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Lecture - 19
Save and Restore Models

In the past few modules, we have been building Machine Learning models using TensorFlow
APIs. There are situations where the model trains for a long time and we would like to store
the intermediate steps of the model so that we can assess how it is performing on the test data
or safeguard against unforeseen situations due to which the training loop may not complete.
The model can resume training where it left off and avoid long training times after restoring

the weights.

Saving the model also helps us share our work with others so that they can recreate it. When
publishing research models and technique most machine learning practitioners share code to
create a model and trained weights or parameters of the model. Sharing this data helps others
understand how the model works and try themselves with the new data. In this module, we

will learn how to store the model during or after the training.
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I would like to caution you against using any untrusted code because TensorFlow models are
code at the end of the day. Hence you should be careful and ascertain the origin of the code
before using any untrusted code. There are different ways to save TensorFlow models
depending on the API that you are using. Here we use tf.keras which is a high level API for
building and training the model. Let us begin by importing TensorFlow and other

dependencies.
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= Get an example dataset

We'll use the MMIST dataset to train our made! to demonsirate saving weights. To speed up these demenstration runs, only use the first 1000

Let us install TensorFlow 2.0 and make sure that the right version is installed. We also import
OS package because we want to write and read files to the disk. Let us load a MNIST dataset
and take 1000 examples each from training and test tensors so that are modelled can run

faster and will be able to demonstrate the same and restore functionality.
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= Define a model

Let's build @ simgée model we'll use to demonstrate saving and loading weights.

Let us define the model in a python function so that we can call this function for creating the
model before and after saving and for restoration purposes. So, we define a simple neural
network model which has got a single hidden layer with 512 units, we use relu as an
activation function and input to this particular hidden layer are 784 values. So, these 784

values come from 28 cross 28 image of digit that is stored in a MNIST dataset.

In addition to that we use a dropout regularization with a dropout rate of 0.2. And finally, we
have a dense layer with 10 units as an output layer that uses Softmax as an activation. We
want to output one of the 10 digits as a desired output, we use Adam as an optimizer and
sparse categorical cross entropy loss as we are interested in getting integers as an output and
we will track accuracy as a metric. Let us create a model and examine the model through

model.summary() method.
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loss="sparse_categocical_crossentropy’,

0 metricss[ accuracy’ |

return model

|:. Model: "sequential®

Layer (type) OQutput Shape Paran @
e o) | e, 511 won
dropout {Dropout) {None, 512} 8

dense_1 (Dense) {None, 18) 5138

Tot : 407,
Trainable par. 487,058
Non-trainable params: &

i
\'.
ﬁg checkpoints during training

So, you can see that the model has got exactly two layers; one hidden layer with 512 units.

Then there is a dropout layer, dropout is actually applied on the first layer and then we have

an output layer with 10 units. So, there are 407050 parameters in the model.
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= Save checkpoints during training

The primary use case is 1o automatically save checkpoints during and at the end of training. This way you can use a trained model without having to

retrain it or plck-up training where you left of=in case the raining process was intémupted

tf keras. callbacks MadelCheckpodnt 15 a callback that performs this task. The callback takes a couple of arguments to canfigure
checkpointing.
= Checkpoint callback usage

Train the model and pass it the MedelCheckpoint callback

t o BTN
©  checkpoint path = “tralaing 1/cp.chpt”
checkpodnt_dir = ou.path, dirnase(checkpoint path)

¥ Craate chckpoint callback

ep_callback = tf.keras.callbacks. ModelCheckpolntichackpoint _path,
save_vakghts_calysTruo,
verbosesl)

Sy Bodel = craate model()

e, train_labels, epochs = 18,
data = [test_images,test_labels),
= [cp_callback]) # pas to

We would like to automatically save checkpoints during training; this way we can use a
trained model without having to retrain it or we can pick up the training where we stopped it

last time; in case the training process was interrupted or stopped for some reason. We use a



call back model checkpoint for performing this task; this call back takes a few arguments for

configuring the checkpointing. Let us look at the usage of checkpoint call back.

So, first we will have to define and configure the checkpoint call backs with call back which
is done through this particular code that is highlighted below. We define the checkpoint path
as the directory path where we want to store the checkpoint. And then we also configure the
checkpoint by specifying what part of model we want to save. Here we are trying to only save

the weights and not the architecture or the optimizer configuration.
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checkpoint_dir = o8 .path.dirnase(checkpoint_path)

cp_callback = tf.keras.callbacks. ModelCheckpoint (chackpoint_path,
save_waights_onlysTrue,
virboseel)

L "9&»'»\.\:; ngle collection of TensorFlow checkpoint fles that are updated at the end of each epoch

chpaint_dir}

So, this is the simplest configuration for checkpointing. We will see even more advanced
usage of checkpointing later in this particular exercise. We create a model with create model
command; remind you that create model command actually creates a TensorFlow model that

has got one hidden layer of 512 units and an output layer with 10 units.

And you will fit the model by running the training loop for 10 epochs and notice that we are
using a call back in the training process. This call back creates a single collection of
TensorFlow checkpoint files that are updated at the end of each epoch. So, this particular

configuration checkpoints the model at the end of each epoch.
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This creates a single collection of TensarFlow checkpoint files that are updated ot the end of sach epoch

O 15 (checkpoint_dir}

% the original mode!.

chitecture, we can share weights despéte th
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d a fresh, untrained model, and evaluate [ on the test set. An unirained model will perform af chance levels (~10% aceuracy)

Leodel = create_sodel()

Yoas, dec - sodel evaluite(test inagei, test labeli)

Let us train the model quickly and look at the checkpoint directory. So, an exclamation mark
followed by any command that we write is interpreted as a unix command and is run as if we
are running it on the command line. So, this particular code snippet will print the directory

listing for the checkpoint directory.

So, you can see that there is a checkpoint; there are there are few files that are that are created
in the checkpoint directory. So, here we will have to first create a model with the same
architecture as the original model and then restore the weights and apply those weights in the
new model. It is perfectly fine to share the weights from the previous run; even though this is

a different instance of a model.
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The calfback provides several optio

to give the resulting checkpoints unique names, and adjust the checkpointing frequency.

Before applying the weights, we will create a model and evaluate the model performance in
the test even before restoring the parameters. So, in this case some random values will be
used for parameters and we will see the accuracy that we get is just by chance. So, here we

get only 10 percent accuracy as against the 99 percent accuracy that we got or 87 percent

validation accuracy, that we got during the training.

Now, let us load the weights from the checkpoint path and again evaluate the model and

check the accuracy. We can see that we are able to get the accuracy of 87 percent as we got

earlier during the training of the model.
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= Checkpoint callback options

Oyl

So, we can see that just by using the same model, but just by building the architecture as the
original model and restoring weights helped us to get the same performance as the original

model. So, you can see that this is very powerful.

Let us look at various options that we have for creating a checkpoint call back. We can
specify a period instead of saving the checkpoint after every epoch; we can specify a period
after which the model should be saved. So, in this case we can; we can do that with a period
argument and here we are setting period to 5. So, we are going to save weights every 5

epochs rather than doing it after every epoch and here we are only going to save the weights.

We also give the checkpoint path and configure it to store the ID of the epoch. So, this is a
unique ID that is created for a checkpoint which consist of the ID of the epoch so that it is
easy to identify what epoch is a checkpoint from. Then we create the model, we save the
weights to the checkpoint path and then fit the model. And note that in the fit function we
give the call back as one of the arguments and you can see that the model is getting saved

after every 5 epochs.

As we are training for 50 epochs, we should see that there are 10 checkpoints. So, you can

see the checkpoint at 5th epoch, 10th epoch and so on up to 50th epoch.
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191 gpoch eops: saving model to training 2/cp-8258.ckpt
[ ctensorflow.python keras. cal lbacks. History at @x7F0d7da52a28

Mo, kaok at the regulting checkpaints and chodse the lalest one

SRVl = I B ]
° I 13 {chackpoint dir}
[+ checkpaint p-B025. cpt. index
p- 908, ckpt. data-B0000-of - 90801 cp-B938. ckpt.data-00003-of -09801
<p- 8900, ckpt. index €p-8039. ckpt. index
cp-0905. ckpt. data-20000-of - 30041  cp-B035.ck ta- 0060 of -g0001
Cp- 9095, ckpt. Index Cp-B035. Ckpt. index
cp-0@10, ckpt.data-00000-of -08001 cp-0840. ckpt.data-00600-of -00001
<p- 0018, ckpt, Index Cp-0049. ckpt. Index
cp-0815. ckpt.data-80000-of 08081 cp-0845. ckpt.data-00008-of -20001
cp-9915. ckpt. Index €p-B845, ckpt. index
€p-0928. ckpt.data-B0909-of - 00891 cp-9850. ckpt.data- 00008 of -09801
<p-8920. ckpt. index €p-B@50. ckpt. ndex

N\ Cp- 8815, ckpt, data- 20003 -of - HRM91

latest = tf.train,latest_checkpoint(checkpaint_dir)
Tatest

HPTEL;

Let us look at the content of the checkpoint directory and we can see that there are 10

different checkpoints that are stored in the directory.
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I [11] cp-0020. cipt. data-00900-0f 00001 cp-0050, ckpt . data-00009-of -09001

C €p-8028. ckpt. index £p-8850. ckpt., index
3
Cp-0015. ckpt. data-00900-of - 0001

[12] latest = t¥.tradn,latest_checkpaint(checkpoint_dir)

Latest

[+ ‘training_2/cp-8858.ckpt’

Note: the default tensorfiow format only saves the 5 mast recant chackpoints.

To test, iset the model and load the latest checkpain

+4+aB gl
° model = create_model()
model. 1oad weights|latest
ioss, agc = model.ev (test_images, test_labals)
print(“Restored model, accuracy: {:5.2F)%".format{189%acc))
[+ 10806/1808 [sernssrsmessssezesnesssnenens en] = @5 1llus/sample - loss: 9.4823 - accuracy: 9.8788

Restored model, accuracy; 87.80%

'®t are these files?
B

PTEL

If we use latest checkpoint as a function and give checkpoint underscore directory or the

checkpoint directory as an argument, we get the latest checkpoint. By default TensorFlow



format only saves the 5 most recent checkpoints. So, let us retrieve the latest checkpoint and

create the model with the weights from the latest checkpoint.

What are these different files that are there in the checkpoint directory? Let us take a look at
them. Since we train our model on a single machine each checkpoint will have all the weight
stored in a single shard. If you are doing it on multiple machines there could be there could

have been multiple shards.
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Manually save weights

Abow o load the weights info a model

Man

hi weights 3 just a8 simple, use the Hodel . save_weights method

¥ Save the weight
madel. save_weights(". /checkpoints fmy_checkpoint

Apart from the call back we can also manually save the weight that is the other way of saving

the weight.
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The above code sfores the weights 1o a collection of ghecknaini formatted files that contain only the trained welghts in a binary format
Checkpoints contain
& One or mane shards that contain your models weights
« An index file that indicates which weights are stored in a which shard,

If you are only training a madel on a single machine, you'l have one shard with the suffix: .data-20899- of - 00081

= Manually save weights
Above you saw how 10 load the weights into a model

Manually saving the weights is just as simple, use the Hode] . save_welghts method

® Save the waights
model. save_wedghts|'. /checkpoints /my_checkpodnt')
» Regtora 3
model = create_model|)
model, load weights('. /chechpoints /my_checkpoint')

Yoss,acc = model.evaluate(test_images, test_labels)
(V' print("Restored model, accurscy: {:5.3F)5". format{109%acc))

#5Ve the entire model

And we can simply use model.save weights function and we can provide the directory or the
path and we have to provide the file name where we want to store the weights. Let us run it to
check it. So, we are essentially saving the weights to my checkpoint file and we are loading

the weight from that particular file.
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Save the entire model

The model and optimizer can be saved to a file that contains both their state (weights and variables), and the model configuration. This allows you
10 export & model 30 it can be used without access 1o the original pythen code. Since the optimizes-state is recovered you Can even 1esume Iraning
from axactly whare you left off

Saving a fully-functional modé ts very uselul-you can load them in TensorFlow js (HDES, Saved Model) and then train and run them in web
brovsers, or convart them 1o run on mobile devices using TensorFlow Lite (HDFS. Saved Model)

As an HDFS file
Keras provides a basic save format uging the Hﬂiﬁ standard. For our purposes, the saved model can b ireated as a single binary biob.

tyeB BN

° model = create model()

model. fit(tradn_images, trade labels, epachied)

# Save entire model to
Bodel. savel "y _modellhs')

rieate the madel from that file:

# Recreste the axact saee

new model = keras,sodels.l




So, you can see that we are getting again 87 percent accuracy after saving the weight and
restoring it in a new model. Instead of only saving the weights we can also save the

architecture of the model or the optimizer configuration.

So, the entire model can be saved using hierarchical data format or HDFS5; we can specify the
HDF5 with h5 as an extension. Here we create the model, we train the model and we will

save the model into HDFS5 file with the file name my model.h5.
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° model = create model|

mode]. fit(train_{mages, train_labsls, spochss

vl By

M Bale th el from tha

Later we can load the model from this particular file the HDFS5 file and use it for prediction. I
would like to point out the difference between the earlier checkpointing method where we
were only storing weight as against this particular method where we are storing the entire

model.

In the checkpointing, we had to first create the model and then load the weights into the
model and then use it for the prediction task. In this case, we do not have to create the model
as the model itself has been saved in HDF format, we simply load the model that; that
essentially creates the model, puts the weight and the model is used and the model is ready

for the prediction task; it is important to note this particular difference; let us load the model.
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P Bodel = kerad,aodeli. load sodel('my sodel,
ra_model. summary ()

[+ Model: “sequential &

Layer (type) Dutput Shape Paran 8
™ sunanas SIRN SR TSI AR AR R RS
dense_12 (Dense) (Nane, $12) 431928
dropout_§ (Dropaut) (None, 512} ]
dense_13 (Denie) (Nane, 18) 5138

ans: 487,050
le params: 487,058
Non-trainable params: @

Chack 15 accuracy,

AT T loss, ace = ne_nodel evaluste(test_images, test_labels)
= print(“Restored model, accuracy: {:5.20)%°. format(100%acc)
NPTEL -
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Check s accuracy
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° loss, acc = nww_ncdel evaluate{test_images, test_labels)
print("fastored model, sccuracy: {:5.2F)%" . format({10"acc))

[+ 1080/1608 [== ] - Bs 96us/sample - loss: 9.4291 - accuracy: 9.8618

Restored model,

This technigue saves everything

« The weight values
# The me nfiguration{architecture)
= The opl onfiguration

Keras saves models by inspacting the architecture.

Summary

ed how 1o siare and restore Tensorfiow modets o and from the disk. These technigues are very handy when you have madels that are

\Tﬁa b for longer period of time of 1o axpodt the model for deployment on different platlorms. Hope you enjoyed learning thése concepts. See you

7 et madule! Dhanyavaad!
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And we can see that this model has got exactly the same summary as before and then check
the accuracy of the model; it is almost the same accuracy of around 87 percent. So, this
technique saves everything essentially weights, model configuration and optimizer

configuration and keras saves the model by inspecting its architecture.

In this module, we studied how to store and restore TensorFlow models to and from the disk.

These techniques are very handy when you have models that are training for a long period of



time or to export model for deployment on different platforms. Hope you enjoyed learning

these concepts.



