
Practical Machine Learning
Dr. Ashish Tendulkar

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 24

Image Classification and Visualization

(Refer Slide Time: 00:13)

In the previous session, we studied CNNs we also learnt how to build CNN models with

transfer learning. In this session, we will build Image Classification models from scratch

and we will use bunch of strategies that are employed in practice while building image

classification model and we will also visualize what the CNN is learning by looking at

the activations after each layer.

So, we will follow a basic machine learning work flow where we will examine and

understand the data. We will build the input pipeline to bring the data to the training. We

will build the model, they train it, test it and then will improve the performance of the

model and repeat the process.

We will get some practical experience and develop intuitions for building input pipelines

for images using image data generator class. We will also study how to identify over

fitting and prevent it and we will also learn key concepts like data augmentation and

dropout.

(Refer Slide Time: 01:50)

Let us install TensorFlow 2.0. Let us import image data generator and other libraries like

dense convolution 2D flattened Dropout and MaxPooling 2D from Keras layers and we

will also import sequential for building model. We use matplotlib.pyplot for plotting the

performance of the model. We use dogs versus cats dataset from Kaggle competition.

(Refer Slide Time: 02:36)

The dataset as the following structure. There is a top level directory called cats and dogs

filtered, then we have training and validation dataset. Within training dataset, there are

two sub directories cats and dogs, the validation directory structure also follows the

same. The validation also has two sub directories cats and dogs. Within cats directory we

have images of the cats stored in jpeg format and each file has a name cat.id.jpeg and

dog.id.jpeg.

So, first 2000 examples are used as training and the remaining examples are used for

validation. After extracting the content, we assign variables with proper file paths for

training and validation sets.

(Refer Slide Time: 03:46)

Then we construct paths for training and validation directories for cats and dogs. Let us

look at how many cats and dog images are there in training and validation directory. We

use os.listdir command to list the content of the directory and take the length of this

directory listing to calculate the number of cats and dogs in training and validation.

(Refer Slide Time: 04:21)

You can see that we are using 2000 images for training and 1000 images total for

validation. 1000 cat images are used for training and 500 cat images are used for

validation. The same proportion of images are used for training and validation from dog

class. So, let us setup some variables like batch size, epochs and the height and width of

the image.

(Refer Slide Time: 05:09)

Let us prepare the data for training. So, we perform the following steps we will first read

the images from the disk, then we will decode the content of this images and convert

them into proper grid format as per their RGB content. Then we convert them into

floating point tensors and then we rescale this tensors from values between 0 and 255 to

values between 0 and 1.

So, all this task are done by image data generator class provided by tf.keras. It can read

images from the disc and preprocess them into proper tensors. It will also setup

generators that convert this images into batches of tensors which is very helpful during

the training. So, we setup image data generator for training and validation set.

(Refer Slide Time: 06:22)

After defining these generators, we use flow from directory method to load images from

the disc, apply rescaling and resizing of the image into required dimension. So, here the

target image size is 150 x 150 and we want to shuffle the training data. We do not shuffle

the data in the validation set. We also specify the batch size and the directories were data

is stored.

(Refer Slide Time: 07:02)

Let us visualize the training images by extracting a batch of images from the image

generator. Let us plot five of these images.

(Refer Slide Time: 07:28)

We use matplotlib for plotting these images.

(Refer Slide Time: 07:45)

Let us create a model a CNN model for classifying cats and dogs. So, we use three

convolution blocks with a MaxPool layer in each one of them. Then we use a fully

connected layer with 512 units on top of that with Relu activation. And the model

outputs class probabilities based on binary classification by sigmoid activation function

in the output layer. Let us look at the structure of the model.

(Refer Slide Time: 08:47)

So, we use a Conv2D followed by MaxPool, then another convolution layer.

(Refer Slide Time: 09:37)

Reduce binary_crossentropy as a loss with Adam as an optimizer and accuracy as a

metric to track.

(Refer Slide Time: 09:52)

So, you can see that we have modelled with more than 10 million parameters.

(Refer Slide Time: 10:25)

Let us train the model for 15 epochs.

(Refer Slide Time: 10:35)

So after 15 iteration we got accuracy closed to 94 % on the training set and 73 % on the

validation set.

(Refer Slide Time: 10:48)

Let us visualize the training and validation accuracy across epochs.

(Refer Slide Time: 10:56)

You can see that as we trained for more epochs, the training the training accuracy kept

raising whereas, the validation accuracy plateaued after some time. We also see similar

trend in the training and validation loss where you found that training loss was constantly

decreasing as you train for more epochs, but validation loss initially declined, but then

grows steadily after certain epochs after about 50 epochs.

(Refer Slide Time: 11:37)

So, this points to the fact that the model is over fitting. So, you have to explore strategies

to increase the performance of the model by reducing the over-fitting. So, we will use

data augmentation and dropout as two strategies for fighting over-fitting problem. In data

augmentation, we will take the existing images and perform certain transformation on

them to gather more data.

So, what kind of transformations we do? We can rotate, translate, change the scale of the

image to create more and more examples of the image such that model is less likely to

over-fit with more data.

(Refer Slide Time: 12:39)

So, let us try to augment the data and visualize it. We can perform random horizontal flip

augmentation to the dataset. We can use ImageDataGenerator with horizontal flip = True

and let us generate the data.

(Refer Slide Time: 13:09)

Let us take one example and see how the data got augmented with horizontal flipping.

(Refer Slide Time: 13:22)

So, after horizontal flipping, we got more examples that were generated from a single

example. We can also do a different kind of augmentation by rotation. Let us apply 45

degree rotation randomly to the training examples.

(Refer Slide Time: 14:17)

Now, you can see that the same picture of the cat was rotated in different orientations

with different angles and by applying this particular data augmentation strategy, we

created more pictures from a single picture.

(Refer Slide Time: 14:45)

In addition to that we can also apply zoom augmentation by specifying the zoom range.

Let us see how zoom augmentation look like.

(Refer Slide Time: 14:59)

Let us put together all this augmentations strategies. So, we use ImageDataGenerator and

apply rescaling, then rotation of 45 degrees, width shift, height shift and horizontal flip

and the zoom augmentation to the training images.

 (Refer Slide Time: 15:50)

So we apply all this augmentation techniques to the trainings set and obtain more data by

augmenting the original images. These are some of the augmented pictures of a dog

where we have the original picture and these are the pictures that were obtained by

applying various data augmentations strategies.

(Refer Slide Time: 16:14)

We apply the data augmentation only to the training examples, we do not apply data

augmentation on the validation examples except rescaling them. And we also convert the

validation examples into batches using ImageDataGenerator.

Another technique to reduce over fitting is dropout.

(Refer Slide Time: 16:44)

We had dropout to the model after augmenting the data through various augmentation

schemes. We had dropout of 0.3 each after couple of max pooling layers and Dropout of

0.1 after the fully connected layer. The effect of the dropout is that the randomly 30 % of

max-pooling nodes and 10 percent of fully connected nodes are set to 0 during each

epoch. We compile the model and train it and we can see that at the end of end of 15

epoch. We have a training accuracy of 64 % and validation accuracy of 63 %.

(Refer Slide Time: 17:32)

And if we plot the losses, you can see that both the training and validation loss is

trending together and there is a lesser over fitting than the earlier model.

(Refer Slide Time: 17:50)

Let us visualize what this particular CNN is learning. So, we will take the output of the

model after every layer. So, there are eight different layers convolution followed by

pooling, then there is a dropout then, convolution pooling, convolution pooling and

dropout.

(Refer Slide Time: 18:27)

We get the output after every layer. So, this is different from the models that we have

seen so far. This is the first time we are encountering a multi output model until now. We

have models that were giving exactly one output at the end of the final layer here, we are

gathering output after every layer. Let us look at the predictions coming from the

activation model and let us plot those activations.

(Refer Slide Time: 19:07)

So, this is the input this is the first image that is input to us and the first level activation

is essentially 150 x 150 feature map with 16 channels.

(Refer Slide Time: 19:23)

So, let us look at the third channel. You can see that the third channel is roughly

detecting the edges from the cat picture.

(Refer Slide Time: 19:36)

If you look at the 15th channel, it is identifying probably the overall shape of the image.

At this point let us go and plot a complete visualization of all the activations in the

network.

(Refer Slide Time: 19:54)

We will extract and plot every channel in each of our 8 activation maps and we will stack

the results in one big image tensor with channels stacked side by side.

(Refer Slide Time: 20:06)

So, now you can see that the first convolution layer seems to be detecting edges and as

we go deeper and deeper in the network. We are detecting different kind of features from

the images. You can see that there are lot of empty spots after the second convolution and

max pooling operation.

(Refer Slide Time: 20:38)

There are few remarkable things to note here. The first layer acts as a collection of

various edge detectors. At that stage the activations are still returning almost all the

information present in the initial picture. You can see that lot of features from the input

are being preserved. As we go higher up the activations become increasingly abstract and

less visually interpretable. They start encoding higher level concepts such as cat ear and

cat eye higher of representations carry increasingly less information about a visual

content of the image and increase in the more information related to the class of the

image.

The sparsity of activations is increasing with the depth of the layer. The first layer almost

all filters are activated by the input image, but as we go deeper and deeper in the network

there are more and more blank filters. This means that patterns encoded by the filter is

not found in the input image. So, this is a very nice way of visualizing how convolution

convolutional neural network is learning patterns in the image.

(Refer Slide Time: 22:14)

So, we showed a very important universal characteristics of representations learned by

deep neural network. The feature the features extracted by layer get increasingly abstract

with depth of the layer. The activations of layers higher of carry less and less information

about specific input being seen, but more and more information about the target class. A

deep neural network effectively acts as an information distillation pipeline with raw data

going in and getting repetitively transformed so, that irrelevant information gets filtered

out and useful information gets magnified and refined.

