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Lecture - 27
Estimator API

So far in this course you are using tf.keras as an API to build our machine learning models.
tf.keras is believed to be a simpler API for building models in TensorFlow 2.0. There is

another way to build bouncing TensorFlow - through Estimator API.

Estimator is TensorFlow’s high level representation of a complete model and it has been
designed for easy scaling and a synchronous training. In this module, we will build machine
learning models with TensorFlow estimator API. In this exercise we will use Iris
classification problem for demonstrating how to build machine learning models with

estimator API.
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~ First things first
In order to get started, you will first import TensarFlow and a number of libraries you will need.
TV RW
Q fron _future_ imort absolute_import, division, print_function, unicode_literals
!pip install tensorflow==2.8.8-betal
import tensorflow as tf

import pandas as pd

Collecting tensorflow==2,0.0-betal
Downloading https://files.pythonhosted.org/packages/29/6c/2c9a5c4d095c63¢2fb37d20defRed 92685 Ff7aced243d6aae25862(
/RRERERRRRRRERNRMMNRNNNNNNY | o7 v 1.31/s
Collecting tb-nightly<1.14.0a20190664,>=1.14.0a20190603 (from tensorflow==2.0.0-betal)
Downloading https://files.pythonhosted.org/packages/ad/96/571b875¢d81ddadd5dfal422a4f9d749e67¢0aBdafafeb33adesfs:
L [EREEELE
Requirement already satisfied: six>=1.18.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.0.0-betal
7= Collecting tf-estimator-nightly<1.14.0.dev2019060502,>=1.14,0.dev2019060501 (from tensorflow==2.0.8-betal)
Downloading https://files.pythonhosted.org/packages/32/dd/99c47dde@7dcf10d53Fd895611h863732646F23659c618a373e850:
equirement already satisfied: keras-applications»=1.8.6 in /usr/local/lib/python3.6/dist-packages (from tensorfloy
‘REqLi!‘E‘ﬂEnt already satisfied: absl-py>=@.7.8 in /usr/local/lib/python3.6/dist-packages (from tensorflow==2.8.0-be’

Requirenent already saticfieds wranteol 111 in Aucp/local/lib/ovihend 6/dict packaces (fron fencorfloyzz2 8.0 het

{

NPTE

Let us begin by first importing TensorFlow and number of libraries that we need. We are

mainly going to use Pandas as a library for manipulating structured data.
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round ex1sting 1nstallation: tensortlow 1.14.9
o Uninstalling tensorflow-1.14.8:
Successfully uninstalled tensorflow-1,14.0
Successfully installed tb-nightly-1.14.8a20190603 tensorflow-2.0.8b1 tf-estimator-nightly-1.14.0.dev2019060501

v The data set

The sample program in this document builds and tests a model that classifies Iris flowers into three different species based on the size of their
sepals and petals.
You will train a model using the Iris data set. The Iris data set contains four features and one |abel. The four features identify the following botanical
characteristics of individual Iris flowers:

« sepal length

« sepal width

« petal length

« petal width

Based on this information, you can define a few helpful constants for parsing the data

§(5V7[0Lur-W7NAMES = ['Sepallength', 'SepalWidth', 'Petallength', 'PetalWidth', 'Species']
'SPECIES = ‘['Setosa‘, 'Versicolor', 'Virginica']

NPTEL
Next, download and parse the Iris data set using Keras and Pandas. Note that you keep distinct datasets for training and testing

Now, that we have installed the required libraries or required packages. Let us get into
building the model with TensorFlow estimator API. In this exercise we will build and test a
model for classifying Iris flowers into three different species based on the size of the sepals

and petals.

Iris dataset has four features and one label. The four features identify the following botanical
characteristics of individual Iris flowers. There is a sepal length and width, and petal length
and width. So, there are four columns and there are three different species in our dataset there
is Setosa, Versicolor, and Virginica as species and we have to classify the incoming flower

into one of these three categories.

And a flower is represented by four features - sepal length and width, and petal length and
width. So, the file the input file has five columns sepal length and width petal length and

width and the name of the species.
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CSV_COLUMN_NAMES = ['Sepallength’, 'Sepalliidth', 'Petallength', 'PetalWidth’, "Species']
[ ] SPECIES = ['Setosa’, 'Versicolor', 'Virginica']

Next, download and parse the Iris data set using Keras and Pandas. Note that you keep distinct datasets for training and testing

(RN 3
° train_path = tf.keras.utils.get_file(
"iris_training.csv", "https://storage.googleapis.com/dounload. tensorflow.org/data/iris_training.csv")
test_path = tf.keras.utils.get file(
"iris_test.csv", "https://storage.googleapis.com/download. tensorflow.org/data/iris_test.csv")

train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0)
test = pd.re‘advcsv(tastipath, nanes=CSV_COLUMN_NAMES, header=8)

Downloading data from https://storage.googleapis.com/download. tensorflow.org/data/iris training.csv
8192/2194 [
Downloading data from https://storage.googleapis.com/download. tensorflow.org/data/iris test.csv
8192/573 [

NameError Traceback (most recent call last)
<ipython-input-2-714dedbedada> in <module>()
4 "iris_test.csv", "https://storage.googleapis.con/download. tensorflow.org/data/iris test.csv")
5
--> 6 train = pd.read_csv(train_path, nanes=CSV_COLUMN_NAMES, header=8)
7 test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0)

NPTELameError: name 'CSV_COLUNN_NANES' is not defined

Let us download and parse Iris data using Keras and Pandas. Let us get the training and test
file and read the CSV to get a Pandas data frame. So, the training data is saved in train

dataframe and test data is saved in test dataframe. Let us examine the training data.
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0 Sepallength Sepalliidth Petallength PetalWidth Species

0 64 28 56 22 2
1 50 23 33 1.0 1
2 49 25 45 1.7 2
3 49 31 1.5 01 0
4 57 38 17 0.3 0

For each of the datasets, split out the labels, which the model ill be trained to predict

[ ] train_y = train.pop('Species')
test_y = test.pop('Species')

# The label column has now been removed from the features.
train,head()

erview of programming with Estimators

at you have the data set up, you can define a model using a TensorFlow Estimator. An Estimator is any class derived from
- timator. Estimator. TensorFlow provides a collection of tf. estimator (for example, LinearRegressar) to implement common ML
EL

algorithms. Beyond thase, you may write your own custom Estimators. We recommend using pre-made Estimators when just getting started.

Let us look at the first five examples in the training; you can see that we have four columns
and a last column is the desired label that we want to learn. So, here we want to learn the

mapping between these four features to the species. Let us get the species column which is



the label from the data frame out and store that into; and store that into train_y list and for test

we do the same thing and store that in test _y list.
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For each of the datasets, split out the labels, which the model will be trained to predict.
rVeofi

o train_y = train.pop('Species')
test_y = test.pop('Species')

# The label column has now been removed from the features.
train,head()

Sepallength SepalWidth Petallength PetalWidth

0 64 28 56 22
1 5‘0! ‘ 23 33 1.0
2 49 25 45 17
3 49 31 15 0.1

57 38 1.7 0.3

W
N@Vérview of programming with Estimators

Let us look at the first five columns of the training now. You can see that the species column
has been removed from the training because of using the pop command. Everything else

remains the same.

(Refer Slide Time: 04:23)

() premade_estimators.ipyno B e o
File Edit View Insert Runtime Tools Help
COE @ TEXT 4 COPYTODRIVE N - Z0me A

To write a TensorFlow program based on pre-made Estimators, you must perform the following tasks:

« Create one or more input functions.

+ Define the model's feature columns.

+ Instantiate an Estimator, specifying the feature columns and various hyperparameters.

« Call one or more methods on the Estimator object, passing the appropriate input function as the source of the data.

Let's see how those tasks are implemented for Iris classification.

~ Create input functions
You must create input functions to supply data for training, evaluating, and prediction
An input function is a function that retums & tf .data.Dataset object which outputs the following two-element tuple:

« features - A Python dictionary in which:

&
Each key is the name of a feature,
Each value is an array containing all of that feature's values.

« label - An array containing the values of the label for every example

f demonstrate the format of the input function, here's a simple implementation:

NBTELdef input_evaluation_set():
features = {'SepalLength': np.array([6.4, 5.€]),
'Sepalwidth': np.array([2.8, 2.3]),




If you want to use estimator, there are three steps. You have to create one or more input
function that defines how the data will be input to the estimator, you have to define feature
columns and then instantiate an estimator specifying the feature columns and various hyper

parameters and call appropriate method on the estimated object.

Let us understand how this task can be implemented for Iris classification. First let us create
input function. Input function is a function that returns a tf.data.Dataset object which outputs

the following two elements as tuple, we have features and labels.
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° ‘Pethllength’: np.array([5.6, 3.3]),
‘Petalwidth': np.array([2.2, 1.0])}

labels = np.array([2, 1])
return features, labels

Your input function may generate the features dictionary and 1abel list any way you like. However, we recommend using TensorFlow's Dataset
API, which can parse all sorts of data.

The Dataset API can handle a lot of common cases for you. For example, using the Dataset API, you can easily read in records from a large
collection of files in parallel and join them into a single stream

To keep things simple in this example you are going to load the data with pandas, and build an input pipeline from this in-memory data;

def input_fn(features, labels, training=True, batch_size=256):

"*"An input function for training or evaluating"""

# Convert the inputs to a Dataset.

dataset = tf.data.Dataset.from tensor_slices((dict(features), labels))

# shuffle and repeat if you are in traini

if training:
dataset = dataset.shuffle(102@).repeat()

return dataset.batch(batch_size)

9,
+iDéfine the feature columns

Let us look at how the dataset object looks. We have a dictionary of features which contains
the feature name and list of values. You can see that the input function returns the feature

dictionary and the label array.

In order to keep things simple we will be loading the data with pandas and we will build an
input pipeline from this in memory data. The Dataset API is very powerful as it can easily
records from a large collections of file in parallel and join them into single stream. However,

for the Iris dataset this particular functionality will not be required.

So, we will use here Pandas dataframe and create the data set using from tensor slices

function. We take the dictionary of features and array of labels to create a dataset object. In



case of training we shuffle the data set object and return the dataset object in a specified batch

size.
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# Convert the inmputs to a Dataset.
T dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))

# Shuffle and repeat if you are in training mode.
if training:
dataset = dataset,shuffle(1090).repeat()

return dataset.batch(batch_size)

~ Define the feature columns

A feature column is an object describing how the model should use raw input data from the features dictionary. When you build an Estimator model,
you pass it a list of feature columns that describes each of the features you want the model to use. The tf . feature_column module provides
many options for representing data to the model.

For Iris, the 4 raw features are numeric values, so we'll build a list of feature columns to tell the Estimator model to represent each of the four
features as 32-bit floating-point values. Therefore, the code to create the feature columnis:

[ ] # Feature columns describe how to use the input.
my_feature_columns = []
N for key in train.keys() I
my_feature_columns.append(tf.feature_column.numeric_column(key=key))

N re columns can be far more sophisticated than those we're showing here. You can read more about Feature Columns in this guide.

Now that you have the description of how you want the model to represent the raw features, you can build the estimator.

Next we define feature columns corresponding to the features. Since all the features are

numeric, we will use numeric feature column.
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A feature column is an object describing how the model should use raw input data from the features dictionary. When you build an Estimator model,
you pass it a list of feature columns that describes each of the features you want the model to use. The tf . feature_column module provides
many options for representing data to the model.

For Iris, the 4 raw features are numeric values, so we'll build a list of feature columns to tell the Estimator model to represent each of the four
features as 32-bit floating-point values. Therefore, the code to create the feature columnis:

[ ] # Feature columns describe how to use the input.
my_feature_columns = []
for key in train.keys()
my_feature_columns.append(tf. feature_column.numeric_column(key=key))

Feature columns can be far more sophisticated than those we're showing here. You can read more about Feature Columns in this guide.

Now that you have the description of how you want the model 1o represent the raw features, you can build the estimator,

<

Instantiate an estimator

The lris problem is a classic classification problem. Fortunately, TensorFlow provides several pre-made classifier Estimatars, including:

.2stimator. DNNLinearCombinedClassifier for wide & deep models.

tf.estimator.DNNClassiFier for deep models that perform multi-class classification.
}":ﬁ estimator. LinearClassifier for classifiers based on linear models.

NPTEL
For the Iris problem, tf. estimator.DNNClassifier seems like the best choice. Here's how you instantiated this Estimator.




Now, that we have defined our input function and created feature columns, the next task is to
instantiate an estimator. There are several premade classifier estimators defined in
TensorFlow. There is a DNN classifier that is used for deep models on multiclass

classification. A DNN linear combined classifier is used for wide and deep model.

Wide model works on a large number of features like a very large one hot encoding, and deep
model works with the features which come from embeddings. So, DNN linear combined
classifier is used for wide and deep models. Linear classifier is based on linear model. For Iris

problem we will use a DNN classifier that helps us perform multiclass classification.

(Refer Slide Time: 08:20)

remade_estimators.ipynb
Op = prb B @ SHARE o
File Edit View Insert Runtime Tools Help
RAM -
CODE @ TEXT & COPYTODRIVE i - 7 5 LA

~ Instantiate an estimator

The Iris problem is a classic classification problem. Fortunately, TensorFlow provides several presmade classifier Estimators, including:
« tf.estimator.DNNClassifier for deep models that perform multi-class classification
o tf.estimator.ONNLinearCombinedClassifier for wide & deep models.

« tf.estimator.LinearClassifier for classifiers based on linear models
For the Iris problem, tf. estimator, DNNCLlassifier seems like the best choice. Here's how you instantiated this Estimator

RN - 3
# Build a DNN with 2 hidden layers with 30 and 1@ hidden nodes each.
classifier = tf.estimator. DNNClassifier(
eat feature_columns,
10 nodes e

# Two hidd
hidden_un
n_classes=3

NARNING: Logging before flag parsing goes to stderr.
19723 10:50:51,867817 140291442161536 estimator,py:1811] Using temporary folder as model directory: /tmp/tnp_Sng6e:

- Tra%n, Evaluate, and Predict

Let us see how to instantiate this estimator. Here we define a DNN classifier with two hidden
layers each with 30 and 10 nodes respectively. We also specify that there are three classes, so
that the corresponding output layer can be constructed and we specify our feature columns as

input to the DNN classifier. Let us run, let us instantiate the DNN classifier.
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Now that you have an Estimator cbject, you can call methods to do the following:

« Train the model.
+ Evaluate the trained model
« Use the trained madel to make predictions.

¥ Train the model

Train the model by calling the Estimators train method as follows:
rVveoli

© ¢ rain the nodel.
classifier.train(
input_fn=lambda: input_fn(train, train_y, traiping=True),
steps=5000)

723 10:51:27.788608 140291442161536 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/p)
Instructions for updating:
Use Varizble.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) ¢
@723 10:51:28.875723 140291442161536 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow_e:
Instructions for updating:

& \Use "tf.cast’ instead.
N 390723 10:51:29.046516 140291442161536 deprecation.py:58€] From /usr/local/lib/python3.6/dist-packages/tensorflow/p)
Instructions for updating:

NPTElCall initializer instance with the dtype argunent instead of passing it to the constructor

@723 10:51:29.239307 140291442161536 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/p

So, we will train the model by calling the estimator’s train method where we specify the input

function and also specify the number of steps for which the training loop should be run.

Once the model is trained, evaluate the model with the test data. So, we use the same input
function but instead of train we are going to pass the arguments corresponding to the test

data. We set training to be false as against the training to be true at the time of training.
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~ Evaluate the trained model
Now that the model has been trained, you can get some statistics on its performance. The following code block evaluates the accuracy of the
trained model on the test data:
GRECE N I

° eval_result = classifier.evaluate(
input_fn=lambda: input_fn(test, test_y, training=False))

print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
) @723 10:52:16.044734 149291442161536 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/p)

Instructions for updating:
Use standard file APIs to check for files with this prefix.

Test set accuracy: 0.667

e the call to the train method, you did not pass the steps argument to evaluate. The input_fn for eval only yields a single epoch of data.

al_result dictionary also contains the average_loss (mean loss per sample), the loss (mean loss per mini-batch) and the value of the

ator's global_step (the number of training iterations it underwent).




And you can see that we achieve accuracy of 66 percent, we achieved test accuracy of 66

percent on the Iris classification.
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v Making predictions (inferring) from the trained model
You now have a trained model that produces good evaluation results. You can now use the trained model to predict the species of an Iris flower
based on some unlabeled measurements. As with training and evaluation, you make predictions using a single function call:

PV RE

erate predictions from the model
ec: ['Setosa’, 'Versicolor', 'Virginica']

Separtengen
'Sepalwidth':
‘Petallength’

et without labels
sor_slices(dict(features)).batch(batch_size)

predictions = classifier.predict(
input_fn=lambda: input_fn(predict x))

The predict method returns a Python iterable, yielding @ dictionary of prediction results for each example. The following code prints a few

ions and their probabilities:

NRTELror pred dict, expec in zip(predictions, expected):
class_id = pred_dict['class_ids'][@]
poohahility = ored dictr orghobilitiec 1iclace id]

Let us use this particular model for making predictions on unseen data or for inferencing. So,
here we will have to first specify what is the expected output and then we specified the
features. So, here the feature vector is specified as a dictionary where the key is the name of
the column or name of the feature and followed by a list of values. So, here we are specifying

three examples with their value specified for each of the feature in a list.

For example we have a sepal length of 5.1 5.9 and 6.9 corresponding to the three examples
and they have sepal width of 3.3, 3.0 and 3.1. So, 5.1 SepalLength the flower with
SepalLength of 5.1 has SepalWidth of 3.3, PetalLength of 1.7 and PetalWidth of 0.5.

So, this is how you have to interpret an example, but it is specified in a slightly different
format or in a transposed form. We specify the input function to get a dataset object from
tensor slices and we give the predict x as a dictionary to the input function which returns a
dataset object on which we apply the prediction. So, let us run this and see what kind of

predictions are coming out.



(Refer Slide Time: 11:33)

remade_estimators.ipynb
Op - Py a GD SHARE o
File Edit View Insert Runtime Tools Help
RAM

@ CODE @ TEXT 4 COPYTODRIVE Disk v SEING A

L
4 SN+ 3 I
o for pred_dict, expec in zip(predictions, expected):
class_id = pred_dict['class_ids'][@]
probability = pred_dict['probabilities’][class_id]
print('Prediction is "{}" ({:.1f}%), expected "{}"".fornat(
SPECIES[class_id], 188 * probability, expec))

Prediction is "Setosa" (82.3%), expected "Setosa"
Prediction is "Virginica" m, expected "Versicolor"
Prediction is "Virginica" (6@.5%), expected "Virginica"

And let us look at the predictions and the expected result and we also we will also print the
probabilities. We can see that the first prediction is Setosa where the actual label was also
Setosa and we can see that this prediction is with quite good probability or quite good
confidence of 82 percent. The second prediction is Virginica where the expected or where the
actual prediction was Versicolor, but you can see that the probability of the prediction is less

than 50 percent.

In the third case, the prediction is Virginica which matches the actual label of Virginica and
has got 60.5 percent probability of the label. So, in this module we learnt how to use tf
estimator API and we applied that for Iris classification. We understood that in order to
define a tf estimator API we have three main steps we have to specify one or more input
functions. We have to specify the feature columns and we have to instantiate tf estimator API

with appropriate configuration.

In the next session we will use this tf estimator API for building a linear model. Hope to see

you in the next session.



