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Lecture - 24
Image Classification and Visualization
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~ Import packages

In the previous session, we studied CNNs we also learnt how to build CNN models with
transfer learning. In this session, we will build Image Classification models from scratch
and we will use bunch of strategies that are employed in practice while building image
classification model and we will also visualize what the CNN is learning by looking at

the activations after each layer.

So, we will follow a basic machine learning work flow where we will examine and
understand the data. We will build the input pipeline to bring the data to the training. We
will build the model, they train it, test it and then will improve the performance of the

model and repeat the process.

We will get some practical experience and develop intuitions for building input pipelines

for images using image data generator class. We will also study how to identify over



fitting and prevent it and we will also learn key concepts like data augmentation and

dropout.
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~ Load data

cats_and_dogs_filtered

_ train

Let us install TensorFlow 2.0. Let us import image data generator and other libraries like
dense convolution 2D flattened Dropout and MaxPooling 2D from Keras layers and we
will also import sequential for building model. We use matplotlib.pyplot for plotting the

performance of the model. We use dogs versus cats dataset from Kaggle competition.
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The dataset has the fodowing drectory structure

cats_and_dogs_filtered

_ train

cats: [ean.0.dop, cat.d.fog, cot.d dog
dogs: [dog.0.3p4, dog.1
_ validation

cats: [t

dogs: [do

* Understand the data




The dataset as the following structure. There is a top level directory called cats and dogs
filtered, then we have training and validation dataset. Within training dataset, there are
two sub directories cats and dogs, the validation directory structure also follows the
same. The validation also has two sub directories cats and dogs. Within cats directory we
have images of the cats stored in jpeg format and each file has a name cat.id.jpeg and

dog.id.jpeg.

So, first 2000 examples are used as training and the remaining examples are used for
validation. After extracting the content, we assign variables with proper file paths for

training and validation sets.
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v Understand the data
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Then we construct paths for training and validation directories for cats and dogs. Let us
look at how many cats and dog images are there in training and validation directory. We
use os.listdir command to list the content of the directory and take the length of this

directory listing to calculate the number of cats and dogs in training and validation.
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You can see that we are using 2000 images for training and 1000 images total for
validation. 1000 cat images are used for training and 500 cat images are used for
validation. The same proportion of images are used for training and validation from dog
class. So, let us setup some variables like batch size, epochs and the height and width of

the image.
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8¢ whie preprocessing the dataset and traiming the network

~ Data preparation

Format the images into appropriately pre-processed floating point tensors before feeding to the network

QoW

esizes the

Srain_data_gen o train_inage_gwearator. flow_from girect




Let us prepare the data for training. So, we perform the following steps we will first read
the images from the disk, then we will decode the content of this images and convert
them into proper grid format as per their RGB content. Then we convert them into
floating point tensors and then we rescale this tensors from values between 0 and 255 to

values between 0 and 1.

So, all this task are done by image data generator class provided by tf.keras. It can read
images from the disc and preprocess them into proper tensors. It will also setup
generators that convert this images into batches of tensors which is very helpful during

the training. So, we setup image data generator for training and validation set.
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v Visualize training images

After defining these generators, we use flow from directory method to load images from
the disc, apply rescaling and resizing of the image into required dimension. So, here the
target image size is 150 x 150 and we want to shuffle the training data. We do not shuftle
the data in the validation set. We also specify the batch size and the directories were data

is stored.
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v Visualize training images

Visualize the traning images by extracting a batch of images from the traming generator=which i 32 images in this example—then plot five of them with
matplotlin

[ ) sample_training images, _ = next(train_dots_gen)

The naxt functicn retums a batch from the dataset. The return value of maxt function is In form of (x_teadn, y_train) where x_train s training features and
y o, g ladels. Discand the labels 10 0nly visuaie the traning mages

d §n each column,

f 0 grid with 3 rou and § columns bhere Snages are pl

] plotisages(sample_training fnages(:3])

~ Create the model

The model consists of three convolution blocks with @ max pool layer in each of them There's a fully connected layer with 512 units o top of 1t thatr is activated by
B raly actvation function. The model outpuls class prodabilses Based on binary classification by the signoid sctivaticn function

] sedel v Sosuential([
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Let us visualize the training images by extracting a batch of images from the image

generator. Let us plot five of these images.
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~ Create the model

The model consiats of three convelution blocks with  max pool layer in each of them. There's a fully connected layer with $12 units on top of 1t thatr s activeted by
2 raly actvation function The model outputs class probabilties based on binary classification by the sigmoid activaticn function

[ ] model » Sequential((

We use matplotlib for plotting these images.
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~ Create the model
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v Complle the model

For this tutorial, choose the ADAM optimizer and binavy cross entropy loss function. To view training and validation acouracy for each training epach, pass the

metrics Mgunent

Let us create a model a CNN model for classifying cats and dogs. So, we use three
convolution blocks with a MaxPool layer in each one of them. Then we use a fully
connected layer with 512 units on top of that with Relu activation. And the model
outputs class probabilities based on binary classification by sigmoid activation function

in the output layer. Let us look at the structure of the model.
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So, we use a Conv2D followed by MaxPool, then another convolution layer.
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v Model summary

View a1 the layers of the netwerk using the models susmary method

wodel summary

v Train the model

Use the ¢1t_generator method of the Inagedatadenerator class %o vran the network

Reduce binary crossentropy as a loss with Adam as an optimizer and accuracy as a

metric to track.
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v Train the model

So, you can see that we have modelled with more than 10 million parameters.
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+ Visualize raining results

Let us train the model for 15 epochs.
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v Visualize training results

Now visushize the results after raning the network

So after 15 iteration we got accuracy closed to 94 % on the training set and 73 % on the

validation set.
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300 and the model has achieved coly around 70% accuracy on the

Let us visualize the training and validation accuracy across epochs.
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(] Tramng and Vabdation Accuracy

You can see that as we trained for more epochs, the training the training accuracy kept
raising whereas, the validation accuracy plateaued after some time. We also see similar
trend in the training and validation loss where you found that training loss was constantly
decreasing as you train for more epochs, but validation loss initially declined, but then

grows steadily after certain epochs after about 50 epochs.
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~ Overfitting

~ Data augmentation

training process. 3

v Augment and visualize data

So, this points to the fact that the model is over fitting. So, you have to explore strategies
to increase the performance of the model by reducing the over-fitting. So, we will use
data augmentation and dropout as two strategies for fighting over-fitting problem. In data
augmentation, we will take the existing images and perform certain transformation on

them to gather more data.

So, what kind of transformations we do? We can rotate, translate, change the scale of the
image to create more and more examples of the image such that model is less likely to

over-fit with more data.
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Pass hordzentel_f14p 08 % argumant 10 the Tagedataderarator clbss 4nd 14t 116 Troe 10 apply INS augmentation
Amapegen & Inagedetadenerator(rescalenl, /255, horizontal flipaTrue

train_dat_gen o dnage_gen.flow_fron_directoey(batch_sizesdatch size,

Take cne sample image from the training examples and repeat it five times 50 that the augmentation is appled to the same image five times.
wagrerted_Soages o [teadn Sta_gen[0])[0)[0] for § in range(s))

¥ Re-use the same

So, let us try to augment the data and visualize it. We can perform random horizontal flip
augmentation to the dataset. We can use ImageDataGenerator with horizontal flip = True

and let us generate the data.
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v Randomly rotate the image

Let's take a look at  different augmentation called rotation and apply 45 degrees of rotation randomly 10 the traising exampies.

Songegen o Ieagedutabunesator(rescalent. /255, retation rangends

tradn_dota_gen o Snage_gen. flow_frim_directory(batch s:

ogrented_inages « [train_data_gen[0][0)[0] %o wgels)]

plotinages (hupmented isapes

Let us take one example and see how the data got augmented with horizontal flipping.
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» Randomly rotate the image

Lets take o ok o1 o different sugmentation caled retation and agply 45 degrees of rotation randomly 1o the traising examples.
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So, after horizontal flipping, we got more examples that were generated from a single
example. We can also do a different kind of augmentation by rotation. Let us apply 45

degree rotation randomly to the training examples.
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v Apply z0om augmentation

Now, you can see that the same picture of the cat was rotated in different orientations

with different angles and by applying this particular data augmentation strategy, we

created more pictures from a single picture.
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* Apply z00m augmentation

Agely 8 200m augmentation 1o the dataset 10 200m Images up 1o 50% randomly

{0 image_gen o Inagedatabenerator(rescalent. /295, 100m_rangesd.s

{00 teatn dota_gen o dnage_gun. flaw_from sirecteny

wagrested_teages w [tealn cata_gen[0)(0)[0) For & in range(s))
" o 0 Tix P!
Iﬁ PaotInages (augranted_images k

~ Putitalltogether

Apsly 0 the previous Bugmentatons Here, you apshed rescale, &5 degrea rolation, width SN height SNIL horizontal i 89 200 augmentation 1o the traineg

mapes

In addition to that we can also apply zoom augmentation by specifying the zoom range.

Let us see how zoom augmentation look like.
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~ Create validation data generator

Let us put together all this augmentations strategies. So, we use ImageDataGenerator and
apply rescaling, then rotation of 45 degrees, width shift, height shift and horizontal flip

and the zoom augmentation to the training images.
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v Create validation data generator

Generally, cnly apply data augmentation to the training examples. In this case, only rescale the vl

Inagedataenerator

So we apply all this augmentation techniques to the trainings set and obtain more data by
augmenting the original images. These are some of the augmented pictures of a dog
where we have the original picture and these are the pictures that were obtained by

applying various data augmentations strategies.
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~ Dropout

We apply the data augmentation only to the training examples, we do not apply data
augmentation on the validation examples except rescaling them. And we also convert the

validation examples into batches using ImageDataGenerator.



Another technique to reduce over fitting is dropout.
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v Compile the model

We had dropout to the model after augmenting the data through various augmentation
schemes. We had dropout of 0.3 each after couple of max pooling layers and Dropout of
0.1 after the fully connected layer. The effect of the dropout is that the randomly 30 % of
max-pooling nodes and 10 percent of fully connected nodes are set to 0 during each
epoch. We compile the model and train it and we can see that at the end of end of 15

epoch. We have a training accuracy of 64 % and validation accuracy of 63 %.
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And if we plot the losses, you can see that both the training and validation loss is

trending together and there is a lesser over fitting than the earlier model.
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Let us visualize what this particular CNN is learning. So, we will take the output of the
model after every layer. So, there are eight different layers convolution followed by
pooling, then there is a dropout then, convolution pooling, convolution pooling and

dropout.
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We get the output after every layer. So, this is different from the models that we have
seen so far. This is the first time we are encountering a multi output model until now. We
have models that were giving exactly one output at the end of the final layer here, we are
gathering output after every layer. Let us look at the predictions coming from the

activation model and let us plot those activations.
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So, this is the input this is the first image that is input to us and the first level activation

is essentially 150 x 150 feature map with 16 channels.
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So, let us look at the third channel. You can see that the third channel is roughly

detecting the edges from the cat picture.
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If you look at the 15th channel, it is identifying probably the overall shape of the image.
At this point let us go and plot a complete visualization of all the activations in the

network.

(Refer Slide Time: 19:54)

B & Image_classification_and_visualization ipynb B Comment &% Shwe l(
Comment A Shar

NPTEL
A

s,
* size] v chumal_fmage

We will extract and plot every channel in each of our 8 activation maps and we will stack

the results in one big image tensor with channels stacked side by side.
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So, now you can see that the first convolution layer seems to be detecting edges and as
we go deeper and deeper in the network. We are detecting different kind of features from

the images. You can see that there are lot of empty spots after the second convolution and

max pooling operation.
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There are few remarkable things to note here. The first layer acts as a collection of
various edge detectors. At that stage the activations are still returning almost all the
information present in the initial picture. You can see that lot of features from the input
are being preserved. As we go higher up the activations become increasingly abstract and
less visually interpretable. They start encoding higher level concepts such as cat ear and
cat eye higher of representations carry increasingly less information about a visual

content of the image and increase in the more information related to the class of the

image.

The sparsity of activations is increasing with the depth of the layer. The first layer almost
all filters are activated by the input image, but as we go deeper and deeper in the network
there are more and more blank filters. This means that patterns encoded by the filter is
not found in the input image. So, this is a very nice way of visualizing how convolution

convolutional neural network is learning patterns in the image.
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So, we showed a very important universal characteristics of representations learned by
deep neural network. The feature the features extracted by layer get increasingly abstract
with depth of the layer. The activations of layers higher of carry less and less information
about specific input being seen, but more and more information about the target class. A
deep neural network effectively acts as an information distillation pipeline with raw data
going in and getting repetitively transformed so, that irrelevant information gets filtered

out and useful information gets magnified and refined.



