
Practical Machine Learning with TensorFlow
Dr. Ashish Tendulkar

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 19

Save and Restore Models

In the past few modules, we have been building Machine Learning models using TensorFlow

APIs. There are situations where the model trains for a long time and we would like to store

the intermediate steps of the model so that we can assess how it is performing on the test data

or safeguard against unforeseen situations due to which the training loop may not complete.

The model can resume training where it left off and avoid long training times after restoring

the weights.

Saving the model also helps us share our work with others so that they can recreate it. When

publishing research models and technique most machine learning practitioners share code to

create a model and trained weights or parameters of the model. Sharing this data helps others

understand how the model works and try themselves with the new data. In this module, we

will learn how to store the model during or after the training.

(Refer Slide Time: 01:34)

I would like to caution you against using any untrusted code because TensorFlow models are

code at the end of the day. Hence you should be careful and ascertain the origin of the code

before using any untrusted code. There are different ways to save TensorFlow models

depending on the API that you are using. Here we use tf.keras which is a high level API for

building and training the model. Let us begin by importing TensorFlow and other

dependencies.

(Refer Slide Time: 02:08)

Let us install TensorFlow 2.0 and make sure that the right version is installed. We also import

OS package because we want to write and read files to the disk. Let us load a MNIST dataset

and take 1000 examples each from training and test tensors so that are modelled can run

faster and will be able to demonstrate the same and restore functionality.

(Refer Slide Time: 02:41)

Let us define the model in a python function so that we can call this function for creating the

model before and after saving and for restoration purposes. So, we define a simple neural

network model which has got a single hidden layer with 512 units, we use relu as an

activation function and input to this particular hidden layer are 784 values. So, these 784

values come from 28 cross 28 image of digit that is stored in a MNIST dataset.

In addition to that we use a dropout regularization with a dropout rate of 0.2. And finally, we

have a dense layer with 10 units as an output layer that uses Softmax as an activation. We

want to output one of the 10 digits as a desired output, we use Adam as an optimizer and

sparse categorical cross entropy loss as we are interested in getting integers as an output and

we will track accuracy as a metric. Let us create a model and examine the model through

model.summary() method.

(Refer Slide Time: 04:04)

So, you can see that the model has got exactly two layers; one hidden layer with 512 units.

Then there is a dropout layer, dropout is actually applied on the first layer and then we have

an output layer with 10 units. So, there are 407050 parameters in the model.

(Refer Slide Time: 04:28)

We would like to automatically save checkpoints during training; this way we can use a

trained model without having to retrain it or we can pick up the training where we stopped it

last time; in case the training process was interrupted or stopped for some reason. We use a

call back model checkpoint for performing this task; this call back takes a few arguments for

configuring the checkpointing. Let us look at the usage of checkpoint call back.

So, first we will have to define and configure the checkpoint call backs with call back which

is done through this particular code that is highlighted below. We define the checkpoint path

as the directory path where we want to store the checkpoint. And then we also configure the

checkpoint by specifying what part of model we want to save. Here we are trying to only save

the weights and not the architecture or the optimizer configuration.

(Refer Slide Time: 05:51)

So, this is the simplest configuration for checkpointing. We will see even more advanced

usage of checkpointing later in this particular exercise. We create a model with create model

command; remind you that create model command actually creates a TensorFlow model that

has got one hidden layer of 512 units and an output layer with 10 units.

And you will fit the model by running the training loop for 10 epochs and notice that we are

using a call back in the training process. This call back creates a single collection of

TensorFlow checkpoint files that are updated at the end of each epoch. So, this particular

configuration checkpoints the model at the end of each epoch.

(Refer Slide Time: 06:56)

Let us train the model quickly and look at the checkpoint directory. So, an exclamation mark

followed by any command that we write is interpreted as a unix command and is run as if we

are running it on the command line. So, this particular code snippet will print the directory

listing for the checkpoint directory.

So, you can see that there is a checkpoint; there are there are few files that are that are created

in the checkpoint directory. So, here we will have to first create a model with the same

architecture as the original model and then restore the weights and apply those weights in the

new model. It is perfectly fine to share the weights from the previous run; even though this is

a different instance of a model.

(Refer Slide Time: 08:10)

Before applying the weights, we will create a model and evaluate the model performance in

the test even before restoring the parameters. So, in this case some random values will be

used for parameters and we will see the accuracy that we get is just by chance. So, here we

get only 10 percent accuracy as against the 99 percent accuracy that we got or 87 percent

validation accuracy, that we got during the training.

Now, let us load the weights from the checkpoint path and again evaluate the model and

check the accuracy. We can see that we are able to get the accuracy of 87 percent as we got

earlier during the training of the model.

(Refer Slide Time: 09:01)

So, we can see that just by using the same model, but just by building the architecture as the

original model and restoring weights helped us to get the same performance as the original

model. So, you can see that this is very powerful.

Let us look at various options that we have for creating a checkpoint call back. We can

specify a period instead of saving the checkpoint after every epoch; we can specify a period

after which the model should be saved. So, in this case we can; we can do that with a period

argument and here we are setting period to 5. So, we are going to save weights every 5

epochs rather than doing it after every epoch and here we are only going to save the weights.

We also give the checkpoint path and configure it to store the ID of the epoch. So, this is a

unique ID that is created for a checkpoint which consist of the ID of the epoch so that it is

easy to identify what epoch is a checkpoint from. Then we create the model, we save the

weights to the checkpoint path and then fit the model. And note that in the fit function we

give the call back as one of the arguments and you can see that the model is getting saved

after every 5 epochs.

As we are training for 50 epochs, we should see that there are 10 checkpoints. So, you can

see the checkpoint at 5th epoch, 10th epoch and so on up to 50th epoch.

(Refer Slide Time: 11:13)

Let us look at the content of the checkpoint directory and we can see that there are 10

different checkpoints that are stored in the directory.

(Refer Slide Time: 11:29)

If we use latest_checkpoint as a function and give checkpoint underscore directory or the

checkpoint directory as an argument, we get the latest checkpoint. By default TensorFlow

format only saves the 5 most recent checkpoints. So, let us retrieve the latest checkpoint and

create the model with the weights from the latest checkpoint.

What are these different files that are there in the checkpoint directory? Let us take a look at

them. Since we train our model on a single machine each checkpoint will have all the weight

stored in a single shard. If you are doing it on multiple machines there could be there could

have been multiple shards.

(Refer Slide Time: 12:19)

Apart from the call back we can also manually save the weight that is the other way of saving

the weight.

(Refer Slide Time: 12:27)

And we can simply use model.save_weights function and we can provide the directory or the

path and we have to provide the file name where we want to store the weights. Let us run it to

check it. So, we are essentially saving the weights to my_checkpoint file and we are loading

the weight from that particular file.

(Refer Slide Time: 12:51)

So, you can see that we are getting again 87 percent accuracy after saving the weight and

restoring it in a new model. Instead of only saving the weights we can also save the

architecture of the model or the optimizer configuration.

So, the entire model can be saved using hierarchical data format or HDF5; we can specify the

HDF5 with h5 as an extension. Here we create the model, we train the model and we will

save the model into HDF5 file with the file name my_model.h5.

(Refer Slide Time: 13:42)

Later we can load the model from this particular file the HDF5 file and use it for prediction. I

would like to point out the difference between the earlier checkpointing method where we

were only storing weight as against this particular method where we are storing the entire

model.

In the checkpointing, we had to first create the model and then load the weights into the

model and then use it for the prediction task. In this case, we do not have to create the model

as the model itself has been saved in HDF format, we simply load the model that; that

essentially creates the model, puts the weight and the model is used and the model is ready

for the prediction task; it is important to note this particular difference; let us load the model.

(Refer Slide Time: 14:46)

(Refer Slide Time: 14:54)

And we can see that this model has got exactly the same summary as before and then check

the accuracy of the model; it is almost the same accuracy of around 87 percent. So, this

technique saves everything essentially weights, model configuration and optimizer

configuration and keras saves the model by inspecting its architecture.

In this module, we studied how to store and restore TensorFlow models to and from the disk.

These techniques are very handy when you have models that are training for a long period of

time or to export model for deployment on different platforms. Hope you enjoyed learning

these concepts.

