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Lecture - 19 

Save and Restore Models 
 

In the past few modules, we have been building Machine Learning models using TensorFlow              

APIs. There are situations where the model trains for a long time and we would like to store                  

the intermediate steps of the model so that we can assess how it is performing on the test data                   

or safeguard against unforeseen situations due to which the training loop may not complete.              

The model can resume training where it left off and avoid long training times after restoring                

the weights. 

Saving the model also helps us share our work with others so that they can recreate it. When                  

publishing research models and technique most machine learning practitioners share code to            

create a model and trained weights or parameters of the model. Sharing this data helps others                

understand how the model works and try themselves with the new data. In this module, we                

will learn how to store the model during or after the training. 
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I would like to caution you against using any untrusted code because TensorFlow models are               

code at the end of the day. Hence you should be careful and ascertain the origin of the code                   

before using any untrusted code. There are different ways to save TensorFlow models             

depending on the API that you are using. Here we use tf.keras which is a high level API for                   

building and training the model. Let us begin by importing TensorFlow and other             

dependencies. 
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Let us install TensorFlow 2.0 and make sure that the right version is installed. We also import                 

OS package because we want to write and read files to the disk. Let us load a MNIST dataset                   

and take 1000 examples each from training and test tensors so that are modelled can run                

faster and will be able to demonstrate the same and restore functionality. 
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Let us define the model in a python function so that we can call this function for creating the                   

model before and after saving and for restoration purposes. So, we define a simple neural               

network model which has got a single hidden layer with 512 units, we use relu as an                 

activation function and input to this particular hidden layer are 784 values. So, these 784               

values come from 28 cross 28 image of digit that is stored in a MNIST dataset.  

In addition to that we use a dropout regularization with a dropout rate of 0.2. And finally, we                  

have a dense layer with 10 units as an output layer that uses Softmax as an activation. We                  

want to output one of the 10 digits as a desired output, we use Adam as an optimizer and                   

sparse categorical cross entropy loss as we are interested in getting integers as an output and                

we will track accuracy as a metric. Let us create a model and examine the model through                 

model.summary() method. 
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So, you can see that the model has got exactly two layers; one hidden layer with 512 units.                  

Then there is a dropout layer, dropout is actually applied on the first layer and then we have                  

an output layer with 10 units. So, there are 407050 parameters in the model. 

(Refer Slide Time: 04:28) 

 

We would like to automatically save checkpoints during training; this way we can use a               

trained model without having to retrain it or we can pick up the training where we stopped it                  

last time; in case the training process was interrupted or stopped for some reason. We use a                 



call back model checkpoint for performing this task; this call back takes a few arguments for                

configuring the checkpointing. Let us look at the usage of checkpoint call back. 

So, first we will have to define and configure the checkpoint call backs with call back which                 

is done through this particular code that is highlighted below. We define the checkpoint path               

as the directory path where we want to store the checkpoint. And then we also configure the                 

checkpoint by specifying what part of model we want to save. Here we are trying to only save                  

the weights and not the architecture or the optimizer configuration. 
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So, this is the simplest configuration for checkpointing. We will see even more advanced              

usage of checkpointing later in this particular exercise. We create a model with create model               

command; remind you that create model command actually creates a TensorFlow model that             

has got one hidden layer of 512 units and an output layer with 10 units. 

And you will fit the model by running the training loop for 10 epochs and notice that we are                   

using a call back in the training process. This call back creates a single collection of                

TensorFlow checkpoint files that are updated at the end of each epoch. So, this particular               

configuration checkpoints the model at the end of each epoch. 
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Let us train the model quickly and look at the checkpoint directory. So, an exclamation mark                

followed by any command that we write is interpreted as a unix command and is run as if we                   

are running it on the command line. So, this particular code snippet will print the directory                

listing for the checkpoint directory. 

So, you can see that there is a checkpoint; there are there are few files that are that are created                    

in the checkpoint directory. So, here we will have to first create a model with the same                 

architecture as the original model and then restore the weights and apply those weights in the                

new model. It is perfectly fine to share the weights from the previous run; even though this is                  

a different instance of a model. 
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Before applying the weights, we will create a model and evaluate the model performance in               

the test even before restoring the parameters. So, in this case some random values will be                

used for parameters and we will see the accuracy that we get is just by chance. So, here we                   

get only 10 percent accuracy as against the 99 percent accuracy that we got or 87 percent                 

validation accuracy, that we got during the training.  

Now, let us load the weights from the checkpoint path and again evaluate the model and                

check the accuracy. We can see that we are able to get the accuracy of 87 percent as we got                    

earlier during the training of the model. 
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So, we can see that just by using the same model, but just by building the architecture as the                   

original model and restoring weights helped us to get the same performance as the original               

model. So, you can see that this is very powerful.  

Let us look at various options that we have for creating a checkpoint call back. We can                 

specify a period instead of saving the checkpoint after every epoch; we can specify a period                

after which the model should be saved. So, in this case we can; we can do that with a period                    

argument and here we are setting period to 5. So, we are going to save weights every 5                  

epochs rather than doing it after every epoch and here we are only going to save the weights. 

We also give the checkpoint path and configure it to store the ID of the epoch. So, this is a                    

unique ID that is created for a checkpoint which consist of the ID of the epoch so that it is                    

easy to identify what epoch is a checkpoint from. Then we create the model, we save the                 

weights to the checkpoint path and then fit the model. And note that in the fit function we                  

give the call back as one of the arguments and you can see that the model is getting saved                   

after every 5 epochs. 

As we are training for 50 epochs, we should see that there are 10 checkpoints. So, you can                  

see the checkpoint at 5th epoch, 10th epoch and so on up to 50th epoch. 
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Let us look at the content of the checkpoint directory and we can see that there are 10                  

different checkpoints that are stored in the directory. 
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If we use latest_checkpoint as a function and give checkpoint underscore directory or the              

checkpoint directory as an argument, we get the latest checkpoint. By default TensorFlow             



format only saves the 5 most recent checkpoints. So, let us retrieve the latest checkpoint and                

create the model with the weights from the latest checkpoint.  

What are these different files that are there in the checkpoint directory? Let us take a look at                  

them. Since we train our model on a single machine each checkpoint will have all the weight                 

stored in a single shard. If you are doing it on multiple machines there could be there could                  

have been multiple shards. 
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Apart from the call back we can also manually save the weight that is the other way of saving                   

the weight. 
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And we can simply use model.save_weights function and we can provide the directory or the               

path and we have to provide the file name where we want to store the weights. Let us run it to                     

check it. So, we are essentially saving the weights to my_checkpoint file and we are loading                

the weight from that particular file. 
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So, you can see that we are getting again 87 percent accuracy after saving the weight and                 

restoring it in a new model. Instead of only saving the weights we can also save the                 

architecture of the model or the optimizer configuration. 

So, the entire model can be saved using hierarchical data format or HDF5; we can specify the                 

HDF5 with h5 as an extension. Here we create the model, we train the model and we will                  

save the model into HDF5 file with the file name my_model.h5. 
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Later we can load the model from this particular file the HDF5 file and use it for prediction. I                   

would like to point out the difference between the earlier checkpointing method where we              

were only storing weight as against this particular method where we are storing the entire               

model.  

In the checkpointing, we had to first create the model and then load the weights into the                 

model and then use it for the prediction task. In this case, we do not have to create the model                    

as the model itself has been saved in HDF format, we simply load the model that; that                 

essentially creates the model, puts the weight and the model is used and the model is ready                 

for the prediction task; it is important to note this particular difference; let us load the model. 
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And we can see that this model has got exactly the same summary as before and then check                  

the accuracy of the model; it is almost the same accuracy of around 87 percent. So, this                 

technique saves everything essentially weights, model configuration and optimizer         

configuration and keras saves the model by inspecting its architecture. 

In this module, we studied how to store and restore TensorFlow models to and from the disk.                 

These techniques are very handy when you have models that are training for a long period of                 



time or to export model for deployment on different platforms. Hope you enjoyed learning              

these concepts. 


