Practical Machine Learning
Dr. Ashish Tendulkar
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture — 24
Transfer Learning with pre-trained CNNs

In the last lecture, we looked at concepts behind convolution neural networks and use them
for building an image classifier. We also learned that these models have a large number of
parameters and in order to train them without overfitting we require a reasonably large
amount of data. How do we use these models when we do not have a large amount of data?
For example, say a manufacturing company wants to train a CNN model for recognizing

faulty machine parts, and they do not have enough data, what can we do?

We learn techniques behind solving these kind of problems in this session. We will

demonstrate these techniques by classifying cats and dogs.
(Refer Slide Time: 01:23)

+ Code + Text # Copy to Drive Connect + /' Editing v
N In this tutorial you will learn how to classify cats vs dogs images by using transfer learning from a pre-trained network

A pre-trained model is a saved network that was previously trained on a large dataset, typically on a large-scale image-classification task. You either
use the pretrained model as it is, or use transfer learning to customize this model to a given task.

The intuition behind transfer learning is that if a model trained on a large and general enough dataset, this model will effectively serve as & generic
model of the visual world. You can then take advantage of these leamed feature maps without having to start from scratch training a large model on
alarge dataset

In this notebook, you will try two ways to customize a pretrained mode

1. Feature Extraction: Use the representations learned by a previous network to extract meaningful features from new samples. You simply add a
new classifier, which viill be trained from scratch, on top of the pretrained model so that you can repurpose the feature maps learned
previously for our dataset

You do not need to (re)train the entire madel. The base convolutional network already contains features that are generically useful for
classifying pictures. However, the final, classification part of the pretrained model is specific to original classification task, and subsequently
specific to the set of classes on which the model was trained
2 Fine-Tuning: Unfreezing a few of the top layers of a frozen model base and jointly training both the newly-added classifier layers and the last

layers of the base model. This allows us to "fine tune” the higher-order featurs representations in the base model in order to make them more
relevant for the specific task

You will follow the general machine learning workflow.

,' xamine and understand the data

3742 Build an input pipeline, in this case using Keras InageDataGenerator

Mﬁﬁ?omposs our mode!

Load in our pretrained base model (and pretrained weights)

A pre-trained model is at the centre of our strategy. A pre-trained model is a saved network
that was previously trained on a large dataset, typically on a large scale image classification
task. We either use the pre-trained model as it is or use transfer learning to customize this

model for a given task. The intuition behind transfer learning is that if a model is trained on a

large and general enough data set, this model will effectively serve as a general model of the
visual world. We can take advantage of these learned feature maps without having to start

training a large model from scratch on a large data set.
In this exercise we will try two ways to customize a pre-trained model.

(Refer Slide Time: 02:19)

CNNs are made up of one or more convolution and pooling layers, generally followed by
dense layers. For example, we might have two convolution pooling layers followed by a

convolution layer whose output is then fed into a dense layer to generate a label.

Now, the idea here is to use this CNN model which was trained on a large data set and use it
for performing some other task. For example, we have a data set of machine parts and we
want to recognize faulty machine parts. So, we want to build a CNN followed by feed
forward neural network to get the label, which in this case is faulty or good. We know that a
CNN model has a large number of parameters and if you do not have enough data points

about machine parts and a label you are likely to overfit the CNN model.

Here, what we want to do is we want to take advantage of a pre-trained model which is
trained on a different dataset from the dataset pertaining to our problem, and use it for solving

the problem at hand. There are really two ways in which we can achieve this.

(Refer Slide Time: 05:29)

1ebel

N

(new)

Pre-kai""
et FERSSIES

| K
S T 1

lnPM* ?a,.ts h’\ach'f‘e

{un'mj

Ja——

Let us quickly introduce some generic structure to our CNNs. We have the convolutional
neural network (CNN) part, which consists of convolutional layers and pooling layers. The

other part, referred to as feed forward neural network (FFNN) consists of dense layers.

In the first of the two ways we can use our pretrained model, we will only use the
convolutional part of the model. We use the convolutional part of the model for feature
generation and pass the output of the CNN to a new network of dense layers. With the new
data, we only train these new layers that were added and not the CNN. The weights of the

CNN remain the same as the CNN part of the pretrained model.

In the second approach what we do is, we use a certain section of the CNN as it is in the
pretrained model and retrain the rest of the network. The certain section is typically the first
few layers of the network (refer to the image above). The training is done by freezing the

weights in the earlier layers and tuning the rest of the weights using the training data at hand.

Now that you have understood how to use pre-trained model for building a custom model, let

us look at the machine learning workflow involved in this particular process.

(Refer Slide Time: 12:05)

+ Code + Text # Copy to Drive Connecting ~ /' Editing v
£ DUNT an INput pipenne, In wnis case using Keras 1magevatavenerator
> 3. Compose our mode|

Load in our pretrained base model (and pretrained weights)
Stack our classification layers on top
4, Train our model

5. Evaluate model

Py O R
-,‘°‘: frem __future__ import absolute_import, division, print_function, unicode_literals
) import os
import numpy as np
import matplotlib.pyplot as plt
o !pip install tensorflou-gpu==2.€.0-betal

imoort tensorflow as tf

Cmren - trenmray

~ Data preprocessing

4 iggéownload

Use TensorFlow Datasets to load the cats and dogs dataset

So, we will first examine and understand the data which is exactly the same as traditional
machine learning algorithms, then we build an input pipeline, then we build and compile our

model. Only the model composition differs from the traditional machine learning algorithms.

In traditional machine learning algorithms, we define the model completely. In this case, we
will have to load the pre-trained model and then add the classifier layer (as a dense layer) on
top of it. Then, the remaining two steps (training and evaluation) are again very similar to our

traditional machine learning algorithms.

So, let us start by importing all the necessary libraries. Let us also install and import the

tensorflow package.

(Refer Slide Time: 13:29)

RAM I

+ Code + Text 4 Copy to Drive Disk I - /' Editing v
e e e e S
> Installing collected packages: tb-nightly, tf-estimator-nightly, tensorflow-gpu

Successfully installed tb-nightly-1.14.0a20199603 tensorflow-gpu-2.0.8b1 tf-estimator-nightly-1.14.0.dev201905€501

~ Data preprocessing

~ Datadownload

Use TensorFlow Datasets to load the cats and dogs dataset
This tfds package is the easiest way to load pre-defined data. If you have your own data, and are interested in importing using it with TensorFlow

see [oading image data

[] import tensorflow datasets as tfds
tfds.disable_progress_bar()

The tfds. load method downloads and caches the data, and retums a tf .data.Dataset object. These objects provide powerful, efficient methods
for manipulating data and piping it into your model.
Since "cats_vs_dog" doesn't define standard splits, use the subsplit feature to divide it into (train, validation, test) with 80%, 10%, 10% of the data

tively.

NPTEPLITNELGHTS = (8, 1, 1)
NETELDLits = tfds.Split. TRAIN. subsplit(weighted=SPLIT_WEIGHTS)

i Ligdos socs fodoio ol o g

Let us load the data set using tfds package.

(Refer Slide Time: 13:34)

+ Code + Text 4 Copy to Drive / RD'?:: : - /' Editing v
I “tf.data.TFRecordDataset (path)”
> Dataset cats_vs_dogs downloaded and prepared to /root/tensorflow_datasets/cats_vs_dogs/2.8.1. Subsequent calls will

The resulting tf.data.Dataset objects contain (image, label) pairs. Where the images have variable shape and 3 channels, and the label is a
scalar.

LRV - 3 I
° print(raw_train)

print(rau_validation)
print(raw_test)

<_OptionsDataset shapes: ((), ()), types: (tf.uint8, tf.int64)»
<_OptionsDataset shapes: ((None, None, 3), ()), types: (tf.uint8, tf.int64)>
<_OptionsDataset shapes: ((None, Nonme, 3), ()), types: (tf.uint8, tf.int64)»

Show the first two images and labels from the training set:

[] get_label name = netadata.features['label'].int2str

for image, label in raw_train.take(2):
plt.figure()
plt.imshow(image)
plt.title(get_label_name(label))

the Data

NRTWE tf . inage module to format the images for the task

Rasizathe imanac o 2 fivecinnit cize ond roccale she innut chonnaleto o ronao of [0 11

The tfds.load method downloads and caches data and returns a tf.data.Dataset object. These
objects provide powerful and efficient methods for manipulating data and piping it into our
model. Since cats and dogs data set does not define standard split we use the subsplit function

to divide it into train, validation and test with the split specified by the weighted parameter.

Here we use 80 percent data for training, 10 percent data for test and the remaining 10

percent data for validation.

The resulting dataset object contains images and label pairs. The images have variable shape
and 3 channels, and label is a scalar quantity. Let us look at the first two images and add
labels from the training set. So, iterate on the training set using take method on the tensor and

we generate the string of the label using into string property.

(Refer Slide Time: 14:59)

+ Code + Text # Copy to Drive Dh: - - 2 Editing v

0
0 100 200 300

at

F o
'!\?aiiiiilﬂiil;“.f —

You can see that this is a picture of a dog with label displayed at the top and there is a picture
of the cat. You can see that the dog picture has height of 500 and width of over 350; whereas,
the cat picture has height close to 400 and width of 500. So, you can see that all the pictures

are not of the same size.

(Refer Slide Time: 15:28)

+ Code + Text & Copy to Drive

>~ Format the Data
Use the tf . inage module to format the images for the task.

Resize the images to a fixes input size, and rescale the input channels to arange of [-1,1]

[] IMG_SIZE = 166 # ALl images will be resized to 15@x16@

def format_example(image, label):
image = tf.cast(image, t#.float32)
image = (image/127.5) - 1
image = tf.image.resize(image, (ING_SIZE, IMG_SIZE))
return image, label

Apply this function to each item in the dataset using the map method:

Q train = rau_train.map(fornat_example)
validation = raw_validation.map(format_example)
test = paw_test.map(format_example)

Now shuffle and batch the data.

[] BATCH_SIZE = 32
z’*‘HLFPLEJUFFELSIZE = 1000

F

train_batches = train.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
alidation_batches = validation.batch(BATCH_SIZE)

test_batches = test,batch(BATCH_SIZE)

RAM
Disk

v/ Editing

TV RW

v

So, the first thing is to resize the image, so that we have the same input size for all the
images. We will be using tf.image module to format the images for this task. We will also
rescale the input channel to a range of minus 1 to plus 1. Here the desired size of image is

160 by 160. We will apply the function on each item in the dataset using the map method.

So, you can see that the format example is applied on the training set, validation set and test

set. We get three tensors - train, validation and test - that contains images of the same size

and their labels.

(Refer Slide Time: 16:39)

+ Code + Text & Copy to Drive RD'?:‘: v / Editing v

[9] BATCH SIZE = 32
SHUFFLE_BUFFER_SIZE = 1000

[10] train_batches = train.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
validation_batches = validation.batch(BATCH_SIZE)
test_batches = test.batch(BATCH_SIZE)

Inspect a batch of data

PV R
° for image_batch, label batch in train_batches.take(1):
pass

image_batch.shape

TensorShape([32, 16@, 150, 3])

~ Create the base model from the pre-trained convnets

You will create the base model from the MobileNet V2 model developed at Goagle. This is pre-trained on the ImageNet dataset, a large dataset of
1.4Mimages and 1000 classes of web images. ImageNet has a fairly arbitrary research training dataset with categories like jackfruit and
syringe, but this base of knowledge will help us tell apart cats and dogs from our specific dataset

f‘; u need to pick which layer of MobileNet V2 you will use for feature extraction. Obviously, the very last classification layer (on "top", as most
l‘tlljafjr s of machine learning models go from bottom to top) is not very useful. Instead, you will follow the common practice to instead depend on

mﬁﬁém last layer before the flatten operation. This layer is called the "bottleneck layer”, The bottleneck features retain much generality as comparad
to the final/top layer.

Let us shuffle and batch the data. We use batch size of 32, and for shuffling we define a
buffer size of 1000. We shuffle only the training data and we batch all the three data sets by
the batch size of 32. Let us inspect a batch of data from training batches. So, we can see that
in the first training batch we have 32 images, each with height of 160 and width of 160 on the

3 channels. So, you can see that the image batch here is a 4D tensor.

Now that we have got in the data in the desired shape let us create the model. In model
creation, there are two steps; first is to load the base convolution model and second, o add a

classification layer on top of it.

Here we will create the base model from MobileNet version 2 developed at Google. This
model was pre-trained on image data set which is a large data set of 1.4 million images from
thousand classes of web images. ImageNet has categories like jack fruit and syringe, but we

will use the image net classified here to classify cats versus dogs.

First you need to pick which layer of MobileNet you will use for feature extraction;
obviously, very last classification layer is not going to be very useful for this task. Instead we
will follow a common practice of extracting features at a layer just before the flatten
operation. This layer is referred to as the bottleneck layer. A bottleneck feature retains

generality as compared to final or top layer.

(Refer Slide Time: 18:53)

+ Code + Text & Copy to Drive RD»":: . v /' Editing v

b3 ° IMG_SHAPE = (IMG_SIZE, ING_SIZE, 3)

1 MobileNet V2
ut_shape=ING_SHAPE,
MtlLde _top=False,
weights= xmagenet)

ate the base model from the pre-traine
base mudel tf.keras.applicaticns. NoblleNe

Downloading data from https://github.com/JonathanCMitchell/mobilenet v2 keras/releases/download/vl.1/mobilenet v2_we
9412608/9406464 [============z===zz=s=========z] - @5 QUs/step

This feature extractor converts each 160x15@x3 image to a 5x5x1280 block of features. See what it does to the example batch of images:

[] feature_batch = bass_model (inage_batch)
print(feature_batch. shape)

~ Feature extraction

You will freeze the convolutional base created from the previous step and use that as a feature extractor, add a classifier on top of it and train the top-
level classifier

v e the convolutional base
!t‘;fm rtant to fraeze the convolutional based before you compile and train the model. By freezing (or setting layer. trainable = False), you
nre weights in a given layer from being updated during training. MobileNet V2 has many layers, so setting the entire model's trainable flag to
False will freeze all the layers.

So, let us first instantiate MobileNet with a pre-loaded weights trained on ImageNet. We can
do that using tf.keras.applications.MobileNetV2 function. We specify the input shape. We tell
the model that we do not want to include the top layer or the classifier layer by specifying
include top argument to false and we specify that we want to use weights of MobileNetV2

when trained on the ImageNet dataset.

Since we specify include top as false the network does not include the classification layer at
the top which is ideal for feature extraction. The feature extractor converts each of
160x160x3 image into a 5x5x1280 block of features. Let us look at how this model looks
like.

(Refer Slide Time: 19:58)

+ Code + Text 4 Copy to Drive %?::]' - / Editing v

) [12] INGSHAPE = (IMG_SIZE, NG SIZE, 3)

Create the base model from the pre-trained model MobileNet V2

base_model = tf.keras.applicaticns.MobileNetV2(input_shape=ING_SHAPE,
include_top=False,
weights="inagenet')

{3 Downloading data from https://github.com/JonathanCMitchell /mobilenet v2 keras/releases/download/vl.1/mobilenet v2 we
© 9412608/9406464 (== =] - @s Qus/step

This feature extractor converts each 160x15@x3 image to a 5x5x1280 block of features. See what it does to the example batch of images:

K N |

° base_model. sunmary/),

) Model: "mobilenetiv2_1.09_160"

Layer (type) Output Shape Param # Connected to
input_1 (Inputlayer) [(Nore, 16e, 168, 3) @
Convl_pad (ZeroPadding20) (None, 161, 161, 3) @ input_1[@][e]
.. Convl (Conv2D) (None, 80, 80, 32) 864 Convl_pad[@][e]
A
_Convl (BatchNormalization) (None, 89, 80, 32) 128 Convi[e][e]
NPTElonv1_relu (RelU) (None, 80, 89, 32) @ bn_Convi[@][8]

So, when we call summary on the model you get to see the complete architecture of the
MobileNet V2. We can see that it takes a 4D tensor, where there are images of size 160x160

across 3 channels; that means, it takes coloured images of size 160x160.

(Refer Slide Time: 20:28)

+ Code + Text 4 Copy to Drive v %?:ﬁ : v / Editing v
> ° block_16_expand (Conv2D) (Neone, 5, 5, 9€0) 153600 block_15_add[@][@]

":‘" block_16_expand_BN (BatchNormal (None, 5, 5, 960) 3848 block_16_expand[8][8]
block_16_expand_relu (RelLU) (None, 5, 5, 968) (] block_16_expand_BN[8][2]
block_16_depthwise (DepthwiseCo (None, 5, 5, 96@) 8648 block_16_expand_relu[@][@]
block_16_depthwise_BN (BatchNor (None, 5, 5, 968) 3840 block_16_depthwise[8][8]
block_16_depthwise_relu (ReLU) (None, 5, 5, 96@) (] block_16_depthwise BN[@][0]
block_16_project (Conv2D) (None, 5, 5, 320) 307200 block_16_depthwise_relu[@][8]
block_16_project BN (BatchNorma (None, 5, 5, 320) 1280 block_16_project[d][0]
Conv_1 (Conv2D) (None, 5, 5, 1280) 409600 block_16_project_BN[0][@]
Conv_1_bn (BatchNormalization) (None, 5, 5, 1280) 5120 Conv_1[0][0]
out_relu (RelU) (None, 5, 5, 1280) @ Conv_1_bn[@][e]

Total params: 2,257,984
Trainable params: 2,223,872

s Non-trainable params: 34,112

()

NPTE[eature_batch = base_model (inage_batch)
print(feature_batch. shape)

And, its final layer produces a 4D tensor, where we get 5x5 patches across 1280 channels.
We also see the total number of parameters for this model. So, this model has got 2.2 million

parameters.

(Refer Slide Time: 20:59)

+ Code + Text # Copy to Drive RAM v J Editng v

Disk
Total params: 2,257,984
> [13] Trainable parans: 2,223,872
Non-trainable params: 34,112

rVeoRi
feature_batch = base_mcdel (inage_batch)
print(feature_batch. shape)

(32, TETNEEEE)

~ Feature extraction

You will freeze the convolutional base created from the previous step and use that as a feature extractor, add a classifier on top of it and train the top-
level classifier.

~ Freeze the convolutional base

Its important to freeze the convelutional based before you compile and train the model. By freezing (or setting layer.trainable = False), you
prevent the weights in a given layer from being updated during training. MobileNet V2 has many layers, so setting the entire model's trainable flag to
False will freeze all the layers

JFT\base_model.trainable = False

4% (et's take 2 look at the base model architecture
NPTELase model. summary()

Let us use the base model to generate the features.

So, you can see that on the image batch that we selected we computed the features for the
image batch. You can see that for each of the 32 examples in the batch, we got a 3D tensor of
size of shape (5, 5, 1280). We will freeze the convolution base created from the previous step
and use that as a feature extractor. We add a classifier on top of it and train the top level

classifier.

(Refer Slide Time: 21:48)

+ Code + Text 4 Copy to Drive RD'T:: ‘ - / Editing v

b4 (32, SYIE)Na8E)

~ Feature extraction

You will freeze the convolutional base created from the previous step and use that as a feature extractor, add a classifier on top of it and train the top-
level classifier.

~ Freeze the convolutional base

Its important to freeze the convolutional based before you compile and train the model. By freezing (or setting layer. trainable = False), you
prevent the weights in a given layer from being updated during training. MobileNet V2 has many layers, so setting the entire model's trainable flag to
False will freeze all the layers.

[15] base_model.trainable = False
PV e R

Let's take a look at!the base model architecture
base_model. sunmary()

block_14_depthwise BN (BatchNor (None, 5, 5, 968) 3848 block_14_depthwise[@][d]
“plock_14_depthwise_relu (ReLU) (None, 5, 5, 9%@) @ block_14_depthwise_BN[8][0]
}o(k_u_pmje(t (Conv2D) (None, 5, 5, 160) 153600 block_14_depthwise_relu[8][8]
NPTEL

block_14_project BN (BatchNorma (Nonme, 5, 5, 168) 648 block_14_project[8][0]

Let us see how to do that in the code. We use base model.trainable attribute or property and
set it to false. This makes sure that you freeze the convolution base before we compile and
train the model. By freezing you prevent the weights in a given layer from being updated
during the training. MobileNet has many layers, so, setting the entire models trainable flat to

false will freeze all the layers.

Let us look at how the base model looks like.

(Refer Slide Time: 22:24)

, RAM & 5

+ Code + Text 4 Copy to Drive Disk - /2 Editing v
’ ° block_16_project (Conv2D) (None, 5, 5, 320) 307200 block_16_depthwise_relu[@][8]
block_16_project_BN (BatchNorma (None, 5, 5, 320) 1280 block_16_project[@][@]
Conv_1 (Conv2D) (None, 5, 5, 1280) 409600 block_16_project_BN[@][@]
Conv_1_bn (BatchNormalization) (None, S5, 5, 1280) 5128 Conv_1[8][0]
out_relu (RelU) (None, 5, 5, 1280) @ Conv_1_bn[@][e€]

Total params: 2,257,984

Trainable params: 2,223,872
on-trainable params: 34,112f8

[14] feature_pbatch = base_model(inage_batch)
print(feature_batch. shape)

(32, 5,5, 1288)

~ Feature extraction

Yol freeze the convolutional base created from the previous step and use that as a feature extractor, add a classifier on top of it and train the top-

iceBssifier.

NPTEL
~ Freeze the convolutional base

I would like you to compare the trainable parameters after freezing. You can see that after
freezing the trainable parameters become 0; that means we do not have to train any of the
parameter of this network and all the parameter all the 2.2 million parameters become

non-trainable.

(Refer Slide Time: 22:52)

+ Code + Text # Copy to Drive / RD'?:: : v 2 Editing v

2 Add a classification head

To generate predictions from the block of features, average over the spatial 5x5 spatial locations, using a
tf.keras. layers.GlobalAveragePoolirg2D layer to convert the features to a single 1280-element vector per image.

[17] global_average_layer = tf.keras.layers.GlobalAveragePooling20()
feature_batch_average = global_average_layer(feature_batch)
print(feature_batch_average.shape)

(32, 1280)
IV
Apply atf.keras.layers.Dense layer to convert these features into a single prediction per image. You don't need an activation function here
because this prediction will be treated as a logit, or a raw prediction value. Positive numbers predict class 1, negative numbers predict class 0.

[] prediction_layer = keras.layers.Dense(1)
prediction_batch = prediction_layer(feature_batch_average)
print(pradiction_batch.shape)

Now stack the feature extractor, and these two layers using a tf.keras .Sequential model:

S\rodel = tf.keras.Sequential([
base_model,
global_average_layer,
prediction_layer

NPTEL)

In order to generate predictions from the block of the feature we average the special 5x5

block using a GlobalAveragePooling layer to convert the feature to a single vector of 1280

elements per image. So, we add the GlobalAveragePooling layer to the model. Let us look at
the shape of the feature batch. You can see that each of the image each of the 32 images in

the batch got converted into a 1D tensor containing 1280 numbers.

Finally we apply tfkeras.layers.dense layer to convert these features into a single prediction
per image. We do not need an activation function here because this prediction will be treated
as a raw prediction value. A positive number predicts class 1 and negative number predicts

class 0.

(Refer Slide Time: 24:03)

RAM

+ Code + Text & Copy to Drive Disk - /' Editing v
because this prediction will be treated as a logit, or a raw prediction value. Positive numbers predict class 1, negative numbers predict class 0.
[18] prediction_layer = keras.layers.Dense(1)

prediction batch = prediction_layer(feature_batch_average)
print(prediction_batch.shape)
(32, 1)
Now stack the faature extractor, and these two [ayers using a tf. keras.Sequential model:
PV RT
model = tf.keras.Sequential([
base_model,
global_average_layer,
prediction_layer
)
v Compile the model
You must compile the model before training it. Since there are two classes, use a binary cross-entropy loss
] base_learning_rate = 0.0001
model. compile(optimizer=tf.keras.optinizers.RMSprop(lr=base_learning_rate),
loss="birary_crossentropy’,
metrics=['accuracy'])
O
[3+¥nodel. sunmary()
NPTEL
Tk ISV [V £ L n 14 Ll O L Th diidod ot

So, let us stack the feature extractor and two layers using a tf.keras.Sequential model. So, we
define the model to be tf.keras.Sequential model which has got a base model, which itself is a
sequence of convolution and pooling layers according to the MobileNet architecture. You
have a global average layer followed by a prediction layer. Prediction layer is a dense layer

having a single unit. Let us compile the model before training it.

Since there are two classes we are using binary cross entropy loss and we are using RMSprop

optimizer with a small learning rate.

(Refer Slide Time: 24:52)

+ Code + Text & Copy to Drive RAM - /' Editing

Disk
TTW TS
> ° model. summary ()

Model: "sequential”

Layer (type) OQutput Shape Param #
mobilenetv2_1.€0_15@ (Model) (None, S, 5, 1289) 2257934
global_average_pooling2d (G1 (None, 128@)]

dense (Dense) (None, 1) 1281

Total params: 2,259,265
Trainable params: 1,281
Non-trainable params: 2,257,984

The 2.5M parameters in MobileNet are frozen, but there are 1.2K trainable parameters in the Dense layer. These are divided between two
tf.Variable objects, the weights and biases.

len(model.trainable_variables)

v ‘f e model
40y

aining for 10 epochs, you should see ~96% accuracy.

TEL

Let us look at the summary of the model. You can see that the MobileNetV2 returns the 4D
tensor of shape (None, 5, 5, 1280) and it has got 2.2 million parameters. The global average

pooling returns 1280 numbers per image and finally, we have a dense layer with a single unit.

We can see that this dense layer receive 1280 inputs plus 1 bias unit makes 1281 parameters
in the dense layer. So, you can see that the total number of parameters are more than 2.2
million, out of which most of the parameters are non-trainable and we have to only train 1281

parameters corresponding to the output layer.

(Refer Slide Time: 25:44)

+ Code + Text 4 Copy to Drive R.f:: : - /' Editing v

>+ Train the model

After training for 10 epochs, you should see ~96% accuracy.

[] num_train, num_val, num_test = (
metadata,splits('train'].num_examples*weight/19
for weight in SPLIT_WEIGHTS

)

initial_epochs = 18
steps_per_epoch = round(nun_train)//BATCH_SIZE
validation_steps = 20

loss@,accuracy® = model,evaluate(validation_batches, steps = validation_steps)

print("initial loss: {:.2f}".format(losse))
print("initial accuracy: {:.2f}".format(accuracya))

[] history = model.fit(train
epoch: tial_epochs,
validation_data=validation_batches)

Let us train the model for 10 epochs.

(Refer Slide Time: 25:47)

+ Code + Text 4 Copy to Drive RD‘?s'ﬁ :‘ - /' Editing v
s i
> [27] Epoch 9/1¢
r 582/582 [== - 755 129ms/step - loss: 0.4289 - accuracy: 0.9428 - val_loss: 0.3677 - va.
Epoch 10/10
582/582 - 74s 127ms/step - loss: 0.4107 - accuracy: 0.9440 - val_loss: 8.3425 - va:

CODE TEXT

~ Learning curves

Lets take a look at the learning curves of the training and validation accuracy/loss when using the MobileNet V2 base model as a fied feature
extractor.

[28] acc = history.history[‘accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

plt.figure(figsize=(8, 8))

plt.subplot(2, 1, 1)

plt.plot(acc, label='Training Accuracy')
plt.plot(val acc, label='validation Accuracy')
plt.legend(loc="lower right')

plt.ylabel('Accuracy')
plt.ylim([nin(plt.ylin()),1])
plt.title('Training and Validation Accuracy')

.subplot(2, 1, 2)

plot(loss, label='Training Loss')
.plot(val_loss, label='validation Loss')
.legend(loc="upper right')
.ylabel('Cross Entropy')

.ylim([0,1.0])

titlal Teainiog Lalidaticn doiat)

NPTEI

You can see that after 10th epoch we cross the accuracy of 94 percent. Let us take a look at
the learning curves of the training and validation accuracy or loss when using MobileNet base

model as the fixed feature extractor.

(Refer Slide Time: 26:10)

+ Code + Text

> 6]
1000

& Copy to Drive

Training and Validation Accuracy

0975
0950
0925
0900
0875
0850

0825

— Training Accuracy
Validation Accuracy
Start Fine Tuning

0800

5 50 15 00 RS 150 1S
‘Training and Validation Loss

Training Loss
Validation Loss
Start Fine Tuning

RAM
Disk

You can see that training and validation loss and accuracies are quite close by after the 10th
epoch. You must be wondering why validation matrices are better than the training matrices.
The main factor is because layers like tf.keras.layers.BatchNormalization and dropout affect
accuracy during the training. They are turned off when calculating the validation loss. To a
lesser extent it is also because training matrices report average for an epoch while validation

matrix are evaluated after every epoch. So, validation matrix see a model that has trained

slightly longer.

(Refer Slide Time: 26:50)

RAM X

+ Code + Text # Copy to Drive / Dk I - / Editing v
02
> [28]
00
0 2 4 6 8
epoch

Note: If you are wondering why the validation metrics are clearly better than the training metrics, the main factor is because layers like
tf.keras. layers.BatchNormalization and tf.keras.layers.Dropout affect accuracy during training. They are turned off when calculating
validation loss.

To a lesser extent, itis also because training metrics report the average for an epoch, while validation metrics are evaluated after the epoch, so
validation metrics see a model that has trained slightly longer.

~ Fine tuning
In our feature extraction experiment, you were anly training a few layers on top of an MobileNet V2 base model. The weights of the pre-trained
network were not updated during training.
One way to increase performance even further is to train (or "fine-tune’) the weights of the top layers of the pre-trained model alongside the training
of the classifier you added. The training process will force the weights to be tuned from generic features maps to features associated specifically to
our dataset,
Note: This should only be attempted after you have trained the top-level classifier with the pre-trained model set to non-trainable. If you add a
gifidugly initialized classifier on top of a pre-trained model and attempt to train all layers jointly, the magnitude of the gradient updates wil be too
iav}ﬁ € to the random weights from the classifier) and your pre-trained model will forget what it has learned.

r\ﬁgl Bpu should try to fine-tune a small number of top layers rather than the whole MobileNet model. In most convolutional networks, the higher up a

layer is, the more specialized it is. The first few layers learn very simple and generic features which generalize to almost all types of images. As you

In our feature extraction experiment, we were only training a few layers on top of MobileNet
base model. The weights of the pre-trained network were not updated during the training. The
weights were frozen for the base model. One idea to improve the performance can be to fine

tune the weights of the top layer of the pre-trained model alongside the classifier layer.

So, now, what we are going to do here is we are going to we are going to unfreeze these
layers of the base network and train them along with the classifier layer. Let us see how to

specify unfreezing of these layers in the code.

(Refer Slide Time: 28:00)

+ Code + Text # Copy to Drive RD'?:: - /' Editing v

> Note: This should only be attempted after you have trained the top-level classifier with the pre-trained model set to non-trainable. If you add a
randomly initialized classifier on top of a pre-trained model and attempt to train all layers jointly, the magnitude of the gradient updates will be too
large (due to the random weights from the classifier) and your pre-trained model will forget what it has learned
Also, you should try to fine-tune a small number of top layers rather than the whole MobileNet model. In most convolutional networks, the higher up a
layer is, the more specialized it is. The first few [ayers learn very simple and generic features which generalize to almost all types of images. As you
go higher up, the features are increasingly more specific to the dataset on which the model was trained. The goal of fine-tuning is to adapt these
specialized features to work with the new dataset, rather than overwrite the generic leaming.

<«

Un-freeze the top layers of the model

All you need to do is unfreeze the base_model and set the botiom layers be un-trainable. Then, you should recompile the model (necessary for these
changes to take effect), and resume training.

[29] base_model.trainable = True

PV ORE
Let's take a look to see how many layers are in the base model
print("Number of layers in the base model: ", len(base_nodel.layers))
Fine tune fron this layer onwards

fine_tune_at = 100
5

Freeze all the layers before the "fine tune_at’ layer
r layer in base_model.layers[:fine_tune_at]:
layer.trainzble = False

Number of layers in the base model: 155

So, we set the trainable property of the base model to true and what we do is we specify the
layers after which you want to unfreeze the network. So, here you want to find tune from
100th layer onwards. So, we specify the fine tune at variable and anything after that will be
trained and anything before this fine tune at will be fixed. So, we set the trainable value of
the layers before 100th layer as false. So, there are 155 layers in the base model out of which

we retrain the top 55 layers.

It is important to note that as we go deeper in the network, network become more specialized
to patterns learned from the training data. The initial convolution layer learns general patterns
or simpler patterns like edges or corners, but as we go deeper and deeper the models become

specialized to recognize patterns from the training data.

So, if we are using CNNs as the pre-trained model for some other task it is important to cut it
somewhere in the middle if the task is very very different from the training data. For
example, if the training data contains pictures of cats and dogs whereas, that the training data
for the new task is about machine parts we might have to start unfreezing quite early in the
network, because the original network which was trained on cats and dogs will start

recognizing patterns related to cats and dog as it goes deeper.

(Refer Slide Time: 30:20)

+ Code + Text 4 Copy to Drive RD/?:: “
i -
> LRV-TE - 3
° # Let's take a look to see how many layers are in the base model
print("Number of layers in the base model: ", len(base_model.layers))

v+ /g v

Fine tune fron this layer onwards

fine_tune_at = 100

Freeze all the layers before the "fine tune_at’ layer

for layer in base_model.layers[:fine_tune at]:
layer.trainable = False

Number of layers in the base model: 155

~ Compile the model

Compile the model using a much lower training rate.

[31] model.compile(loss="binary_crossentropy’,
optimizer = tf.keras.optimizers.RMSprop(lr=base_learning_rate/13),
metrics=['accuracy'])

[32] model.sunmary()

=N Model: "sequential

oy
L7 ’éyer (type) Output Shape Param #

NPTEfobilenetv2_1.60 156 (Model) (None, S, 5, 1289) 2257984

So, let us use the same setting we use binary towards entropy loss and we use RMSprop as an

optimizer. Let us look at the model summary after unfreezing some layers of the network.

(Refer Slide Time: 30:35)

RAM X

+ Code + Text # Copy to Drive Disk I v /' Editing v

Compile the model using a much lower training rate.

[31] model.compile(loss="binary_crossentropy',
optimizer = tf.keras.optinizers.RiSprop(lr=base_learning_rate/12),
metrics=["accuracy'])

[32] model.summary()

Model: "sequential”

Layer (type) OQutput Shape Param #
mobilenetv2_1.66_16@ (Model) (None, S, 5, 1288) 2257984
global_average_pooling2d (G1 (None, 1288)]

dense (Dense) (None, 1) 1281

Total params: 2,259,265
Trainable params: 1,863,873
Non-trainable params: 395,392

[" R len(model.trainable_variables)

NPTEL

Condinue Teain tho madal

Now, you can see that out of 2.2 million total parameters, the non-trainable parameters are
reduced to 395000 and the rest of the parameters are trainable parameters. Let us compare

this model summary with the model summary from the previous exercise.

So, you can see that in the previous exercise we only had 1281 trainable parameters and all of
the 2.2 million parameters of the base convolution neural network were non-trainable, but

since we have unfrozen some of the layers, the number of parameters have gone up.

We should note that we should only attempt fine tuning after training the top level classifier
with the pre-trained model set to non-trainable. If you add a randomly initialized classifier on
the top of the pre-trained model and attempt to train all the layers jointly, the magnitude of
the gradient updates will be too large and our pre-trained model will forget what it has

learned.

(Refer Slide Time: 31:55)

RAM

+ Code + Text # Copy to Drive Disk Y. 2 Editing v
>
[33] len(model.trainable_variables)
58
~ Continue Train the model
If you trained to convergence earlier, this will get you a few percent more accuracy.
PRl
fine_tune_epochs = 10
total_epochs = initial_epochs + fine_tune_epochs
history_fine = model.fit(train_batches,
epochs=total_epochs,
initial_epoch = initial_epochs,
validation_data=validation_batches)
Epoch 11/20
582/582 [s=sssssssssssssssssssssss====z] - 1055 181ms/step - loss: 8.3738 - accuracy: .9546 - val_loss: ©.0030e-09
Epoch 12/20
582/582 [========z===========z===z====z] - 875 15@ms/step - loss: ©.2919 - accuracy: 0.9767 - val_loss: 8.1964 - va
Epoch 13/20
5= 582/582 [= - 865 148ms/step - loss: ©.2542 - accuracy: 0.9821 - val_loss: 8.1745 - va.
4 och 14/20
»_7' ;512/582 [= - 865 147ms/step - loss: ©.2381 - accuracy: 0.9839 - val_loss: 0.1871 - va.
W:;"'Epam 15/20
T 082/582 [= - 855 146ms/step - loss: ©.2267 - accuracy: 0.9846 - val_loss: ©.1822 - va.
Epoch 16/20

Let us train the model for 10 epochs. What we do is we start the training of the model where
we had stopped in the previous run. So, we had stopped on 10th epoch. So, we want to
initialize the model with the 10th epoch and resume the training from that. So, you can see
that when we run this particular fit function or the model training we started training from

11th epoch.

(Refer Slide Time: 32:26)

RAM

+ Code + Text & Copy to Drive Disk T Vi /' Editing v

S82/58L | s===s==ss=sssssssssssssszsssss| - 8/5 15OMS/step - 10sS! ©.2919 - accuracy: ©.9/6/ - val_loss! 9.1964 - va

> O epoch 13/20
582/582 [==sssssssssssssssssssssss==s=z] - 865 148ms/step - loss: 0.2542 - accuracy: 0.9821 - val_loss: 8.1745 - val
Epoch 14/20
582/582 [==sssssssssssssssssssssss==s=z] - 865 147ms/step - loss: @.2381 - accuracy: 0.9839 - val_loss: 8.1871 - val
Epoch 15/20
582/582 [========sss=sss=sszssssss====z] - 855 146ms/step - loss: @.2267 - accuracy: 8.9846 - val_loss: 8.1822 - va
Epoch 16/20
582/582 [==: - 855 146ms/step - loss: ©.2195 - accuracy: 0.9854 - val_loss: 0.2099 - va
Epoch 17/20
582/582 [= - 855 146ms/step - loss: ©.2123 - accuracy: 0.9858 - val_loss: 8.1966 - va.
Epoch 18/20
582/582 [==: - 855 146ms/step - loss: ©.2094 - accuracy: 0.9863 - val_loss: 8.2051 - va.
Epoch 19/20
582/582 [====================z===z====z] - 855 146ms/step - loss: ©.2077 - accuracy: 0.9864 - val_loss: 8.2071 - va
Epoch 20/20
582/582 [=========z==s=======z========z] - 855 146ms/step - loss: ©.2020 - accuracy: 0.9865 - val_loss: 8.2033 - va

Let's take a look at the learning curves of the training and validation accuracy/loss, when fine tuning the last few layers of the MobileNet V2 base
model and training the classifier on top of it. The validation loss is much higher than the training loss, so you may get some overfitting.

You may also get some overfitting as the new training set is relatively small and similar to the original MobileNet V2 datasets.

!}imgemnmg the model nearly reaches 98% accuracy.
WiTRice += history_fine.history['accuracy']

Val_acc += history_fine.history['val_accuracy']

Now, the accuracy has gone up to 99 percent; it has crossed 98 percent which is more than 4
percentage points from the previous exercise where we used MobileNet merely as a feature

extraction mechanism.

So, in this module we learned how to use a pre-trained machine learning model as a feature
extractor and we also learned how to fine tune a pre-trained model. Hope you had fun
learning these concepts. In the next session, we will use TensorFlow hub for loading some of

the pre-trained models and using them for feature extraction as well as for fine tuning.

