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Image Classification and Visualization 
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In the previous session, we studied CNNs we also learnt how to build CNN models with 

transfer learning. In this session, we will build Image Classification models from scratch 

and we will use bunch of strategies that are employed in practice while building image 

classification model and we will also visualize what the CNN is learning by looking at 

the activations after each layer.  

So, we will follow a basic machine learning work flow where we will examine and 

understand the data. We will build the input pipeline to bring the data to the training. We 

will build the model, they train it, test it and then will improve the performance of the 

model and repeat the process. 

We will get some practical experience and develop intuitions for building input pipelines 

for images using image data generator class. We will also study how to identify over 



fitting and prevent it and we will also learn key concepts like data augmentation and 

dropout.  
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Let us install TensorFlow 2.0. Let us import image data generator and other libraries like 

dense convolution 2D flattened Dropout and MaxPooling 2D from Keras layers and we 

will also import sequential for building model. We use matplotlib.pyplot for plotting the 

performance of the model. We use dogs versus cats dataset from Kaggle competition.  
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The dataset as the following structure. There is a top level directory called cats and dogs 

filtered, then we have training and validation dataset. Within training dataset, there are 

two sub directories cats and dogs, the validation directory structure also follows the 

same. The validation also has two sub directories cats and dogs. Within cats directory we 

have images of the cats stored in jpeg format and each file has a name cat.id.jpeg and 

dog.id.jpeg.  

So, first 2000 examples are used as training and the remaining examples are used for 

validation. After extracting the content, we assign variables with proper file paths for 

training and validation sets.  
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Then we construct paths for training and validation directories for cats and dogs. Let us 

look at how many cats and dog images are there in training and validation directory. We 

use os.listdir command to list the content of the directory and take the length of this 

directory listing to calculate the number of cats and dogs in training and validation.  
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You can see that we are using 2000 images for training and 1000 images total for 

validation. 1000 cat images are used for training and 500 cat images are used for 

validation. The same proportion of images are used for training and validation from dog 

class. So, let us setup some variables like batch size, epochs and the height and width of 

the image.  
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Let us prepare the data for training. So, we perform the following steps we will first read 

the images from the disk, then we will decode the content of this images and convert 

them into proper grid format as per their RGB content. Then we convert them into 

floating point tensors and then we rescale this tensors from values between 0 and 255 to 

values between 0 and 1.  

So, all this task are done by image data generator class provided by tf.keras. It can read 

images from the disc and preprocess them into proper tensors. It will also setup 

generators that convert this images into batches of tensors which is very helpful during 

the training. So, we setup image data generator for training and validation set.  
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After defining these generators, we use flow from directory method to load images from 

the disc, apply rescaling and resizing of the image into required dimension. So, here the 

target image size is 150 x 150 and we want to shuffle the training data. We do not shuffle 

the data in the validation set. We also specify the batch size and the directories were data 

is stored. 



(Refer Slide Time: 07:02) 

 

Let us visualize the training images by extracting a batch of images from the image 

generator. Let us plot five of these images.  
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We use matplotlib for plotting these images. 
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Let us create a model a CNN model for classifying cats and dogs. So, we use three 

convolution blocks with a MaxPool layer in each one of them. Then we use a fully 

connected layer with 512 units on top of that with Relu activation. And the model 

outputs class probabilities based on binary classification by sigmoid activation function 

in the output layer. Let us look at the structure of the model.  
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So, we use a Conv2D followed by MaxPool, then another convolution layer.  
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Reduce binary_crossentropy as a loss with Adam as an optimizer and accuracy as a 

metric to track.  
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So, you can see that we have modelled with more than 10 million parameters. 
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Let us train the model for 15 epochs.  
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So after 15 iteration we got accuracy closed to 94 % on the training set and 73 % on the 

validation set.  
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Let us visualize the training and validation accuracy across epochs.  
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You can see that as we trained for more epochs, the training the training accuracy kept 

raising whereas, the validation accuracy plateaued after some time. We also see similar 

trend in the training and validation loss where you found that training loss was constantly 

decreasing as you train for more epochs, but validation loss initially declined, but then 

grows steadily after certain epochs after about 50 epochs. 
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So, this points to the fact that the model is over fitting. So, you have to explore strategies 

to increase the performance of the model by reducing the over-fitting. So, we will use 

data augmentation and dropout as two strategies for fighting over-fitting problem. In data 

augmentation, we will take the existing images and perform certain transformation on 

them to gather more data.  

So, what kind of transformations we do? We can rotate, translate, change the scale of the 

image to create more and more examples of the image such that model is less likely to 

over-fit with more data.  



(Refer Slide Time: 12:39) 

 

So, let us try to augment the data and visualize it. We can perform random horizontal flip 

augmentation to the dataset. We can use ImageDataGenerator with horizontal flip = True 

and let us generate the data.  
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Let us take one example and see how the data got augmented with horizontal flipping.  
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So, after horizontal flipping, we got more examples that were generated from a single 

example. We can also do a different kind of augmentation by rotation. Let us apply 45 

degree rotation randomly to the training examples.  

(Refer Slide Time: 14:17) 

 

Now, you can see that the same picture of the cat was rotated in different orientations 

with different angles and by applying this particular data augmentation strategy, we 

created more pictures from a single picture.  
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In addition to that we can also apply zoom augmentation by specifying the zoom range. 

Let us see how zoom augmentation look like.  
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Let us put together all this augmentations strategies. So, we use ImageDataGenerator and 

apply rescaling, then rotation of 45 degrees, width shift, height shift and horizontal flip 

and the zoom augmentation to the training images.  
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So we apply all this augmentation techniques to the trainings set and obtain more data by 

augmenting the original images. These are some of the augmented pictures of a dog 

where we have the original picture and these are the pictures that were obtained by 

applying various data augmentations strategies.  
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We apply the data augmentation only to the training examples, we do not apply data 

augmentation on the validation examples except rescaling them. And we also convert the 

validation examples into batches using ImageDataGenerator.  



Another technique to reduce over fitting is dropout.  
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We had dropout to the model after augmenting the data through various augmentation 

schemes. We had dropout of 0.3 each after couple of max pooling layers and Dropout of 

0.1 after the fully connected layer. The effect of the dropout is that the randomly 30 % of 

max-pooling nodes and 10 percent of fully connected nodes are set to 0 during each 

epoch. We compile the model and train it and we can see that at the end of end of 15 

epoch. We have a training accuracy of 64 % and validation accuracy of 63 %.  
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And if we plot the losses, you can see that both the training and validation loss is 

trending together and there is a lesser over fitting than the earlier model.  
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Let us visualize what this particular CNN is learning. So, we will take the output of the 

model after every layer. So, there are eight different layers convolution followed by 

pooling, then there is a dropout then, convolution pooling, convolution pooling and 

dropout.  
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We get the output after every layer. So, this is different from the models that we have 

seen so far. This is the first time we are encountering a multi output model until now. We 

have models that were giving exactly one output at the end of the final layer here, we are 

gathering output after every layer. Let us look at the predictions coming from the 

activation model and let us plot those activations.  
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So, this is the input this is the first image that is input to us and the first level activation 

is essentially 150 x 150 feature map with 16 channels. 
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So, let us look at the third channel. You can see that the third channel is roughly 

detecting the edges from the cat picture.  
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If you look at the 15th channel, it is identifying probably the overall shape of the image. 

At this point let us go and plot a complete visualization of all the activations in the 

network.  
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We will extract and plot every channel in each of our 8 activation maps and we will stack 

the results in one big image tensor with channels stacked side by side.  
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So, now you can see that the first convolution layer seems to be detecting edges and as 

we go deeper and deeper in the network. We are detecting different kind of features from 

the images. You can see that there are lot of empty spots after the second convolution and 

max pooling operation.  
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There are few remarkable things to note here. The first layer acts as a collection of 

various edge detectors. At that stage the activations are still returning almost all the 

information present in the initial picture. You can see that lot of features from the input 

are being preserved. As we go higher up the activations become increasingly abstract and 

less visually interpretable. They start encoding higher level concepts such as cat ear and 

cat eye higher of representations carry increasingly less information about a visual 

content of the image and increase in the more information related to the class of the 

image.  

The sparsity of activations is increasing with the depth of the layer. The first layer almost 

all filters are activated by the input image, but as we go deeper and deeper in the network 

there are more and more blank filters. This means that patterns encoded by the filter is 

not found in the input image. So, this is a very nice way of visualizing how convolution 

convolutional neural network is learning patterns in the image. 
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So, we showed a very important universal characteristics of representations learned by 

deep neural network. The feature the features extracted by layer get increasingly abstract 

with depth of the layer. The activations of layers higher of carry less and less information 

about specific input being seen, but more and more information about the target class. A 

deep neural network effectively acts as an information distillation pipeline with raw data 

going in and getting repetitively transformed so, that irrelevant information gets filtered 

out and useful information gets magnified and refined.


