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Lecture - 29

Boosted Trees

You have already studied how to use tf.estimator API for training linear classifiers. We will
use tf.estimator API to train a boosted tree classifiers, which are quite popular in the machine

learning community for modeling structured data.
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- How to train Boosted Trees models in TensorFlow
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This tutorial is an enchto-end walkthrouch of training a Gradient Boosting mode using decision trees with the tF. asinator API. Boosted Trees models are anang
the most popular and effective machine learring approaches for both regression and classification. It is an ensemble technique that combines the predicticns from
several (think 10s, 1005 or even 10003) tree models.

Boosted Trees models are popular with many machire learming pracii they can achieve impr with minimel hfperparameter uning.

~ Load the titanic dataset

You will be using the titanic dataset, where the (rather morbic) goal is to predict passenger survival, given characteristics such as gender, age, class efc.

[ ] fron _future__ inport absclute_inpert, division, print_function, unicode_literals

inport numpy as np
dnport pandas as pd

The boosted tree model is an ensemble technique that combines predictions from tens and
hundreds of trees. Another good point about boosted tree models is that they achieve the
impressive performance on structured data with minimal hyper parameter tuning. Hyper
parameter tuning is one of the big problems with neural networks. And we mostly need to use
specialized services for hyper parameter tuning in neural networks because there are just to

many hyper parameters.
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~ Load the titanic dataset

You will be using the titanic dateset, where the (rather morbic) oal is to predict passenger survival,given characteristics suh as gender,age, class, efc.

[1] from _future__ dnport absclute_inpert, division, print_function, unicode_literals

inport nuny as np
inport pandas as pd

from Tpythen.display inport clear_output
from metpletlib import pyplot as plt

rage. googleapis. con/tf-datasets/titanic/train.csv')
age.googleapis. con/tf-datasets/titanic/eval. csy’

VR 3
9«
Ipip install tf-night1y-2.6-previed
except Exception:
pass

inport tensorflow as tF
tf.randon. set_seed(123)

we Collecting tf-nightly-2.8-preview
ing https://files.pythonhosted. org/p: [be/6b/2576¢ 3£600115¢0d30¢2014¢7e5b51697572597e9c1¢1¢7357/

0 preview-2.0.¢

The dataset consists of a training set and an evaluation set:

« dftrainand y_train are the training set—the data the model uses toleamn.
+ The model is tested against the eval set, dfeval, and y_eval

Fortraining you willuse the fllowing features

Feature Name Description
sex Gender of passerger

So, in this exercise we will use titanic dataset where our goal is to predict the probability of
passenger surviving. As we have already seen this titanic dataset in the context of logistic

regression, we will not spend a lot of time on exploration of titanic dataset.

Let us download the titanic dataset. The titanic dataset already has a training and evaluation
split. So, we read training and evaluation data in pandas dataframes and pop the label column
from the dataframe to create another dataframe for labels. So, we have dftrain and dfeval as
data frames containing features. And y train and y_eval containing labels corresponding to

train and the evaluation dataset.
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inport tensorflow as tf
tf. randon. set_seed(123) NPTEL

we Collacting tfenightly-2.8-previen
Downloading https://files.pythonhosted. org/packages/be/6k, 15dbd3ef201¢f7e5b51d97572597eS¢1cl tf nightly 2.0 preview-2.0.¢
| 88.9M8 1.3M8/s
1 in /usr/lccal/lib/python3.6/cist-packages (from tf-nightly-2.8-preview) (3.7.1)
Requirament already satisfied: .7.9 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.8-preview) (6.7.1)
Requirement alresdy satisfisd: keras-zpplications>s1.8.8 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.8-previen) (1.0.8)
Requirament alresdy satisfied: astory=8.6.8 in /usr/local/lib/python3.6/dist-packages (from tfenightly-2.8-previeu) (€.5.8)
Requirament already satisfied: i 6 In fusr/local/lib/pythons.6/dist-packages (From tf-nightly-2.0-preview) (1.15.)
Collecting opt-einsumy=2.3.2 (from tf-nightly-2.8-preview)
Downloading https://filas.pythonhosted. org 2375973¢a2f05977257624¢01/0pt einsun-3.9.€.tar.gz (66k
| 718 23.0M8/5
Requirsment alresdy satisfied: google-pasta>=8.1.6 in jusr/local/lib/python3.6/dist-packsges (from tf-nightly-2.8-preview) (8.1.7)
Requirement alresdy satisfied: termcolor>=1.1.8 in /usr/local/lib/python3.6/dist-packages (fron tf-nightly-2.8-preview) (1.1.8)
Requirement already satisfied: wrapt>=1.11.1 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.e-preview) (1.11.2)
Requirement alresdy satisfied: keras-preprocessingy=1.8.5 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.8-preview) (1.1.8)
Collecting thenightlycl.15.9a8,)=1.15.8a8 (from tf-nightly-2.0-pr:
Downloading https: //filas. pythonhosted. org/packages, 499
IR | : 11 32178/
Requirement already satisfied: sixn>=1.16.8 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.@-preview) (1.12.€)
Requirement already satisfied: gast>=e.2.@ in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.-preview) (8.2.2)
Requirement alresdy satisfied: nuapy¢2.8,5=1.15.8 in /usr/local/lib/python3.6/dist-packages (from tf-nightly-2.8-previe)
Collecting tensorflow-estimator-2.0-preview (from tf-nightly-2.8-preview)
Downloading thonhosted. org/packages/35/7b o 85
| 4seks 39.6M8/s
Requirement alresdy satisfied: wheel>=6.26 in /usr/local/1ib/python./dist-packages (from tf-nightly-2
Requirement already satisfied: setuptcols in /usr/local/1ib/python3.6/dist-packages (from protobuf=3.6.1->tf-nightly-
Requirement already satisfied: hSpy in /usr/local/lib/python3.6/dist-packages (from keras-applications>=1.8.8->tf-ni
Requirement alresdy satisfied: 1015 in /usr/lecal/1i/pychon3.6/dist-packages (from tb-nightly<1.1s.
Requirement alresdy satisfied 6.8 in [usr/lecal/lib/python3.6/dist-packages (from tb-nightly<1.16.0
Building wheels for collected packages: opt:
Building wheel for opt-zinsum (setup.py)
Created wheel for opt-einsun: ilenames
Stored in directory: /root/.
Successfully built opt-einsum

I

Requirement already satisfied:

1763, lcca71c8634e8/tb nightly-1.15.8a20199817-¢

73861 4849750737/ ¢! imator 2.8 pre

pt_einsun-3.6.8-cp36-none-any.whl size=58498 sha256=20a613c46cef47s
32/ 773057

Let us install let us install TensorFlow 2.0 and set a random seed to 123. This helps to make

sure that across multiple runs we get the same results.
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The dataset consists of a training set and an evaluation set

« dftrainandy_train are the baining setthe data the model uses olearn.
+ The medel s tested agairstthe ezal set, dfeval, and y_eval

For training you will use the following features:

Feature Name Description
sex Gender of passerger
ag Age of passenger
n_siblings_spouses # sibings end artnersaboard
parch +#of parents and chiren board
13 fate Fere passenger paid
class Passengers class on ship
deck Which deck pessenger was on
embark o Whichtown passenger embarked from
alone Ifpassenger was aene:

~ Explore the data

Lets first preview some of the data and create summry siatstios on the training set.

dtrain.head()

sex age n_siblings spouses parch  fare class  deck embark_town alone
0 make 220 10 72500 Thrd unknown Souhamptor
1 female 38.0 1 0 71.2833  First C  Cherbourg n

We know that titanic dataset has about nine features that describes each passenger based on

their gender, age, their class, their embarkation town and some other features.
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~ Create feature columns and input functions

The Gradient Boosting estimator can utiize both numercc and categarical feztures. Feature columns work with all TensorFlow estimators and their purpose s to

define the for modeling yp feature engineeri Iie one-hot-encoding. normalization, and bucketization. In
this tutorial, the fields in CATEGORICAL_COLUMNS are transformed from l colt 1o one-hot-encoded colur (indicator column):

[] fc = tf.festure_colum
CATEGORICAL_COLUMNS = ['sex’, 'n_siblings_speuses’, 'parch’, ‘class’, 'deck’,
embark_town', ‘alone']
MMERIC_COLUMSS = [‘age’, ‘fare']

def one_hot_cat_column(feature nane, vocab):
return tf_feature_coluan.indicator_column(
+f feature_colum, categorical_column_with_vocabulary_list(feature_nane,
)

feature_colums =

for feature_name in CATEGORICAL COLUMNS:
# Need to one-hot encode categorical features.
vocabulary = dftrain] feature_nane].unique()
feature_columns.append (ore_hot_cat_column(feature_name, vocabulary))

for feature_name in NUMERIC_COLUMIS:

Feature columns  append (tf’feature columnuneric colum(festure nane

We first convert the features into feature columns. Feature columns work with all
TensorFlow estimators and their purpose is to define features for modeling. Gradient
boosting estimator can utilize both numeric and categorical features. So, what we will do is,

we will convert the categorical features into one hot encoding.
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[3] fe = tf.feature_colum :
* CATEGORTCAL_COLIMNS = ['sex', 'n_siblings_spouses', 'parch’, 'class’, 'deck’, !
foun', ‘alone’

NUMERIC_COLUMNS = [‘age’, ‘fare']

def one_hot_cat_column(feature nane, vocab):
return tf.feature_colunn.indicator_column(
tf feature_colum. categorical_column_with_vocabulary_list(feature_name,

Feature_colums = []

vocabulary = dftrain[Feature_nane].unique()
Feature_columns..append(ore_hot_cat_column(feature_nane, vocabulary))

for feature_name in NUMERIC_COLUMIS:

Feature_columns .append|t. feature_colum.nuneric_colum(festure_nime,
dtype=tf.float32))

You can view the transformation that a feature column produces. For example, here is the output when using the indicator_colum on a single example:

X B CoDE TEXT

Q  @amle = cice(éftrain.heac(1)
¢lass_fc = tf.feature_colunn.indicator_colunn(tf. feature_column.categorical_colum with vocabulary_list('class', (‘First', 'Secord’, 'Tl
print{'Feature valu format(exanple[ " class'].1loc[e]))
print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(exanple).numy())

WARNING: Logging before flag parsing goes to stderr.
1818 27:24:01,050237 139768318156720 deprecation.py:323] From /usr/local/lib/python3. §/dist-packages/tensorflou_core/pyt
Instructions for updating:

The old _FeatureColum APTs are being deprecated, Please use the new FestureColumn APTs instead.

WeB18 97:24:01.891720 139760318158720 deprecation.py:323] From /usr/local/lib/python3.s/dist-packages/tensorflou_cory
Instructions for updating:

The old _FeatureColum APIs are being deprecated, Please use the new FestureColumn APTs instead.
Feature value: "Third"

One-hot encoded: [[@. 3. 1.]]

For every categorical column we first obtain the vocabulary and then we pass the vocabulary

to categorical column with vocabulary list. And the output of that is fed into the indicator



column, which converts the categorical column or each value in the categorical column into

one hot categorical column.

Numerical features are fairly easy to handle. And we simply use numerical columns of
feature column to represent each of the numerical features. We combine both categorical

features and numerical features into feature columns.

(Refer Slide Time: 05:19)

RAM

+Text 4 CopytoDrive v Disk v S Ed _®

tf.keras. layers.DenseFeatures( Faatiire_colums) (example) .nuspy( )
NPTEL

P
e ,
7.25, i
., Lo, e,
L 11, deypesfloats2)

T
o ,
1

P

8. ,
) G

8.

[}

ERCE R

1
a8y
PECE
e
[}

Next you need to crecte the input functions. These willspecify how data willseread into our madel for both raining and inference. You will use the
from_tensor_slices method in the £7.data APItoread in data directy from Pandas. Thisis suitablefor smaller, inmemery datasets. For larger catasets the

1f.data APl supports a variety o il formats (including ¢sy) so that you can provess datasets that do not fitin memary,

nce this ds such a small dtaset
y_train)

ut_fn(X, y, n_epochs=lione, shufflesTrue):
)

dataset = t¥.data.Dataset. fron_tensor_slices((dict(X), y))
if shuffle

dataset = dataset. shuFfle(NUM_EXANPLES)
1 as many tines as need (

~ Train and evaluate the model
Below you willdo the following steps.
1. Initialize the mode, specifying the features and hyperparameters,

2. Feed the training data to the modzl using the train_input_fn and train the mocel using the trair function
3. You will assess model performance using the evaluation sei~in this example, the dfeval DataFrame. You will verifythat the predict

Let us look at the dense feature representation of the feature columns. And you can see that
all the features are shown over here. Where there are some numerical features and categorical
features are converted into one hot encoding as you can see it here. Next we need to create an
input function. This will specify how data will be read into our model for both training and

inference.

We will use the from tensor slices() to create the dataset. Here the dataset is in memory and
stored in pandas dataframe. So, after creating the dataset we shuffle the dataset where we set
the buffer size to the number of examples. And we cycle through the dataset as many times as

we need. Here the n_epoch is set to none.

So, we can cycle through dataset as many times as we need. And we do not really use

batching because all the data is in memory. And hence we have dataset.batch operation where



the batch size is the number of examples. So, this input_function returns it to dataset, which

will be consumed during training and inference time.

So, we make the input functions for both training and evaluation. At a time of evaluation, we
set shuffling to false and number of epochs to one. As the number of epoch is one, this makes

sure that we iterate through the evaluation data only once.
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= make_input_fn(dfeval, y_eval, swiflesFalse, n_epochs=1)
~ Train and evaluate the model
Below you will o the following steds:
1. Initialize the model, specifying the features and hyperparameters.
2. Feed the training data to the mode| using the train_input_fn and train the model using the trair function.
3. You will assess model performance using the evaluation set—in this example, the dfeval DataFrame. You will verify that the predictions match the labels
fromthe y_eval array.
Before training a Boosted Trees model, let's firsttrain a inear classifier logistic regression model). Itis best practice to start with simpler model o establish a
benchmark
DR ACK N I

©  linear_est = tf estinator. LinearClassifier(feature_colums)

# Train nocel.
Linear_est.train(train_input_fn, nax_steps=1¢0)

ear_est.evaluate(eval_input_fn’

print(pd.Series resulr)[,

0.765152
£.625000
0.83284¢
9.78%631
0.478908
global_step 120.608000

Before building a boosted tree model let us build a logistics regression classifier to establish a
baseline for this problem. So, we define logistic regression classifier with

tf.estimator.LinearClassifier. And supply feature columns as an argument.

We then train the classifier by specifying the input function and we train for maximum_steps.

We evaluate the model with the evaluation_input fn. And finally, we print the result of the

evaluation.
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global_step 120.608000
dtype: floatéd

Next lets train a Beosted Trees model. For baosted trees, regression (Boost 5 and (BoostedTressClassifier) are supported
Since the goal is to predict a class - survive or not survive, you vill use the BoostedTreesClassifier.

AR N B

est.train(train_input_fn, nax_steps=108)

result = est.evaluate(eval_input_fn)
clear_output

print(pd. Serdes(result))

accuracy 9.825758
accuracy_baseline o )
aue 2.872360
auc_precision_recall  0.85732
averags_loss 0.411853
1abel/nean 8.375000
loss .411853
precision 6.784946
prediction/mean 0.362281
recall 0737374
globsl_step 190.00000

dtype: floatéd

Now you can use the train model to make predictions on a passenger from the evaluation set. Tensorflow models are optimized to make predict
collection, of examples at once. Earler the eval_input_fn is defined using the entire evaluation set

You can see that we got accuracy of 76 percent. The baseline accuracy 62 percent and we got
precision of 70 percent and recall of 64 percent. Now, let us train a boosted tree classifier for
boosted trees there are TensorFlow supports boosted tree regressor and boosted tree

classifier. Here since we are interested in predicting the survival or non survivals.

Here since our object is to predict whether passenger survives or not we are going to use
boosted tree classifier. In BoostedTreeClassifier, we specify the feature columns and the
number of batches. We specify the maximum number of steps the model will stop training
once the specified number of trees are built. And we evaluate by supplying the evaluation

function.

Let us train the boosted tree classifier and check the output. So, after training the boosted tree
classifier, we see that it achieves accuracy of 82 percent, which is 6 percentage points higher
than the linear classifier. It achieves precision of 78 percent and recall of 73 percent, which is

also higher than the linear classifier.
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accuracy 8.825758
accuracy_baseline 2.625000 NPTEL

auc 0.872360

cision_recall  0,85732

0.411853

8.375000

0.411853

precision 0.784946

prediction/mean 0.382282

recall 0.73737¢

global_step 120.00000

dtype: Floatéd

Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or
colection, of examples at once. Earler the eval_input_fn is defined using the entire evaluation set
AR R
©  pred dicts = List(est.predict(eval_input fn))
probs = pd.spries([pred['probabilities']T1) for pred in pred dicts])

probs. plot (kinds'hist’, birs=20, titles'predicted probebilities’)

plt.show()
predicted probabilities
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So, we can see that the model the boosted tree model performs better than the logistic
regression model in this particular dataset. So, now, we can use the model to make
predictions on a passenger from the evaluation set. TensorFlow models are optimized to

make predictions in a batch or collection of examples all at once.

So, we give the eval input function and this eval input function is defined on the entire
evaluation set. We look at the probabilities from prediction and plot it. So, you can see that
there are a lot of passengers with probability of surviving as only 0.1. And there are few

passengers who have got probability equals to 1.
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© from skleam.netrics inport roc_curve

pr, tpr, _ = roc_curve(y_eval, probs)
plt.plot(for, tpr]

plt.tile(‘RXC curve')
plt.xlabel('false positive rate')
plt.ylabel('true positive rate')

plt.xlim(8,)
plt.ylim(e,)
plt. show()
;
15 ROC curve,
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false positive rate

Let us plot the ROC curve with a ROC with roc_curve from sklearn.metrics package. For
ROC curve, we have to specify the actual labels and the probabilities. And it returns the false
positive rate and true positive rate. You plot ROC curve with false positive rate on the x axis
and y and true positive rate on the y axis. The ROC curve gives us a better idea about tradeoff

between two positive rate and false positive rate.



