
Practical Machine Learning
Dr. Ashish Tendulkar

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture – 24

Transfer Learning with pre-trained CNNs

In the last lecture, we looked at concepts behind convolution neural networks and use them

for building an image classifier. We also learned that these models have a large number of

parameters and in order to train them without overfitting we require a reasonably large

amount of data. How do we use these models when we do not have a large amount of data?

For example, say a manufacturing company wants to train a CNN model for recognizing

faulty machine parts, and they do not have enough data, what can we do?

We learn techniques behind solving these kind of problems in this session. We will

demonstrate these techniques by classifying cats and dogs.

(Refer Slide Time: 01:23)

A pre-trained model is at the centre of our strategy. A pre-trained model is a saved network

that was previously trained on a large dataset, typically on a large scale image classification

task. We either use the pre-trained model as it is or use transfer learning to customize this

model for a given task. The intuition behind transfer learning is that if a model is trained on a

large and general enough data set, this model will effectively serve as a general model of the

visual world. We can take advantage of these learned feature maps without having to start

training a large model from scratch on a large data set.

In this exercise we will try two ways to customize a pre-trained model.

(Refer Slide Time: 02:19)

CNNs are made up of one or more convolution and pooling layers, generally followed by

dense layers. For example, we might have two convolution pooling layers followed by a

convolution layer whose output is then fed into a dense layer to generate a label.

Now, the idea here is to use this CNN model which was trained on a large data set and use it

for performing some other task. For example, we have a data set of machine parts and we

want to recognize faulty machine parts. So, we want to build a CNN followed by feed

forward neural network to get the label, which in this case is faulty or good. We know that a

CNN model has a large number of parameters and if you do not have enough data points

about machine parts and a label you are likely to overfit the CNN model.

Here, what we want to do is we want to take advantage of a pre-trained model which is

trained on a different dataset from the dataset pertaining to our problem, and use it for solving

the problem at hand. There are really two ways in which we can achieve this.

(Refer Slide Time: 05:29)

Let us quickly introduce some generic structure to our CNNs. We have the convolutional

neural network (CNN) part, which consists of convolutional layers and pooling layers. The

other part, referred to as feed forward neural network (FFNN) consists of dense layers.

In the first of the two ways we can use our pretrained model, we will only use the

convolutional part of the model. We use the convolutional part of the model for feature

generation and pass the output of the CNN to a new network of dense layers. With the new

data, we only train these new layers that were added and not the CNN. The weights of the

CNN remain the same as the CNN part of the pretrained model.

In the second approach what we do is, we use a certain section of the CNN as it is in the

pretrained model and retrain the rest of the network. The certain section is typically the first

few layers of the network (refer to the image above). The training is done by freezing the

weights in the earlier layers and tuning the rest of the weights using the training data at hand.

Now that you have understood how to use pre-trained model for building a custom model, let

us look at the machine learning workflow involved in this particular process.

(Refer Slide Time: 12:05)

So, we will first examine and understand the data which is exactly the same as traditional

machine learning algorithms, then we build an input pipeline, then we build and compile our

model. Only the model composition differs from the traditional machine learning algorithms.

In traditional machine learning algorithms, we define the model completely. In this case, we

will have to load the pre-trained model and then add the classifier layer (as a dense layer) on

top of it. Then, the remaining two steps (training and evaluation) are again very similar to our

traditional machine learning algorithms.

So, let us start by importing all the necessary libraries. Let us also install and import the

tensorflow package.

(Refer Slide Time: 13:29)

Let us load the data set using tfds package.

(Refer Slide Time: 13:34)

The tfds.load method downloads and caches data and returns a tf.data.Dataset object. These

objects provide powerful and efficient methods for manipulating data and piping it into our

model. Since cats and dogs data set does not define standard split we use the subsplit function

to divide it into train, validation and test with the split specified by the weighted parameter.

Here we use 80 percent data for training, 10 percent data for test and the remaining 10

percent data for validation.

The resulting dataset object contains images and label pairs. The images have variable shape

and 3 channels, and label is a scalar quantity. Let us look at the first two images and add

labels from the training set. So, iterate on the training set using take method on the tensor and

we generate the string of the label using into string property.

(Refer Slide Time: 14:59)

You can see that this is a picture of a dog with label displayed at the top and there is a picture

of the cat. You can see that the dog picture has height of 500 and width of over 350; whereas,

the cat picture has height close to 400 and width of 500. So, you can see that all the pictures

are not of the same size.

(Refer Slide Time: 15:28)

So, the first thing is to resize the image, so that we have the same input size for all the

images. We will be using tf.image module to format the images for this task. We will also

rescale the input channel to a range of minus 1 to plus 1. Here the desired size of image is

160 by 160. We will apply the function on each item in the dataset using the map method.

So, you can see that the format_example is applied on the training set, validation set and test

set. We get three tensors - train, validation and test - that contains images of the same size

and their labels.

(Refer Slide Time: 16:39)

Let us shuffle and batch the data. We use batch size of 32, and for shuffling we define a

buffer size of 1000. We shuffle only the training data and we batch all the three data sets by

the batch size of 32. Let us inspect a batch of data from training batches. So, we can see that

in the first training batch we have 32 images, each with height of 160 and width of 160 on the

3 channels. So, you can see that the image batch here is a 4D tensor.

Now that we have got in the data in the desired shape let us create the model. In model

creation, there are two steps; first is to load the base convolution model and second, o add a

classification layer on top of it.

Here we will create the base model from MobileNet version 2 developed at Google. This

model was pre-trained on image data set which is a large data set of 1.4 million images from

thousand classes of web images. ImageNet has categories like jack fruit and syringe, but we

will use the image net classified here to classify cats versus dogs.

First you need to pick which layer of MobileNet you will use for feature extraction;

obviously, very last classification layer is not going to be very useful for this task. Instead we

will follow a common practice of extracting features at a layer just before the flatten

operation. This layer is referred to as the bottleneck layer. A bottleneck feature retains

generality as compared to final or top layer.

(Refer Slide Time: 18:53)

So, let us first instantiate MobileNet with a pre-loaded weights trained on ImageNet. We can

do that using tf.keras.applications.MobileNetV2 function. We specify the input shape. We tell

the model that we do not want to include the top layer or the classifier layer by specifying

include_top argument to false and we specify that we want to use weights of MobileNetV2

when trained on the ImageNet dataset.

Since we specify include_top as false the network does not include the classification layer at

the top which is ideal for feature extraction. The feature extractor converts each of

160x160x3 image into a 5x5x1280 block of features. Let us look at how this model looks

like.

(Refer Slide Time: 19:58)

So, when we call summary on the model you get to see the complete architecture of the

MobileNet V2. We can see that it takes a 4D tensor, where there are images of size 160x160

across 3 channels; that means, it takes coloured images of size 160x160.

(Refer Slide Time: 20:28)

And, its final layer produces a 4D tensor, where we get 5x5 patches across 1280 channels.

We also see the total number of parameters for this model. So, this model has got 2.2 million

parameters.

(Refer Slide Time: 20:59)

Let us use the base model to generate the features.

So, you can see that on the image batch that we selected we computed the features for the

image batch. You can see that for each of the 32 examples in the batch, we got a 3D tensor of

size of shape (5, 5, 1280). We will freeze the convolution base created from the previous step

and use that as a feature extractor. We add a classifier on top of it and train the top level

classifier.

(Refer Slide Time: 21:48)

Let us see how to do that in the code. We use base_model.trainable attribute or property and

set it to false. This makes sure that you freeze the convolution base before we compile and

train the model. By freezing you prevent the weights in a given layer from being updated

during the training. MobileNet has many layers, so, setting the entire models trainable flat to

false will freeze all the layers.

Let us look at how the base model looks like.

(Refer Slide Time: 22:24)

I would like you to compare the trainable parameters after freezing. You can see that after

freezing the trainable parameters become 0; that means we do not have to train any of the

parameter of this network and all the parameter all the 2.2 million parameters become

non-trainable.

(Refer Slide Time: 22:52)

In order to generate predictions from the block of the feature we average the special 5x5

block using a GlobalAveragePooling layer to convert the feature to a single vector of 1280

elements per image. So, we add the GlobalAveragePooling layer to the model. Let us look at

the shape of the feature batch. You can see that each of the image each of the 32 images in

the batch got converted into a 1D tensor containing 1280 numbers.

Finally we apply tf.keras.layers.dense layer to convert these features into a single prediction

per image. We do not need an activation function here because this prediction will be treated

as a raw prediction value. A positive number predicts class 1 and negative number predicts

class 0.

(Refer Slide Time: 24:03)

So, let us stack the feature extractor and two layers using a tf.keras.Sequential model. So, we

define the model to be tf.keras.Sequential model which has got a base model, which itself is a

sequence of convolution and pooling layers according to the MobileNet architecture. You

have a global average layer followed by a prediction layer. Prediction layer is a dense layer

having a single unit. Let us compile the model before training it.

Since there are two classes we are using binary cross entropy loss and we are using RMSprop

optimizer with a small learning rate.

(Refer Slide Time: 24:52)

Let us look at the summary of the model. You can see that the MobileNetV2 returns the 4D

tensor of shape (None, 5, 5, 1280) and it has got 2.2 million parameters. The global average

pooling returns 1280 numbers per image and finally, we have a dense layer with a single unit.

We can see that this dense layer receive 1280 inputs plus 1 bias unit makes 1281 parameters

in the dense layer. So, you can see that the total number of parameters are more than 2.2

million, out of which most of the parameters are non-trainable and we have to only train 1281

parameters corresponding to the output layer.

(Refer Slide Time: 25:44)

Let us train the model for 10 epochs.

(Refer Slide Time: 25:47)

You can see that after 10th epoch we cross the accuracy of 94 percent. Let us take a look at

the learning curves of the training and validation accuracy or loss when using MobileNet base

model as the fixed feature extractor.

(Refer Slide Time: 26:10)

You can see that training and validation loss and accuracies are quite close by after the 10th

epoch. You must be wondering why validation matrices are better than the training matrices.

The main factor is because layers like tf.keras.layers.BatchNormalization and dropout affect

accuracy during the training. They are turned off when calculating the validation loss. To a

lesser extent it is also because training matrices report average for an epoch while validation

matrix are evaluated after every epoch. So, validation matrix see a model that has trained

slightly longer.

(Refer Slide Time: 26:50)

In our feature extraction experiment, we were only training a few layers on top of MobileNet

base model. The weights of the pre-trained network were not updated during the training. The

weights were frozen for the base model. One idea to improve the performance can be to fine

tune the weights of the top layer of the pre-trained model alongside the classifier layer.

So, now, what we are going to do here is we are going to we are going to unfreeze these

layers of the base network and train them along with the classifier layer. Let us see how to

specify unfreezing of these layers in the code.

(Refer Slide Time: 28:00)

So, we set the trainable property of the base model to true and what we do is we specify the

layers after which you want to unfreeze the network. So, here you want to find tune from

100th layer onwards. So, we specify the fine_tune_at variable and anything after that will be

trained and anything before this fine_tune_at will be fixed. So, we set the trainable value of

the layers before 100th layer as false. So, there are 155 layers in the base model out of which

we retrain the top 55 layers.

It is important to note that as we go deeper in the network, network become more specialized

to patterns learned from the training data. The initial convolution layer learns general patterns

or simpler patterns like edges or corners, but as we go deeper and deeper the models become

specialized to recognize patterns from the training data.

So, if we are using CNNs as the pre-trained model for some other task it is important to cut it

somewhere in the middle if the task is very very different from the training data. For

example, if the training data contains pictures of cats and dogs whereas, that the training data

for the new task is about machine parts we might have to start unfreezing quite early in the

network, because the original network which was trained on cats and dogs will start

recognizing patterns related to cats and dog as it goes deeper.

(Refer Slide Time: 30:20)

So, let us use the same setting we use binary towards entropy loss and we use RMSprop as an

optimizer. Let us look at the model summary after unfreezing some layers of the network.

(Refer Slide Time: 30:35)

Now, you can see that out of 2.2 million total parameters, the non-trainable parameters are

reduced to 395000 and the rest of the parameters are trainable parameters. Let us compare

this model summary with the model summary from the previous exercise.

So, you can see that in the previous exercise we only had 1281 trainable parameters and all of

the 2.2 million parameters of the base convolution neural network were non-trainable, but

since we have unfrozen some of the layers, the number of parameters have gone up.

We should note that we should only attempt fine tuning after training the top level classifier

with the pre-trained model set to non-trainable. If you add a randomly initialized classifier on

the top of the pre-trained model and attempt to train all the layers jointly, the magnitude of

the gradient updates will be too large and our pre-trained model will forget what it has

learned.

(Refer Slide Time: 31:55)

Let us train the model for 10 epochs. What we do is we start the training of the model where

we had stopped in the previous run. So, we had stopped on 10th epoch. So, we want to

initialize the model with the 10th epoch and resume the training from that. So, you can see

that when we run this particular fit function or the model training we started training from

11th epoch.

(Refer Slide Time: 32:26)

Now, the accuracy has gone up to 99 percent; it has crossed 98 percent which is more than 4

percentage points from the previous exercise where we used MobileNet merely as a feature

extraction mechanism.

So, in this module we learned how to use a pre-trained machine learning model as a feature

extractor and we also learned how to fine tune a pre-trained model. Hope you had fun

learning these concepts. In the next session, we will use TensorFlow hub for loading some of

the pre-trained models and using them for feature extraction as well as for fine tuning.

