Practical Machine Learning with TensorFlow
Dr. Ashish Tendulkar
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 18
Underfitting and Overfitting
Welcome to the next module of our course in this module, we will understand Underfitting
and Overfitting through the code. You know that overfitting happens when our model has
excess capacity to memorize the entire training data. So, what happens if we look at the
learning curves we observe that the training error and validation error both reduce to begin

with.

After a point the training error goes down, but validation error starts climbing up, if we are
seeing that those kinds of learning curves we infer that the model is suffering from
overfitting. On the other hand if your model is so simple that it does not have enough
capacity to learn the model or to learn the patterns in the training data, then we then our

model is suffered from underfitting.

In case of underfitting both training and test error are high. In this lab we will use IMDB
movie review dataset. To demonstrate underfitting and overfitting we will initially build a
baseline model, then we will build a model to underfit the data and overfit the data. We will
first build a baseline model and then we will build a couple of models, so that our model
underfits and overfits to the training data. Later in the lab we will demonstrate some of the

techniques that help us to overcome the underfitting and overfitting problems.

(Refer Slide Time: 02:02)

Let us first connect to the colab collabrant time, install and import tensorflow 2.0, numpy and

matplotlib.

00]

Q overfit-and-underfitipynb B

Fle ESi View inseii funime Took Help
QoooE @ BT @COL § O 4 00PYTOOME et « Jmme A
‘ from _futwes_ dmpert sbsolete_impart, divisben, prist_fenction, wless_itirals §

Ipip dmtall tansarfioumd 0, 0-batal

ingort tensorflow ae t
from tansorflos import e

fapart m L
imgort lmvl'.i'b-vrnlur a gle

printitf,_wriles_)

Eollecting tensorfloweel. 0,0+
e oadd
|
eguiresent alreacy satisfies:
Beguiresent already satisfled
Beguiresent already satisfied:

| 8709 l?\lln
Eeras-applicationsssl g,
kerai-praproceiin
shered 10,0 in Juse/ '19(
€1, 14,0

-oetal) (1.0.8)

/ o-btal) (1.1.0)
fnmnl #igkat w:nw lfru tanserflounl. 8. 0-5rmad) (1,100
(from tensorflowsd B.0-betal)

Collecting tf-mtd ~hightly
Do o i
|

Bequiressrt already satisfied:
Beguiresent already sitiafied:
Beguirement already satiafied:
heguiresent already satisfied:
Requiresent already watisfied:
hpguiresent already satisfied:
Requirement already watiafied;
€allecting th-nightlycl, 14,0000
Donlaadin W
iresent alresdy wtiafied:
iresent already satisfied
iresent alresdy patiafied:
resent alresdy satisfied:
Regquiresent already natisfied;

et/ 1Tt i Gt o o sl
| s01in l' /s
google-pastived. 1.6 in Jusr/local/1ib/pythend. 6/dint-packages (from temacrflowesd.d.8-betal) (0.1.7}
grociorel. 1.8 i fuar/local/libipython), B/elit-pickaged (from tariorflowesd tal) (1.15.8)
abilepyred, 7.8 40 fuir/1ecal/Lib/pythond B/0iat-packagei (from tamiorflowesd 0. 0-betal) (9.7.1)
weagtsed, 15,1 fn fusr/local/Libipythend . 0/clet-packages (free tanuorfloweed.d.d-Betad) (1.11.1)
teracaloriel 1.8 §n Juir/local/dib/pythond &/diat-packages (from temiorfliowesd. 0.0-batal) (1.1.9)
wheelzed, 26 in fusr/local/Lib/pythend 6/ dbet -packages (from tensorflowes.d.-Betad) (9.00.4)
fuspyed. 8,185 n [uir/lecal/Lib/pythond B/ aiit-packagui (from ten bEtal) (1.18.4}

19060, 1ol 20100600 (from vensorflowssd. b @-batal)
Emdikaged 4% L
| 3.1 3o.w/s

atocaed 6.8 §n fuir/lecal/Libipythond 6/lat-packagen (from Taniorfloues].0.0- NE!IJ i8.n.0)
Jusrilocal/Libypythend 6/ dlat-pachages (frem tenserflowssd
protobufeel .1 in funr/local/1ib/pythend. 8/ diit packagei (frod tamiorfl
gy 4 fuse/local/lib/pythend 8/dist-cackages (frem keras-applicationnsn
werkieugied. 11,15 10 fuir/local/1ib/python) . &/ dhit-packager (from to-Alghtlycl. 14, Qal01R060d, rel. 14, 0a2015060)

(Refer Slide Time: 02:44)

So, you can see that we have successfully installed tensorflow 2.0 through the print

command.

co

Qoverfitandunderfitpynb B

Fié B8 Vew maen Ruttes Toos Hel

B e @ e

]
8

& CHL & ol

I

Beguiresent alresdy satisfisa:
fequiresent alresdy satisfied:
Bequiresent alresdy satisfien:
Bequiresent alresdy matisfied:
Seguiresent alresdy satinfiea:
Sequiresent already satisfied:
Bequiresent alresdy satisfien:
Installing collected packages:

Found exdsting inseallation:

@ 00PY 10 0RVE g » D A

T

VAL A RIETE |1 D s
4.5 4n /usr/local/Lib/pythond. 6/dist-packages (from mwiln.ur 0.0-betal) (1.16.4)
!HMJ Ifrw tmm"f

| 1.08 3. /s
astorssl. 6.0 n fusr/local/1ib/pythond 8/t -packages (from tensorfloes
gastred. 1.0 in fusr/local/1ib/pythond. 4/ dlit-packages (from temioeflowssl.d.d-betal)
pratobufrad. .1 in fusr/locals/lib/pythond. &/ dist-packages (from temsorflowssl.d.@-metal) (3.7.1)
hSpy in fusr/local/1ib/pythond.&/dist-packages (from keras-spplicationsrel 0.6-rtensorflowesd. i
werkreugssd, 11,15 in fusr/local/14b/pythond 6/¢ist-packages (from to-migetlycl. 18 QI019060, bul. 14 QAI15860)
setuptoolyred] 8.8 dn Jus Lib/pythand. 8/ dixt-packages (from th-nightlycl. 1. Ralolieid,
warkdounssl. 6.8 in fusr/local/1ib/pythond. o/ ist-packages (from th-mightiycl. 14, Qu20IoRead, sl . 14, Da20190603-
tf-estimator-nightly, th-nightly, tensorflow
tensorflow 1.14.0

Uninstalling tensorflow-1.14.9:

Successfully uninstalled

tensorflow-1.14.0

S_HIHH'IH)' installed th-nightly-1.18. 0220090803 tensorflow-2.8.001 tf-estimstor-nightly-1.04.0. dev 2005000581
Lae-betal

- Download the IMDB dataset

RRather HA USNG A BTOSGANG &3 i 6 GrFvionis FOtEbock, e v il Mttt e T Bt This Mol vl Guigaly ey 80 1 trsning a1, 1 will B

e o chermangirate when everiting cocun

Mt

, and hiow 1o fght it
wecions of Op and 15, Concrately, this would masn for ingtance tuming the saquence (), §] inta 3 10,000-

wecior nurmddhxl -ner0s wucept for indices 3 and 5, which would ba ones.

HPTERedn_tats, trals_losals), (test_gata, vest_labels) o bavan.datasets. Dmi, Dosd ats|ss_sorsys wady)

taf walrd_pat_segesnces | 1egunce

5, disinaion) !

(Refer Slide Time: 03:04)

H Q) cverfit-and-underfitpynh B

La.0-betal

+ Download the IMDB dataset

R T TR T TR BT R TR

Next step is to setup the training data. IMDB dataset has movie reviews and each of the

movie reviews is tagged with a label 0 or 1, 0 meaning the movie review is a negative and 1

meaning the movie review is positive.

So, it is a problem of identifying whether the movie review is positive or not. IMDB dataset

is available in the keras.datasets. So, we do not have to write a lot of code to load the IMDB

dataset. We can easily load IMDB datasets and we will be using a multi-hot encoding, where

we turn the words into vectors of 0 and 1 in 10000 dimensional vector space.

So, if the word is present at a specific position that we will see one over there. Concretely, if

we have a word whose index is 3 and 5 present in the in the in the document it gets converted

into a 10000 dimensional vector, where all the entries are Os except for indices 3 and 5.

(Refer Slide Time: 04:55)

|opee

So, let us try to understand that every review is converted into a multi-hot encoding, where
we have we have a vector with 10000 positions. So, initially we convert each movie review
into a sequence of word indices. So, the IMDB dataset is maintained as a sequence of

numbers in the keras, we convert each review into a multi-hot encoding.

That means, if there are two words with indices 3 and 5 present in a review only the position
corresponding to those words will have 1 in the list, rest of the other elements will have 0 in
their list. So, that is what that is how we convert the review into multi-hot encoding. So, you
can as you can see in the code we use a multi-hot encoding with 10000 words, we use the
load data command to a load training and test data along with their labels and then we define

a function for converting the sequence into multi-hot sequences.

So, this particular function takes into takes sequence and dimension as argument and it
essentially defines or it essentially tries to fill a vector of dimension 10000. We first convert
the training data into multi-hot encoding and test data into multi-hot encoding using multi-hot

sequences function and we are going to use the number of dimensions to be 10000.

(Refer Slide Time: 07:18)

Q overfitandunderfitpyrb B
0 SHiRE
E Fle ESl View mseil Ruime Took Hel J o
s : R

Labels) » berwn dataseny, indb. Losd_mata(mm_sordysiit wiRDE

squences (Traln_date, dimesionsiR WSDY)
BB THRT_ ST, 1Lmnsions N oiss

) Dewnlosding date f
PR

g maat ot vectorn. The word indices ar sorted by frequency, 50 it in expected that Ehere are more 1-values near indax 2o, s we

Lef's lock af ane of the resul
can set in this plat

plt.plstitraia_sotafe]

» Demonstrate overfitting

e parameters in a model ks often rofe
be able [0 easily bearn a perfect dictio

Always o this in mind: deen keaming madels tend to be good a1 ftting to the training data, ben the real challenga ks generalization, nat fitting

So, let us run this and convert training and test data into multi-hot encoding. Now you can see
that the data is being downloaded and getting loaded into memory and the data is converted

into multi-hot encoding here. Let us look at some of the resulting multi-hot vectors.

(Refer Slide Time: 07:38)

Qoverfit-and-underfitipynb B e o
Fle ESt View msen funtes Tool Help

BCOE @ TENT CHL & OF D 0P T008VE ol « J o

u < ®a from nines:/ytorane. goselennd [vangarfletd-erag -
TRAESIEL/ 176 T e — ¥

Led s look at one af the resulting muli-hot vectors. The word indices are sorted by freguency, 20 it is expecied that Sheve are more 1-values near index 7er, as we

£an se¢ in this plat

O sl plot RGN

Anes. Line2D at QuPe548BCTICc)

B [ty

1.

B t{p trate overfitting
o gt waty To preveri overfitting i fo feduce the sz of the model L. e nurbes ofleamable pararmeters in the model (which i detérmined by the number
in deep | eherred to ag ' trieh

ing, the namber of bearnable parameters in a madel

LN the number of units pe |
amadel with more parameters wil have more ‘memaorization capacity” and theredone wall be able o easily learn a pacfect dictionary-bioe mapping between training
fao b i i C———

So, here we have plotted the multi-hot vector for the first training example and we can see
that the index where the word is present is 1 everything else is 0. So, you can see that there
are a lot of words from the initial index are present in this particular example and fewer

words from letter indices are present here.

(Refer Slide Time: 08:07)

H Qoverfit-andunderfitipyrb B s o
Fle ESt View naen funtme T Hel
a

DCO0E B TET @ CHL & OLL @ OOPYIO0N il
|

= Create a baseline model

Now, that data is loaded let us try to build the model. We will first build a basic model where
we will use where we will use a neural network with two hidden layers each layer having 16

units each. So, let us look at how this neural network looks like.

(Refer Slide Time: 08:26)

Base model _.
[o_.‘_-,
]
0
looed 16 1k
ol
|s * Ioooo +1.6 . 169
- 21%
) +le
Qex) 3
6 + +

In base model we have neural network which has two layers of 16 units and then there is a
single output unit and we have a multi-hot encoded vectors. So, the number of inputs is

10000. So, each of the 10000 inputs are fed into the first unilayer and the second unilayer and

in the output layer which gives us the probability of the review belonging or review being a

positive review. So, let us see how to set this up in the code.

So, we build a keras.Sequential model, where we are going to stack layers one over the other.
We are going to use two dense layer each with 16 units with activation of relu. The output
layer has one unit with sigmoid activation. We use adam as an optimizer and binary cross
entropy as a loss because we are trying to solve a binary classification problem and we will
track accuracy and binary cross entropy both during the training and this particular command

will summarize the model.

(Refer Slide Time: 10:23)

avesti-and-anderftion
a () overfit-and-underfit ipynb B e o
A

] OTET eCHL OML @00 v |

B O ottty

= Create a smaller model

.f-.
H:) e e v i

The model summary is a useful way to understand what is going on in the model and to check
whether model is setup as per our expectation. So, you can see that there are there are three
layers in the model. So, the first hidden layer has 16 units, the second one also has 16 units

and then the output layer has one unit.

Each unit from the first hidden layer has 10,001 parameters each because there are 10000
inputs plus a bias uni. This adds up to 160016 parameters. Similarly, we have 272 parameters

for the second hidden layer and 17 parameters for the output layer.

So, after setting the model let us fit the model with the training data and validate it on the test

data. So, we will train the model with 20 epochs with a batch size of 512 and we are going to

use adam optimizer for training the model and use binary cross entropy as a loss that will be

optimized.

(Refer Slide Time: 14:40)

E Q overfit-and-underfitipynb B _— o
Fle fl View mseri Runime Took Help

test_dats, tast_labeln],

So, we can see that as we train the model the cross entropy loss is reducing, the validation
loss is also reducing but after third layer it seems that the validation loss is going up while
training loss is still going down and we can see the same thing happening for the cross

entropy loss it initially went down then it started going up.

(Refer Slide Time: 15:08)

Qoverfitandunderfitipyrb B 4 o
S SHARE
~

o o + s & cory - 7

BI51T - mewracy; B0 - Bine
#0413 - accuracy: 8916 - Bime
AR, = IR

This points to some kind of an overfitting problem. So, we see that after 20 epochs our
accuracy is 1 we got a perfect classifier. In validation, we only get 85 percent accuracy. Our
job is to build a model that works well on the future data and not the one that works well

under training data. So, there is a problem which we need to fix.

So, one way to one way to address the problem of overfitting is by reducing the number of
parameters in the model. In neural network it is easy to reduce the complexity - we can either
reduce the number of units in each of the layer or we altogether remove a layer that will result
in lesser number of parameters. Another way to reduce the overfitting is by getting more of
training data. If training data is not available then we have regularization techniques that we
can use. In regularization, we can use either L1 or L2 regularization or a dropout

regularization that is used in the context of neural networks.

In case of L1 and L2 regularization we add penalties that are proportional to the weights of
the model. In case of L1 regularization, we add penalty that is proportional to the sum of
absolute values of the parameter. In case of in case of L2 regularization, we had a penalty that

is proportional to the sum of square of the value of the parameters.

In case of dropout we decide to randomly drop certain nodes from the hidden layer or input
layer of a neural network. We normally said dropout between 20 percent to 50 percent that
means 20 percent to 50 percent nodes will be randomly dropped out in each of the iteration in

the neural network training. The dropout is only used only used while training, so in the same

manner even regularizations or dropout are used during training in the test we simply apply

the test data on the model.

(Refer Slide Time: 17:51)

E Q overfit-and-underfitipynb B o0 SHARE o
Fle ESi View nasri Funime Tool Help

QO00E @ BT gCl b & oY TO 0V WS, | Sone A

= Create a smaller model

L8 create § model with bess hasden Units 1o compars agamss the baselin model that we just created

A
IRTIRL at more than the problem would wamnt

e, yoia Can create an even karges model, and sew how quicidy it begins overfitting Mext,let's add o this benchmark s netwark that haa much mees

So, in the first strategy let us create a smaller model here. So, instead of using 16 units we
used 4 units, so naturally the number of parameters will go down that we just have 4 units.

So, let us run and see how many parameters are there in this.

(Refer Slide Time: 18:09)

&
Q overfit-and-underfitipynt B & SHan o
Fle B8t Vew it Mutene Tools Help
& Er T 1 - H

So, you can see that the number of parameters have come down at least four folds. So, just by
reducing the number of units in each of the layer we got it down to 40000 parameters. Let us

train this smaller model and see what happens.

(Refer Slide Time: 18:44)

Q overfil-and-underfit pynb B
' - 0

o QT eow 2 C0PY DAY 2 A

RELLNT ALTTETY ¥ RSRLIRY_ Seal

So, you can see that even this smaller model seems to be overfitting the training accuracy is
close to 1 but validation accuracy is quite low. That means, the model is probably
memorizing the training data it has not enough capacity to memorize the training data. But
going back you can see that the model started overfitting somewhere around, we can look at
the validation loss is going down and epoch 7, it started overfitting where validation data

validation loss started going up.

If we go back and check when our baseline model started overfitting our baseline model
started overfitting right from the third epoch. So, you know by creating smaller model we are
able to we are able to delay the overfitting of the model. So, if we use smaller model and if

you stop training around fifth epoch we should still be fine.

(Refer Slide Time: 20:09)

Q overfit-and-underfit pyrb B A o
Fie B View nseii Rusime Toos Hel
-
e =0
j

mark 3 natwark (hat has misch more

MWPTEL
rigger_hatory » wigger_model, Hit(traln data, trabn_labels,
apochinid,

If we stop our training after fifth epoch we will not get the overfitting that we see after 20

epochs.

(Refer Slide Time: 20:10)

H Qoverfit-andunderfitipynb B ch o
Fle B8t View maait Tuntee Took Help

QooE DT SO0l BOL B COYIO0MM L A

5000 - 35 - lots: 0.0490 - accurscy: 8.9918 - binary crossentropy: .85 - val loss: .41 - val |

- 38 - lovs: 0.0480 - sccurscy: 99930 - binary_crossentropy @.0440 - val_loss: 0.4171 -

26009/ 25000 - 3t - loss: 0.0392 - BECUCAEYEMIAN - binary_crossantropy: 00382 - wai_loss: 9,443 - val

e i, B i e ey Dt OverTttng. P, et chd 10 Ehis Benchmank & netwark that has much mar

BLggHr_Sos4l lummary

Ancd, sgan, Train ire model using the same dig

Let us go to the other extreme and create a bigger model and see how fast it overfits. We
create a bigger model in neural network we can simply add more units in each of the layer or
add more layer itself. So, that way we will have more capacity in the model or more

parameters in the model and since we have more parameters in the model, if you do not have

enough training data the model tries to memorize the training data and gives us perfect output

on our training set but it did not perform well on unseen data.

(Refer Slide Time: 20:58)

Q overfit-and-underfitipynb B & SHARE o
Fie Edi View mseii Rusime Tools Help i

WES . pone s

. L Ship (N W02, |

Hgger_sodel. pemmaryi §

B roul: “igential "
Layer (type) Gutput Shage Paran »
denne_§ (Dense] (hane, 51} fedi
sente 7 (Densa) {ione, B12} 102644
cense i (Dense) {Mone, 1) i1

tal params: 8,000,601
Trainable parass: §, 1,601
Men-trainatle params: @

A, i, it et rosdel uing The 1ame dita

; traln_labals,

pe(Tent_gate, tet_labels],

So, let us compile this model and you can see that now we have far more number of
parameters. So, there are close to 5.3 million parameters as against 160k parameters that we

saw 1n our baseline model.

(Refer Slide Time: 21:12)

Q overfit-and-underfitipynt B 0 BHARE o
Fle ESt View masit funtme Tools Help
RAM - 5 2

0 e @ T & CHL & o @ COPY 10 06VE

n o igper_nditory o bigper_sodal. f]

rais_gits, train_Levals,

Etes[Test_fate, tet_labeln],

we Train on 25000 semples, validete on 25009 samples

Epoch 1/20
15900/15008 - 165 - losi: 8. 3481 - accurmcy: 80587 - binary_crossentropy: §.3493 - val _loss: 0.2980 - val_sccerscy: 077D - val binary_cros
Epoch 11
15000/ 15000 - 17y - loss: 0.1486 - sccurmcy: 8,845 - binary_crossentrogy: @496 - val_less: .3335 - 726 - val_binary_cros
Epoch 3/
15000/ 1508 - 178 - loss: 08524 - accuracy: §.9818 - binary_crossentropy: 0524 - val_less: B9 - i .8670 - val_binery_cros
Epoch 4/ 20
15000/ 15000 - 163 - loss: 0,087 - sccuracy: 09907 - binary_crossentropy: 80978 - val_loss: 85914 - vl ¥i 08676 - val_binary_cros
Epoch S/20
1500715000 - 165 - losi: 92915 - accurmcy: 10098 - blnary_crodsentropy: 9.21905e-8 - val_loss: 8479 - cy: @566 - val_bin
fpoch 6/20
1000/ 1500 - 168 - loss: 1.9990e-M - sccurmcy: 1000 - binery_crossentropy: 2.3899e- - val_loss: 87001 - §.8681 - vl bin
Epoch T/
15000/ 1500 - 168 - loss: 1.3685e-B4 - accurscy: 10098 - binary_crossentropy: 1.0845e-M - val_loss: 8.7375 - val_sccoracy: 8,868 - val_bin
Epoch B/20

= Plat the training and validation loss

Let us try to train the model for 20 epochs with the same batch size of 512 you can see that
after 4 epochs. So, the model right away started overfitting. So, you can see that the
validation loss is increasing right after the second epoch. So, in the first epoch it was 0.29 it
went up to 0.33 and then it went it kept going up all the way and at the same time you can see
that the cross entropy loss or the training loss is coming down training accuracy is going up,
but the validation accuracy is reducing. These are the signs that this is probably the model
with quite a large capacity or excess capacity and it is proven to overfitting pretty quickly in

the training cycle.
(Refer Slide Time: 22:25)

E Q) overfit-and-underfit pynb B i o
; M = L
'

u 26900/ 15000 - 16s - loss: 1.3100e-86 - accuracy: 10990 - binary_crossentropy: 1.3030e-95 - val_loss: 9.0847 - val_s

= Plot the training and validation loss

So, we can see that after training the model for 20th for 20 epochs you can see that the
training loss is very small close to 0. But the validation loss is quite high and validation loss
never reduced rather it started growing up right from the second epoch. So, this points to the
fact that the model is overfitting pretty fast in the bigger model and we will compare how the

size of the model affects the possibility of overfitting.

(Refer Slide Time: 22:58)

E Q overfitand-underfit pynb B 0 SR o
A

8 8 + + & oy - 7

9.

So, you can see that there are there are six lines in this particular plot. So, the solid lines are
for the training loss and dotted lines are for the validation loss. So, all of them we will have
will have the same number of iterations in one epoch and on the y axis we have got a binary

cross entropy loss.

So, you can see that the green line corresponds to the bigger model the blue line corresponds
to the baseline model whereas, the orange line corresponds to the smaller model. We will
have to keep an eye on the dotted lines because those give us validation loss and we infer that
there is a overfitting when validation loss starts going up while training loss keeps going
down. So, for the smaller model, the validation and training both the losses are going down

and around eighth iteration the validation loss started climbing up.

So, we can say that the smaller model started overfitting after 8 epochs. The baseline model
started overfitting around third epoch. Whereas, in case of bigger model it overfit almost
instantly right from the first iteration, training loss was coming down, but validation loss

never came up. Hence, we see that the smaller the model the longer it will take to overfit.

(Refer Slide Time: 25:02)

E Qoverfitand-underfit jpynb B & SR o
ar A

B B SCHL § O @ CoY =t [}

= Strategies to prevent overfitling

» Add weight reqularization

Now, that we have visualized the overfitting of the model, how can we prevent overfitting?
So, there are three strategies - (1) you can get more data overfitting can be prevented. But
getting more data is not always an option because getting more data is can be costly
sometimes. (2) We have is to add regularization or a penalty term to the loss function. So,
there are multiple ways of performing regularization couple of them are based on L1 and L2

penalty.

So, L1 regularization adds penalty proportional to the sum of absolute values of the weight,
whereas L2 regularization adds penalty proportional to sum of square of the weights of the

parameters.

(Refer Slide Time: 26:03)

Q overfit-and-underfitpyrb B & S o
. o 10 0 = = A
o

Let us see how to add L1 and L2 regularization to the neural network through
tf.keras.regularizers (Refer Time: 26:32). So, along with each of the layer dense we add along
with each of the dense layer while defining the model we add a kernel regularizer argument.
So, kernel regularizer we can either use 11 or 12. So, here we are using 12 and we are also

specifying what is the regularization rate.

(Refer Slide Time: 26:57)

fss funchon + @ Pen adfy

The regularization term for the loss function is added. Here, the regularization penalty is

0.001 and we are using 12 regularizer here. So, we use 12 regularizers in both layers in order

to prevent overfitting. So, this is how you can define your 12 regularizer and then we can

compile the model and train it you can also add 11 regularization in the similar manner.
(Refer Slide Time: 27:39)

0 Q overfit-and-underfit pynb B & SHARE o
Fle Edi View inseri funime Took Help

A - P

DoocE BT 0L § o [

) Train on 1bd saspler, validete on 7008 wampley

Bu = lows: 0R3TH - mceuracy! BEILD - binary_erossemtrogy. B.dGdI - [N B

B0 - vl bl cront

= B = Jown: 0LBRLE - accurscy! @.908) - blnary_crossentregy. 8.287) - val_less: 8000 - BT = vl blnary_crom

= 38 < lows: 0,240 - mceurscy: B.9284 ¢ blnary_trevsamtropy: @.0970 -

[B H = wal_blnary_trosy

3 - lois: & - BCCUTECY O.948] ¢+ binary_croiRentrogy = vl _Blakry_cromh

- 35 - lopn 0.350) - accurady @944 - blnary_crotaemroy 9,054 - 00767 - val_blnery_cron

< B8 - lous: 0.1878 - accuracy: 0.9508 - binary_crodaantropy 0083 - 0.0758 - val_Biary_cromi

- B - 1oia: 0.LN9% - mccuracy B.958) - binary_croinentropy [RTTH 0.0715 - val blnery_crons

- 0 - lad: 01036 - accuricy: O.9SHE - blnary_Croiientroy

B2 - el Binary_cross

<3 - Lok 01767 - wceuracy! 9807 - Binary tredientrgy 040 - 00848 - Vil Blaeny_troni

- B - 1owe: 0.1704 - Bccuracyt 89637 - blnary_croiaentroy 8.4 - B.0861 - val_Blaary_croms

- 38 - logs: 0.186) - accurdey: 0.9987 ¢ blnary_crotiamtropy 0.4812 - 00045 - val blaery_trosi

- 3 - Jos: 0.1628 - accuracy: O.96B - binary_crodsentropy: 0478 - 0.8819 - val_Blnery_croms

- 38 - loial 0,1670 - aceuracy. 8.9705 - blaary_croinemtropy o - 0.0814 - el Blnery_croni

< 38 - loba: 0,1551 - accurscy 8.9706 - blnary_croinentropy 0500 - 80574 - val_binary_crons

3s - loin; 0,160 - acouracy: B 9706 - binary_crodaantrogy 95298 - BAME -l biaery_croti

(Refer Slide Time: 27:56)

o Q overfit-andunderfitipynb B AR °
Fle ESU View maet untme Tool Help
BOOE OTET @O BOIL @ COPYIODAVE WESr Ao A
Epoch 1509
n ° 15000/ 15000 - i - lois: 0.1548 - accuracy: §.978% - blrary_croddentropy: & i 0ESH - wal_binary_cross
9 Epoch 16/
I5000/ 25000 - 33 - loss: 0.1516 - accurscy: B.E78E - blnary_croddentropy: B35 - v B.5355 - w i 055 - val binary_cross

Epach 17700
16000/ 25000 - 38 - loss: 0.146 - accurscyi D973 - blnary crossentropy! 0079 - val loss: 9.548 - val_sccwracy: 0051 - val binany_cross

Epoch 18/09
5000/ 15000 - 3u - lows: 01449 - accuracy: B.9736 - binary_crossentropy: §.0774 - val loss: 95055 - vel_bcoerscy: B.ESI9 - val binary_cross
Epoch 19/
10/ I500 - B - lots: 0.1480 - accuracy: B.971% - blrary_crosientropy: 86791 - 05703 - val_scoeracy: 80507 - val_binary_cross
Epach 20/

15009/ 15000 - B - love: 0.1809 - accuracy! B.9765 - binary_crodsentropy; B854 - v

couracy: B.05NT - val binary_crois)

1200 81) means that ewery coeflicient in the wesght matrin of the layer will add 8. 841 * seight_coef¥icient_value®*2 10 the total loss of the network Mote
that bacause this panalty s onty sdded at training time, tha ks for this netwark will be much higher at training than at 1851 time

Here's the impact of our L2 regularization penalty

1 Plat historyt{ ban

pe_fistory),
tory} 1)

As you can ses, fhe L2 regul me much L even Though both the
of parameters.

one of the most effectve and most commenty hraues for Hirilon and his students a1 the Unevessity
'a 0. Droposn, applied 1o a layer, consists of randomiy ‘dropping out” ie. st 40 2er) a numbar of output festures of the Leyer dunng training. Lets say a given
layer wolld normally have retumed a vector [0.2,0.5 1.3,0.8,1.1] for 2 ghven input samgle dureg iraining. after applying dropout, this vector will have a few a0
entries distributid ot random, #0104 1.3,0,1 1] The ‘dropout rate is the fraction of the featuress that are besng sevoediaut 1 is ususily set between 0.2 and 0 4

Now, let us compare how the training of regularized model compares with the baseline

model.

(Refer Slide Time: 28:05)

Qoverfit-and-underfitipynb B 0 SHARE o
Fle ESl View masri Fusime T Heip
~

8 g ¢col § o & oy o e - v [l

MPTEL |

Let us plot the loss with respect to the epoch. So, we can see that the blue model corresponds
to the baseline model, whereas the orange model corresponds to the baseline model with L2
regularization. You can see that the blue line which is which is a baseline model started
overfitting around third epoch, whereas the regularized model took slightly longer to start
overfitting. We can see that the regularized model is resistant to overfitting for some more

epochs than the unregularized model.

(Refer Slide Time: 28:43)

Qoverfitand-underfitipynb B AR o
EX] Y B AN - - ~

You can see the 12 regularized model has become much more resistant to overfitting than the
baseline model, even though both models have the same number of parameters. The other
way of adding regularization or other way of regularizing neural network is by adding
dropouts. This results in randomly dropping out a number of output features in the layer
during training, dropout is not applied at the test time. It is very important to note that at the
test time, we do not drop any units, instead the layers output values are scaled down by a

factor equal to a dropout rate.

So, let us see how to use dropout in the context of neural networks, keras has a dropout layer

we can use a dropout layer with dropout rate as it is parameter.
(Refer Slide Time: 29:24)

overfit-and-underfit ipy
E Q overfit-and-underfit jpynb B o SHiRE o
& cov . ; -
)

So, you can see that this particular dropout will be applied to a layer that is specified just
before that. So, this dropout will be applied to the first hidden layer and then this dropout of
point five will be applied to the next hidden layer and after specifying the dropout we can

again retrain the model and compare its performance with the original baseline model.

(Refer Slide Time: 30:08)

H) overfit-and-underfit pynb B PR o
& o0 T0 06 u = i3

So, let us compare the baseline model with the with the dropout added. So, now compare this
also with the L2 regularization, we can see that after adding L2 regularization the model
marginally improved its resistance to overfitting. But after applying dropout we can see that
there is a substantial improvement in the resistance to the dropout and the model overfits after

few more epochs than the original model.

So, to recap we what we did is we actually build a model on IMDB dataset, the model that we
build a baseline model on IMDB dataset then we build a very big model on IMDB dataset
that was overfitting. In order to prevent overfitting we first reduce the capacity of the model
by building a smaller model and we also added regularization to it, we studied L1 and L2
regularization and then dropout regularization. So, these are the common things that are done

to prevent overfitting in the neural network.

The first strategy is to get the training data if its possible. If training data more training data is
not possible, we can reduce the capacity of the model or add L1 or L2 regularization or
dropout. Dropout is the most commonly used regularization technique in neural network.
Apart from that we can also use data augmentation to generate more training data from the
available data and batch normalization to prevent overfitting. Hope you understood
underfitting and overfitting through this coding exercise and you had fun learning these

concepts.

