
Practical Machine Learning with TensorFlow
Dr. Ashish Tendulkar

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture – 17

Text Classification

So far in this course we use TensorFlow API to build models for image classification and

regression. In this module, we will demonstrate how to use TensorFlow API to build model

for text data. In this module, we will use TensorFlow API to classify the movie reviews into

positive or negative reviews based on internet movie review data set.

(Refer Slide Time: 00:52)

So, we have 50000 movie reviews in total, we use 25000 reviews for training and the

remaining 25000 are used for testing. In this example, we will use transfer learning with

TensorFlow hub and Keras.

(Refer Slide Time: 01:11)

Let us install all the required libraries and tensorflow version 2.0, we use numpy for data

manipulation and we use tensorflow hub for pre-trained models.

(Refer Slide Time: 01:30)

One of the beauties of neural networks is that we can use neural network models trained on

one particular task for some other task. For example, a model trained on image can be used to

perform classification of some other images. So, this is called as transfer learning. The model

that was previously trained on some data set is called a pre-trained model and it is used as a

black box in some other model.

(Refer Slide Time: 02:09)

We can see that TensorFlow 2.0 is now installed. Now, we will download the IMDB dataset

and split that into training and validation split of 60 to 40 percent, 60 percent training 40

percent into validation. We are using TensorFlow datasets load method to load the IMDB

reviews from the internet.

(Refer Slide Time: 02:34)

Let us print the first 10 examples to see how the data looks like. We do that with the batch

function.

(Refer Slide Time: 02:43)

So, you can see that each review is on a single line and so you can see that there are 10

reviews over here, each review is in a single line and there are labels in the label batch. So,

you can see that most of the reviews in the first 10 reviews are positive and except for a

couple of them which are negative. This is also 1D tensor with shape 10.

(Refer Slide Time: 03:22)

Now, that we have explored the data the next task is to build a neural network model. There

are 3 main decisions when we decide to build a neural network model. The first decision is to

figure out how to represent a text, then how many layers should we use in the model and how

many hidden units should be should we use in each of the layer. In this example, the input

data consist of sentences and the output label output label is binary which is either 0 or 1, 0

represents the review is negative and 1 represents that the review is positive.

So, one way to represent a text is to convert the sentences into embeddings vector. This is

where we can use some of the pre-trained text embeddings at the as the first layer. This has

got multiple advantages. We do not have to worry about text processing. We can benefit from

transfer learning and embedding has a fixed size. So, it is simple to process.

So, we will use a pre trained text embedding model from TensorFlow hub. Let us look at

what TensorFlow hub is. TensorFlow hub has a number of reusable neural network models

that can be used as block black box models in other applications. We will use, we will use a

text embedding model based on google news which embeds a given sentence in a 20

dimensional vector.

(Refer Slide Time: 05:02)

There are other embedding models that are also available on the TensorFlow hub, but for this

particular exercise we will use a google news based text embedding model, we will use

google news based text embedding model. Let us create, let us first create a Keras layer that

uses TensorFlow hub model to embed the sentences. So, we can define that using

hub.KerasLayer, we specify the model that we are using for embedding by a URL of that

particular model.

We specify the input shape, we also specify the data type that is string and we specify

whether the model is trainable or not. So, in this case you want to retrain the model that is

why we set trainable to be true. And what we will do is we will take first 3 examples and see

what happens when we pass these examples through the hub layer.

So, you can see that as we pass these 3 examples through the hub layer we get a tensor which

is a 2D tensor which has got 3 examples and each example is represented by a 20

dimensional vector. Each vector is a real number either positive or negative and each entry in

the vector is a 32 bit floating point number. Let us build a full model and let us see how this

particular hub layer fits inside the full model.

(Refer Slide Time: 06:37)

Now, you are quite familiar with the sequential models in Keras. So, we will add the hub

layer as the first layer to convert the sentence into the desired embedding. Later we will take

the output of this particular embedding and give it to the second layer which is a hidden layer

with 16 units which uses relu as an activation function. Finally, we have an output layer

which is a dense layer with a single unit because we have binary classification problem here

and it uses activation as sigmoid. So, let us quickly look at the architecture of this model.

(Refer Slide Time: 07:27)

The text embedding model takes a review as input and it gives us for every review, 20

numbers.. We send these 20 numbers to a hidden layer with 16 units and it uses relu as an

activation function and then it goes to a single unit output layer with sigmoid activation

which gives us y which gives us either 0 or 1.

(Refer Slide Time: 09:29)

Now, that we have built a classifier let us run this and see the summary of the model. So, we

can see that there is a keras layer which is an embedding layer which outputs 20 numbers

which go to the dense layer, which outputs 16 numbers and then we have an output layer

which outputs a single number which is the prediction. And the number of parameters in the

keras layer are about 400k, then 336 parameter in the first in the hidden layer and 17

parameters in the dense layer.

We can clearly see that number of parameters for the output layer is 17 because there are 16

inputs and 1 bias term. In the same manner, you can see that 336 comes from 16 into 20 plus

16 bias units corresponding to each of the units in the hidden layer. And then keras layer has

400 k parameters. So, each of these units in keras layer has 20001 parameters per unit.

(Refer Slide Time: 10:31)

Out of this 20001 parameters there is a parameter each for a word in the vocabulary and an

additional parameter is used for out of the vocabulary words. So, that makes it about 400 k

parameters in the keras layer. So, we have 400373 total parameters to train.

(Refer Slide Time: 11:04)

Now that the model is defined, let us compile the model. We use adam as an optimizer, we

use binary cross entropy loss because we have a binary classification problem to solve here

and we track accuracy as a metric.

(Refer Slide Time: 11:13)

We will batch the training data into a mini batches of size 512 samples and we run the

training loop for 20 epochs. We store the output of the training loop in the history variable.

(Refer Slide Time: 11:37)

Since, we stored it in history variable we can use it later to plot learning curves or any such

statistics around the training loop. You can see that the training loss is going down after every

epoch and the accuracy is going up. Also keep an eye on the validation accuracy and see what

is happening to the validation accuracy.

(Refer Slide Time: 12:01)

So, validation accuracy also seems to be going up with each epoch. And training and

validation accuracies seem to be quite close. After 30 epoch the training accuracy has crossed

93 percent and validation accuracy has crossed 87 percent.

(Refer Slide Time: 12:19)

Let us evaluate the model performance on an unseen data set. We copy the result of the

evaluation in the results variable. So, here on the test data we get an accuracy above 86

percent it is very close to 87 percent. So, this fairly naive approach achieves an accuracy of

about 87 percent.

In this module, we built a text classifier using tensorflow API. We used transfer learning

based on models in tf hub. Hope you enjoyed learning these concepts.

