sample_string » ‘Tensorflow is ceol.

string o tokenizer, encode(sample_string)

tekenized -]
prist ('Tokenized steing 4 {)'.format(tokenized string))

original steing o tokenizer.decode(tokenized string)
peint (‘The oelgial steing: ()" format(origlnal_string))

assert original string we sample string

© Tohenizes steing ds (6307, 227, 443, 4265, 9, 274, 7975)
e originel string: Tensortlow s cool

The sokenczer encodes the strng by breghing o subwords f the wond i ot i s ictcnary

(7] fer 23 in tokenized string:
prist ('() weeed [)' format(ts, tokanizer.cacote([ts))))

(Refer Slide Time: 18:27)

, W75 NPTEL

%, shaffle(IPPE S T2
%, padded_batc

t_dutaset, phaded_batch(TOLSIZL, test

«
Q
£
=
=
2

Bud 8 ¢, karas, Sequential model and start with an embedding layer. An embeddieg layer stares 0ne vector per word When called, i converts the secuences of

quences of vectors. These vectors are trainable. After tra words with simias meanings often have simiar vectors

s much more efcient than the equn

ough a tf keras. 1 Dense layer

network (RNN) processes sequence input

Pass the cutgats from cne timestep 10 thev input-aad then 1

After downloading the data set, we will shuffle the data set and we use padded batch
function to obtain the training data set where each sequence has a fixed length. We also

used pattern_batch method to obtain the test data set.

(Refer Slide Time: 19:01)

NPTEL

_data

Tt ATaet v test,

~ Create the model

b se(64
. keras Jayers Dense (1, activations"sipeela’)

Compie the Keras model 10 configure the training process:

Let us come to the model creation part; we are going to use RNN models over here. Here

we use a bi-directional model on top of LSTM; the bi-directional wrapper propagates the

input forward and backward through the RNN layers and then concatenates the output.

This helps RNN to learn long range dependencies.

So, we take the input which is text and pass it through the embedding layer which gets us
a vector for each word. We embed each word into 64 length vector. We pass the output of
embedding to bi-directional layer. So, the output of bi-directional layer is passed to a
dense layer with 64 units and we use radio as an activation function. The output of dense
layer is passed through the output layer which is again a dense layer with a single unit.
As we have binary classification problem here and we use sigmoid as an activation

function here. Let us define the model, compile it and look at model summary.
(Refer Slide Time: 20:55)

Gy

NPTEL

+ Train the model

So, you can see that embedding outputs 64 numbers and the bi-directional LSTM output
64 numbers for each direction: forward 64, backward 64. So, concatenation of that
results into output containing 128 numbers. The dense layer output 64 numbers as we are

using 64 units here and the final layer outputs a single number.

(Refer Slide Time: 21:46)

b. Distributed Trainng of IF modeds - Windows Jourmal - ??
@. Wt Ackons Tocks 3
o - H7-0-OQF - M D

| 5 09 VAOFAX] AEnlnEn N EEs R NPTEL-

« —) Pensc
Gidir (LST™) —> Dens ? e
Embedd'”f

Text —

We start with text we have embedding layer followed by bi-directional LSTM followed
by our dense layer and one more dense layer which is an output layer. We have let us say
an input sequence of length ¢. So, let us say these are all LSTM units. So, here we are
passing the recurrent connection in this particular direction from left to right; we actually

get 64 numbers from the LSTM.

We are essentially passing that output to the next level and we are collecting the outputs
only at the last layer. In the other pass, we start with last word and do LSTM calculations
and pass the recurrence from right to left; in a sense because we started with the last
word and we are going up to the first word and then both these outputs kind of

concatenated and we get 128 units from this.

(Refer Slide Time: 25:07)

U Distributed Trainng of IF models - Windows Journal - ??

f w bt Actons Took Hep il
. IR T] ’

@ 5 0% Lel-9 (LIl L] BN EEw R NPTEL:

p— Nnse
Bidir (LST™) — Oense ? Pe
Emb edd: j

Text —

We start with LSTM model, then we take an input. So, we have LSTM model that
outputs 64 number for input at each position. So, this is the forward pass because the

output of t"* position or i position is being used as a recurrent connection in express i

<1>

position. For example, the output of x is being used as a recurrent connection for

X<2>.

So, this is called the forward pass in bi-directional one; we also define some kind of a
backward pass, where you pass the result of i’ node to i — 1 node as a recurrent
connection. For example, for the second position; the output of the second position will
be passed back to the first position and will be used as a recurrent input. And we
concatenate the outputs of let us at first position; the forward pass and the backward

pass.

So, since here we are outputting 64 values each; the concatenation outputs 128 values.
So, we perform this concatenation at each position for example, these two will get
concatenated or these two will get concatenated and each one of them will output 128

numbers.

(Refer Slide Time: 29:19)

Amlcation w X teat Classt X R Tedgeeatonwth X ot guerationpyr X | B Teme seves borecms X e swesipyd - X | 4 =

& colb reseurch goage com #

A 1

Compue the Keras model 10 configure the training process

[31) medel.c

rvoB B!
Q =l omany)

B Medel: "se
Lyer (type) Outpat Shape Pares ¢
ntedding (Emvesding) None, None, 64 BT
sidirections] (Sldirections] (None, 128) ee0as
danse (Danse) C
dense L (Dense) None, 1]

1 parans: 598,209
e parans: 598,209
inable params: @

And is 128 numbers are passed to dense layer which has got 64 units.

(Refer Slide Time: 29:31)

@hd.um. x eut classlic X F Tetgrenmonwth X ot grerationpyrt X | B Tome soves forecas X e seresipyb-C X | 4 -
C @ coubresewrchgoogle com # i
EL

A
Vosmm— * /g | v
> 1)
didirectional (8idirectional (None, 128) 6048
(2]
dense (Dense) 2%
dnse) (Dense) None, 1 “
ans: 598,209
params: $98,209
Nonstrainable pacans: ¢
R N |

Test_loss, test_acc o model. evalate(test_dataset

priat('Test Loss: (). format(test_loss))
priat('Test Accwracy: (}'.format(test_acc))

The above model does not mask the padding applied 10 the sequences. This can lead 10 shewness if we train on padded sequences and test on unpadded
sequences. Ideally the model would learn 1o ignore the padding, but as you can see below it does have & small effect on the output

11 the preciction s > 0.5, s positive else 1 is dagative

After setting the model; we will train the model for few epochs so that we get to

experience output.

(Refer Slide Time: 29:46)

eation et X O tedt cshvawn X P Ted geentonwth X ot grerationigyr X | P Teme seves borecas X e seiespyd (X | 4 =
C & colbresearchgoogle com e * H
EL
+Code +Ten o /v
> : :
dldirectional (sidirectional (None, 128) 660sn
T dnse (oense) (heoe, &) 25
éanse_d (Dense) None, 1) “
Total parans: 538,209
1 params: 598,209
* Train the model
R N |

aset, epochsel,
datastest_dataset)

’ history » model. fit(brai
wlid

w Epoch 172

WARNTNG: tensorfiowiProm /tensortlon-2,0.9-rc0/python. 6/ tensorflou_core/python/ops/mn_inpl py:18): whare (from tensorflow,pythen.ops.arrey_ses) s d¢

Instructions for updat
2

the same b A5t rule a3 np.vhere
msorfiow-2,0,9:rcd/pythond. 6/ tensortlow s

/python/ops/nn_impl py:183; whare (from tensorflow, python.ops.array_ops) is de

40776844598> could not e tramsd
40776844598) could not be trassd
70776884598> could rot be transformed and

MARNING: tensorfiow: tatity <fun
WARNIVG: tensorflow: Eatity <fun
WARNIVG: Entity cfunction Fesction. {nitial 4
228 49/5tep + Jovs: 0.6926 - accuracy: 9,502

And we store the progress of the model in the history object, so that we can later plot

how the training progressed.

(Refer Slide Time: 30:09)

dnlcsonwe X 0 tet cshiwen i X P Tetgeenonwth X | o et grentiongyrt X | B Time seses frncaste X | o e seiesipyd-C X | 4 -
C & colbresearchgoogle com e XA IY v (]
EL
+Code +Tet @ CopytoDive ./ v

] cef sample predict(sentence, pad)
tokenized_sample_pred_tet o tokenizer.encode(sample_pred_test)

1¢ pod
tokenized_sample_pred_text » pad_to_size{tokenized_sample_seed_test, 64)
predictions « model predice(tf. expand_dins(tokenized_sample seed_text, 0))

return (predictions

et en o

sample_pred_taxt » (“The movie was col. The animution and the g

wire out of this world. I woul s
prodiceions » sample_presict(sample pred
peist (predictions)

sample pred_text = ("The novie ws cool, The animation and the gry;
ware ot of this werld, T weuld recomend

predictions » sample_predict(sample pred

peint (precictions

i

] plot_graphs(istory, ‘accuracy

plot_grashs(history, ‘loss’)

The training usually takes longer to complete because we are trying to train on a large

data set.

(Refer Slide Time: 30:31)

N3 the same Beoadeast r
n /tensorslon-2.0.0-r

© etion, tet e « el waliate(tet ditenet)

prist(Test Loss: ()" format(test_loss))
print('Test Accaracy: (}'.format(test_ac))

pences and test 0n unpadded

ouput

We can use the evaluate function on the model and obtain the test loss and the training

loss. If the prediction has probability greater than 0.5, we mark it as a positive review;

otherwise we mark it simply as a negative review.

We will also check how the model performance effects when we give sample text

without padding and with padding. Ideally, the model should learn to ignore the padding,

but you will experience that there is some effect of padding on the output.

(Refer Slide Time: 31:39)

- / v
piot_grephs(history, 'accures
plot_graghs (hstor; 083
+ Stack two or more LSTM layers
Keras recurrent layers have two avadable modes that constructor argument
R size, timesteps, outpat_features
. i
© ° []

© el « thkeens Saquesnial |
6. keras. Layers Esbedding tokenizer. vecab_size, &),
of keras. Jayers, Bighractional (24, heras. Layers . LSTH(
€, retien_egwscenntrw)), |

So, now that you have trained our first model with a bi-directional LSTM, we will try to
stack up couple of bi-directional LSTM and get model with more complexity. Let us see
how to stack up different LSTMs and obtain in the model with more capacity. So, here
we define the first bi-directional LSTM model; here we put return_sequence = true so

that we get output from each node.

Each LSTM outputs 64 numbers in each direction, so the concatenation that happens in
bi-directional LSTM will result into 128 numbers coming out of this particular layer. The
second bi-directional LSTM will contribute to 64 numbers that will be passed into

another dense layer followed by an output layer.

(Refer Slide Time: 32:55)

You can compile the model and fit the model and use the train model to calculate the loss

and accuracy on the test set.

Just in case of the earlier model where we used a single bi-directional LSTM. This is the
first example where we used bi-directional LSTM for predicting sentiments of movie
reviews. We will have couple of more examples of using LSTM models for time series

forecasting and for text generation.

