
Practical Machine Learning
Dr. Ashish Tendulkar

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 27

Estimator API

So far in this course you are using tf.keras as an API to build our machine learning models.

tf.keras is believed to be a simpler API for building models in TensorFlow 2.0. There is

another way to build bouncing TensorFlow - through Estimator API.

Estimator is TensorFlow’s high level representation of a complete model and it has been

designed for easy scaling and a synchronous training. In this module, we will build machine

learning models with TensorFlow estimator API. In this exercise we will use Iris

classification problem for demonstrating how to build machine learning models with

estimator API.

(Refer Slide Time: 01:16)

Let us begin by first importing TensorFlow and number of libraries that we need. We are

mainly going to use Pandas as a library for manipulating structured data.

(Refer Slide Time: 01:44)

Now, that we have installed the required libraries or required packages. Let us get into

building the model with TensorFlow estimator API. In this exercise we will build and test a

model for classifying Iris flowers into three different species based on the size of the sepals

and petals.

Iris dataset has four features and one label. The four features identify the following botanical

characteristics of individual Iris flowers. There is a sepal length and width, and petal length

and width. So, there are four columns and there are three different species in our dataset there

is Setosa, Versicolor, and Virginica as species and we have to classify the incoming flower

into one of these three categories.

And a flower is represented by four features - sepal length and width, and petal length and

width. So, the file the input file has five columns sepal length and width petal length and

width and the name of the species.

(Refer Slide Time: 03:00)

Let us download and parse Iris data using Keras and Pandas. Let us get the training and test

file and read the CSV to get a Pandas data frame. So, the training data is saved in train

dataframe and test data is saved in test dataframe. Let us examine the training data.

(Refer Slide Time: 03:30)

Let us look at the first five examples in the training; you can see that we have four columns

and a last column is the desired label that we want to learn. So, here we want to learn the

mapping between these four features to the species. Let us get the species column which is

the label from the data frame out and store that into; and store that into train_y list and for test

we do the same thing and store that in test_y list.

(Refer Slide Time: 04:08)

Let us look at the first five columns of the training now. You can see that the species column

has been removed from the training because of using the pop command. Everything else

remains the same.

(Refer Slide Time: 04:23)

If you want to use estimator, there are three steps. You have to create one or more input

function that defines how the data will be input to the estimator, you have to define feature

columns and then instantiate an estimator specifying the feature columns and various hyper

parameters and call appropriate method on the estimated object.

Let us understand how this task can be implemented for Iris classification. First let us create

input function. Input function is a function that returns a tf.data.Dataset object which outputs

the following two elements as tuple, we have features and labels.

(Refer Slide Time: 05:11)

Let us look at how the dataset object looks. We have a dictionary of features which contains

the feature name and list of values. You can see that the input function returns the feature

dictionary and the label array.

In order to keep things simple we will be loading the data with pandas and we will build an

input pipeline from this in memory data. The Dataset API is very powerful as it can easily

records from a large collections of file in parallel and join them into single stream. However,

for the Iris dataset this particular functionality will not be required.

So, we will use here Pandas dataframe and create the data set using from_tensor_slices

function. We take the dictionary of features and array of labels to create a dataset object. In

case of training we shuffle the data set object and return the dataset object in a specified batch

size.

(Refer Slide Time: 07:11)

Next we define feature columns corresponding to the features. Since all the features are

numeric, we will use numeric feature column.

(Refer Slide Time: 07:21)

Now, that we have defined our input function and created feature columns, the next task is to

instantiate an estimator. There are several premade classifier estimators defined in

TensorFlow. There is a DNN classifier that is used for deep models on multiclass

classification. A DNN linear combined classifier is used for wide and deep model.

Wide model works on a large number of features like a very large one hot encoding, and deep

model works with the features which come from embeddings. So, DNN linear combined

classifier is used for wide and deep models. Linear classifier is based on linear model. For Iris

problem we will use a DNN classifier that helps us perform multiclass classification.

(Refer Slide Time: 08:20)

Let us see how to instantiate this estimator. Here we define a DNN classifier with two hidden

layers each with 30 and 10 nodes respectively. We also specify that there are three classes, so

that the corresponding output layer can be constructed and we specify our feature columns as

input to the DNN classifier. Let us run, let us instantiate the DNN classifier.

(Refer Slide Time: 08:56)

So, we will train the model by calling the estimator’s train method where we specify the input

function and also specify the number of steps for which the training loop should be run.

Once the model is trained, evaluate the model with the test data. So, we use the same input

function but instead of train we are going to pass the arguments corresponding to the test

data. We set training to be false as against the training to be true at the time of training.

(Refer Slide Time: 09:36)

And you can see that we achieve accuracy of 66 percent, we achieved test accuracy of 66

percent on the Iris classification.

(Refer Slide Time: 09:48)

Let us use this particular model for making predictions on unseen data or for inferencing. So,

here we will have to first specify what is the expected output and then we specified the

features. So, here the feature vector is specified as a dictionary where the key is the name of

the column or name of the feature and followed by a list of values. So, here we are specifying

three examples with their value specified for each of the feature in a list.

For example we have a sepal length of 5.1 5.9 and 6.9 corresponding to the three examples

and they have sepal width of 3.3, 3.0 and 3.1. So, 5.1 SepalLength the flower with

SepalLength of 5.1 has SepalWidth of 3.3, PetalLength of 1.7 and PetalWidth of 0.5.

So, this is how you have to interpret an example, but it is specified in a slightly different

format or in a transposed form. We specify the input function to get a dataset object from

tensor slices and we give the predict_x as a dictionary to the input function which returns a

dataset object on which we apply the prediction. So, let us run this and see what kind of

predictions are coming out.

(Refer Slide Time: 11:33)

And let us look at the predictions and the expected result and we also we will also print the

probabilities. We can see that the first prediction is Setosa where the actual label was also

Setosa and we can see that this prediction is with quite good probability or quite good

confidence of 82 percent. The second prediction is Virginica where the expected or where the

actual prediction was Versicolor, but you can see that the probability of the prediction is less

than 50 percent.

In the third case, the prediction is Virginica which matches the actual label of Virginica and

has got 60.5 percent probability of the label. So, in this module we learnt how to use tf

estimator API and we applied that for Iris classification. We understood that in order to

define a tf estimator API we have three main steps we have to specify one or more input

functions. We have to specify the feature columns and we have to instantiate tf estimator API

with appropriate configuration.

In the next session we will use this tf estimator API for building a linear model. Hope to see

you in the next session.

