Practical Machine Learning with TensorFlow
Dr. Ashish Tendulkar
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture — 16
Classify Structured Data

Since the last few modules, we have used TensorFlow API for building models, for image
classification and regression problems. One of the important forms of data that we frequently
encounter in practice is structured data, the data that is stored in tabular format in CSV file. In

this session we will study how to build models for structured data using TensorFlow APIL.

(Refer Slide Time: 00:49)

& feature_columns.ipynb
= Py B} COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

CODE [TEXT N v SETNG A

P
View on TensorFlow.org O View source on GitHub

In this module, we will study how to build a classifier for a structured data (e.g. tabular data in a CSV). We will use Keras to define the model, and
feature columns as a bridge to map from columns in a CSV to features for medel training

In this exercise, we will
« Load a CSV file using Pandas.

« Build an input pipeline to batch and shuffle the rows using tf.data.
« Map from columns in the CSV to features used to train the mode! using feature columns.

« Build, train, and evaluate a model using Keras.

The Dataset

We will use a small dataset provided by the Cleveland Clinic Foundation for Heart Disease. There are several hundred rows in the CSV file. Each row
descries a patient, and each column describes an attribute of the patient. We will use this information to predict whether a patient has heart
disease, which in this dataset is a binary classification task.

Following is a description of this dataset. Notice there are both numeric and categorical columns.

Column Description Feature Type Data Type
Age Ageinyears Numerical ~ integer
Sex (1=male; 0= female) Categorical integer
cP Chest paintype (0,1,2,3,4) Categorical integer

We will use Keras to define the model and features columns as a bridge to map from columns
in CSV to features for model training. In this exercise we will load CSV using pandas which
is a library for handling structured data in python. We will build an input pipeline using
tf.data library, then we will map from columns in CSV to features used to train model using

feature columns and finally, we will build train and evaluate a model with tf.keras library.

Let us look at the dataset we are going to use for this exercise. It is a data set provided by the

Cleveland Clinic Foundation for Heart Disease. The idea is to build a model to predict

whether a patient will suffer from heart disease. There are several hundred rows in the CSV

file. Each row describes a patient and each column describes an attribute of the patient.

(Refer Slide Time: 01:59)

& feature_columns.ipynb
S Py B} COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

RAM A
CODE TEXT Disk v 4 EDITING A

Following Is a description of this dataset. Notice there are both numeric and categorical columns.

Column Description Feature Type Data Type
Age Ageinyears Numerical integer
Sex (1=male; 0= female) Categorical integer
CP Chest pain type (0,1,2,3,4) Categorical integer
Trestbpd Resting blood pressure (inmm Hg on admission to the hospita) Numerical integer
Chol Serum cholestoral in mg/d| Numerical ~ integer
FBS (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false) Categorical integer
RestECG Resting electrocardiographic results (€, 1, 2) Categorical integer
Thalach Maximum heart rate achieved Numerical integer
Exang Exerciseinduced angina (1 =yes; 0 = no) Categorical integer
Oldpeak ST cepression induced by exercise relative to rest Numerical integer
Slope The slope of the peak exercise ST segment Numerical ~ float
CA Number of major vessels (0-3) colored by flourosopy Numerical integer
Thal 3=normal, 6 = fixed defect; 7 = reversable defect Categorical ~ string

3 Target Diagnosis of heart disease (1 = true; 0 = false) Classification integer

7
NRTE

v Im[gLort TensorFlow and ather libraries

You can see that the data set has a bunch of columns. There are a mix of columns in terms of
the data types, lots of the columns are numerical columns, and a few are categorical columns.
The final variable over here which is the target; the target variable is the classification label.

We use label 1 if patient has a heart disease otherwise we use label 0.

(Refer Slide Time: 02:29)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

COE @ TEXT RAM v JENNG A

Disk
° Ipip install sklearn

[»> Requirement already satisfied: sklearn in /usr/local/lib/python3.6/dist-packages (€.8)
Requirement already satisfied: scikit-learn in fusr/local/lib/python3.6/dist-packages (from sklearn) (8.21.2)
Requirement already satisfied: joblib>=8.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->sklearn)
Requirement already satisfied: scipy>=0.17.8 in /usr/local/lib/python3.6/dist-packages (from scikit-learn-»sklearn
Requirement already satisfied: numpy>=1.11.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn-»>sklearn

We will install tensorflow 2.0 in the colab’s cloud runtime.

[] fron _future_ impart absolute_import, division, print_function, unicode_literals
inport numpy as np
import pandas as pd

!pip install tensorflow==2.8.0-betal
inport tensorflow as tf

fron tensorflow import feature_column
fron tensorflow.keras import layers
fron sklearn.model_selection import train_test_split

‘M Pandas to create a dataframe

Pandas is a Pnhon hbrar" with many he\gfu utilities for Ioadmg and workmg with structured data. We will use Pandas to download the dataset

So, we will first install sklearn package which we will use for splitting the data into training
and test set. Next, we will install the TensorFlow package and import TensorFlow and other
associated libraries like feature columns, layers. From sklearn you will use train_test split

function.

We will use numpy and pandas as libraries for manipulating the data. Now, we will download

the data set and read it with pandas.

(Refer Slide Time: 03:17)

& feature_columns.ipynb
= Py E COMMENT 2% SHARE o
File Edit View Insert Runtime Tools Help

RAM 1 »

CODE TEXT Dk mm— ~ 7 EDTNG A

~ Use Pandas to create a dataframe

Pandas is a Python library with many helpful utilities for loading and working with structured data. We will use Pandas to download the dataset

from a URL, and load itinto a dataframe.

OIRVINN = - 3 I
° URL = 'https://storage.googleapis.con/applied-dl/heart,csv'
dataframe = pd.read_csv(URL)
dataframe.head()

(kg age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target

0 6 1 1 145 238 1 2 150 0 23 30 fixed 0
1 67 1 40 160 286 0 2 108 1 15 2 3 normal]
2 67 1 4 120 229 0 2 129 1 26 2 2 reversible 0
3 % 13 130 260 0 0 187 0 35 3 0 normal 0
4 41 0 2 130 204 0 2 172 0 14 10 normal 0

&

\Spit the dataframe into train, validation, and test

NPTEL
The dataset we downloaded was a single CSV file. We will split this into train, validation, and test sets.

Now, what we will do is we will read the CSV file directly from the url using
pandas.read csv function and we will print top five rows in the data frame. You can see that
that the top five rows are on the screen and the second patient has a heart disease. And, you

can see attributes like age, sex, cholesterol levels and other associated attributes in the table.

(Refer Slide Time: 04:09)

RAM > e
sk T/

& feature_columns.ipynb
= Py E] COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

CODE TEXT
ey

G 4 4 0 2 130 204 0 2 172 0 14 1 0 normal 0

~ Split the dataframe into train, validation, and test

The dataset we downloaded was a single CSV file. We will split this into train, validation, and test sets.
rVveoB RN

° train, test = train_test_split(dataframe, test size=0.2)
train, val = train_test_split(train, test_size=0.2)
print(len(train), “train examples')
print(len(val), 'validation examples')
print(len(test), 'test examples')

193 train examples
49 validation examples
61 test examples

C

~ Create an input pipeline using tf.data

N'éz we will wrap the dataframes with tf.data. This will enable us to use feature columns as a bridge to map from the columns in the Pandas

me to features used to train the model. If we were working with a very large CSV file (so large that it does not fit into memory), we would use

a to read it from disk directly. Thatis not covered in this tutorial.
NPTEL

Next, now that we have loaded the data set in memory we will split that into train validation

and test. So, we will use train_test split function from sklearn. Let us split the data and print

the statistics about training validation and test examples. So, we have 193 training examples,
49 validation examples and 61 test examples. Test data will never be exposed to the model
during the training. So, model building will happen on 193 training samples. We will validate

the model on 49 samples and we will finally, test its performance on the 61 examples.

(Refer Slide Time: 04:57)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

COE @ TEXT 7:“\'”: v JEING A

‘print[len{ual),’Tvalidatian evxemplés')
° print(len(test), 'test examples')

[» 193 train examples
49 validation examples
61 test examples

v Create an input pipeline using tf.data

Next, we will wrap the dataframes with tf.data. This will enable us to use feature columns as a bridge to map from the columns in the Pandas

dataframe to features used to train the model. If we were working with a very large CSV file (so large that it does not fit into memory), we would use
tf.data to read it from disk directly. Thatis not covered in this tutorial,

create a tf.data cataset from a Pandas Dataframe
 to_ afrane, shuffle=True, batch_size=32):

dataframe = dataframe.copy()

labels = dataframe.pop('target’)

ds = tf.data,Dataset.from_tensor_slices((dict(dataframe), labels))
if shuffle:

ds = ds,shuffle(buffer_size=len(datafrane))
ds = ds.batch(batch_size)

'/_,.\ return ds

Méggdmdersland what this function is doing

1. Copy the input dataframe so that the changes are not persisted.

We have loaded our data set in the pandas dataframe and we will wrap the dataframe with
tf.data. This will enable us to use feature columns as a bridge to map from the columns in the
dataframe to features in the model. If you are working with a very large CSV file we could
also use tf.data to read it from the disk directly. Let us look at df to dataset method that we

are using for wrapping the dataframes with tf.data.

(Refer Slide Time: 05:41)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

RAM » EnITIA
CODE @ TEXT Disk || o BTN A

U3 = L1 UBLE L UALEIE L U LEII3UI_31ALES | (ULL L UaLa I aIE /, 10UEL3))
° if shuffle:
ds = ds.shuffle(buffer_size=len(dataframe))
ds = ds.batch(batch_size)
return ds

Let's understand what this function is doing

1. Copy the input dataframe so that the changes are not persisted.

2. Pop the label column from the dataframe with pop method, which returns the label column and remove it from the dataframe.

3. Create dataset from tensor slices. The tensor slices are created by obtaining dictionary representation of the dataframe and the label
column.

4. Shuffle the dataset in case needed.

5. Get a batch of tensors of specified size and return .

batch_size = 5 # A small batch sized is used for demonstration purposes
train_ds = df_to_dataset(train, batch_sizesbatch_size)

val_ds = df_to_dataset(val, shuffle=False, batch_size=batch_size)
test_ds = of _to_dataset(test, shuffle=False, batch_size=batch_size)

| &,lg\gerstand the input pipeline

[Ihat we have created the input pipeline, let's call it to see the format of the data it returns. We have used a small batch size to keep the output
L

NPTEL
reacable.

Here, we are first copying the dataframe so that any of the changes are not persisted. Next,
we remove the target column or the column which contains the classification label and we

remove it and store that in the labels array.

We create dataset from tensor slices. The tensor slices are created by obtaining the dictionary
representation of the data frame and a labels column. Then, we shuffle data set if required we
are passing flag for shuffling the data set if the flag is true then we shuffle the data set. And
finally, we batch the tensors of specified size specified by batch size variable and we return

the batch of tensors which we will later be consumed during model training.

Now, what we will do is we will try to demonstrate we will we will try to convert we will try
to convert the data frame to dataset. So, this is a small code where we will use a batch size of

pipe and we convert training, validation and test set into the data set.

(Refer Slide Time: 07:09)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

RAM Ay
0 CODE [TEXT Disk v 4 EDTNG A

[22] test_ds = df_to_dataset(test, shufflesFalse, batch_size=batch_size)

~ Understand the input pipeline

Now that we have created the input pipeline let's call it to see the format of the data it returns. We have used a small batch size to keep the output
readable.

rVeoB BT
© for Feature batch, label batch in train ds.take(1):
print('Every feature:', list(feature_batch.keys()))
print('A batch of ages:', feature_batch['age'])
print('A batch of targets:', label batch)

[» Every festure: ['age’, 'sex’, 'cp', 'trestbps’, 'chol’, 'fbs', 'restecg’, 'thalach', 'exang', 'oldpeak’, 'slope’,

A batch of ages: tf.Tensor([6@ 65 57 56 €0], shape=(5,), dtype=int32)
A batch of targets: tf.Tensor([1 @ @ 8 @], shape=(5,), dtype=int32)

We can see that the dataset returns a dictionary of column names (from the dataframe) that map to column values from rows in the dataframe.

vi_@onstrate several types of feature column

MRERL:Flow provides many types of feature columns. In this section, we will create several types of feature columns, and demonstrate how they
transform a column from the dataframe.

Now, that we have created the input pipeline let us call it to see the format of data it returns.
We used a small batch size of 5 to keep the output readable. You can see that we have a list
of features printed from this particular statement. Then, we can see the five values from the
column age or from the feature age and we also have five values from the target and you can
look at the shape and the data type of these tensors. So, both of these tensors are vectors.
They contain exactly five elements. The data that is contained in them is essentially a 32 bit

integer.

(Refer Slide Time: 08:09)

& feature_columns.ipynb
= pyn E] COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help
CODE @ TEKT vy - 2BmG A

We can see that the dataset returns a dictionary of column names (from the dataframe) that map to column values from rows in the dataframe.

<

Demonstrate several types of feature column

TensorFlow provides many types of feature columns. In this section, we will create several types of feature columns, and demonstrate how they
transform a column from the dataframe.

[24] # We will use this batch to demonstrate several types of feature columns
example_batch = next(iter(train_ds))[e]

rveoB BT
° # A utility method to create a feature column
and to transform a batch of, data
def demo(feature_column):
feature_layer = layers.DenseFeatures(feature_calumn)
print(feature_layer (example_batch).numpy())

~ Numeric columns

Fhe.output of a feature column becomes the input to the model (using the demo function defined above, we will be able to see exactly how each
from the dataframe s transformed). A numeric column is the simplest type of column. Itis used to represent real valued features. When

othis column, your model will receive the column value from the dataframe unchanged.
NPTEL

L age = feature column.nuneric column(*age")

So, TensorFlow provides many types of feature columns. In this section what we will do is
we will create several types of feature columns and demonstrate how to transform a column
from the data frame. We create a utility method to create a feature column and to transform a

batch of data.

(Refer Slide Time: 08:31)

& feature_columns.ipynb
= pyn B} COMMENT &% SHARE °
File Edit View Insert Runtime Tools Help
CODE [TEXT “EA’Qk' E— v some A

UET UEMU(TEdLUrE_CULUNN) §
(26] feature layer = Layers.Densefeatures(feature_cclum)
print(feature_layer(exanple_batch).numpy())

¥ Numeric columns

The output of a feature column becomes the input to the model (using the demo function defined above, we will be able to see exactly how each
column from the dataframe is transformed). A numeric column is the simplest type of column. Itis used to represent real valued features. When
using this column, your model will receive the column value from the dataframe unchanged.

rNveoB R0

o age = feature_column.numeric_column("age")
demo(age)

v
NPTEL
Often, you don't want to feed a number directly into the model, but instead split its value into different categories based on numerical ranges.

Let us look at the first type of feature column for numeric attributes. A numeric column is the

simplest type of column. It is used to represent real valued features. When we use this column

our model we will receive the column value from the dataframe unchanged. So, numeric

values are passed as it is to the model.

So, we use feature column.numeric column to convert the numeric columns into the features
into the feature column. So, age 1is a numeric attribute. So, we use

feature column.numeric_column for transforming age. Let us look at what it returns.

We should see that this particular utility method returns a vector containing five elements. So,

we have the first five values printed here because we used small batch size of 5.

We also have a large number of columns that are categorical and we cannot really feed a
nonnumeric data to the TensorFlow. Hence we need to convert the non-numeric data into
numbers. Let us look at some of the ways in which we can use feature column to convert

non-numeric data into feature columns.

(Refer Slide Time: 10:23)

& feature_columns.ipynb
m = Py B COMMENT 2% SHARE o

File Edit View Insert Runtime Tools Help

COE @ TEXT m’ - I A

65.]

[
(27 (s7.]
. [56.]
B oo

Inthe heart disease dataset, most columns from the dataframe are numeric.

v Bucketized columns

Often, you don't want to feed a number directly into the model, but instead split its value into different categories based on numerical ranges.
Consider raw data that represents a person's age. Instead of reprasenting age as a numeric column, we could split the age into several buckets
using a bucketized column. Notice the one-hot values below describe which age range each row matches

PV B RN

age_buckets = feature_column.bucketized column(age, boundaries=(18, 25, 30, 35, 40, 45, 58, 55, 6@, 65])
demo(age_buckets)

L
¥ Categorical columns

The first option that we have is called bucketized column. Here, what happens is instead of
using a number directly in the model, we split its values into different categories based on
numerical ranges. Instead of representing age as a numeric column, we could split the age

into several buckets using bucketized column.

Here what happens is bucketized column represents age as one-hot values based on the range
matching based on the range match. So, here in this case there will be 11 ranges created the
first range is for all ages below 18, then second for between 18 to 25, then 25 to 30 and so on
until 60 to 65 and more than 65. Let us look at how the first five numeric ages are converted

into bucketized column.

So, you can see that the age is 60. So, the tenth value has got one then look at 65; 65 the
eleventh value is one you can see that there are eleven values 1, 2, 3,4, 5,6,7,8,9, 10, 11.
So, we use eleven length vector for representing the ranges because there are eleven ranges
based on the boundaries that we have selected and you can see how the other values are also

represented here.

(Refer Slide Time: 12:17)

& feature_columns.ipynb
= Py E COMMENT 2% SHARE o
File Edit View Insert Runtime Tools Help

CODE @ TEXT RAM v/ EDITING A

Disk
. [lo-v. € 0.0 0.0 6 0 1 6.
>

v Categorical columns

Inthis dataset, thal is represented as a string (e.q. ‘fixed, normal, or 'reversible). We cannot feed strings directly to a model. Instead, we must first
map them to numeric values. The categorical vocabulary columns provide & way to represent strings as a one-hot vector (much like you have seen
above with age buckets). The vocabulary can be passed as a list using categorical_column_with_vocabulary_list, or loaced from a file using
categorical_column_with_vocabulary_file.

PV BB
° thal = feature_column.categorical column_with_vocabulary list(

‘thal', ['fixed', 'normal’, 'reversible'])

thal_one_het = feature_column.indicator_column(thal)
demo(thal_cne_hot)

b

RS

[
0.
9.
1
1

o ® - o

-
B
B
B
-1

.
u}j‘(@}:re complex dataset, many columns would be categorical (e.g. strings). Feature columns are most valuable when working with categorical

y Although there is only one categorical column in this dataset, we will use it to demonstrate several impartant types of feature columns that
NEFbuld use when working with other datasets

In this dataset, there are also several categorical features that are represented by strings.
Again, we cannot feed strings directly into the model. Instead we must first map it to a
numeric value we have already seen one-hot encoding as one possible way to encode string
values. In this case we will use categorical vocabulary column as a way to represent strings as

a one hot vector.

The vocabulary here can be passed either using a vocabulary list or vocabulary can also be

loaded from a file. Depending on whether you are going to pass on the vocabulary list or file

there are two methods; one is categorical column with vocabulary list and then a similar
one for vocabulary file. So, let us look at converting a categorical column with vocabulary

list.

Here thal is an attribute which has got three possible values; fixed, normal and reversible. We
use feature column.categorical column with vocabulary list to convert thal attribute into
one hot encoding feature. So, we first use the categorical column with vocabulary list and
then pass on that feature column to indicator column to get a one hot encoded

representations.

Let us look at one hot encoding of thal column. In each of the rows exactly one particular
position is 1, all of the other positions are 0. This is exactly how the one hot encoding works

as you may recall from the previous classes.

(Refer Slide Time: 14:25)

& feature_columns.ipynb
= Py E COMMENT &\ SHARE o
File Edit View Insert Runtime Tools Help

CODE TEXT b < / EDITING 25
Inamore complex dataset, many columns would be categorical (e.g. strings). Feature columns are most valuable when working with categorical
date. Although there is only one categorical column in this dataset, we will use it to demonstrate several important types of feature columns that

you could use when working with other datasets

v Embedding columns

Suppose instead of having just a few possible strings, we have thousands (or more) values per category. For a number of reasons, as the number of
categories grow large, it becomes infeasible to train a neural network using one-hot encodings. We can use an embedding column to overcome this
limitation. Instead of representing the data as a one-hat vector of many dimensions, an embedding column represents that data as a lower-
dimensional, dense vector in which each cell can contain any number, not just 0 or 1. The size of the embedding (8, in the example below) is a
parameter that must be tuned.

Key point: using an embedding column is best when a categorical column has many possible values. We are using one here for demonstration
purposes, s¢ you have a complete example you can modify for a different dataset in the future.

rVeoBRT

input to the embedding column is the categorical column
ly created

1_ent = feature_column.embedding_column(thal, dimension=8)

demo(thal_embedding)

0.0€152119 -9,13514778 -9.19533993 -0.82982148 -0.42058483
0.20324378
& [-0.20038303 -0.04326127 -0.07674059 -0.2416435 -0.87673735 -0.04951005
NPTEL - 9.3130150 0.01408159)
[-0.37874317 -0.20152119 -B.13514778 -0.19533093 -0.02982148 -6.42658483

So, here we have most of the categorical attributes that do not have a lot of different values,
but you will often encounter data sets in real life that would have a large number of strings in

inner column and that could happen for multiple columns.

TensorFlow also provides a mechanism to encode columns with large number of possible
string values. So, there are few mechanisms like embedding columns or hash columns that

helps us to convert a column with a large number of strings into numbers. So, what happens

if you have thousands of values per category. So, we do not want to really use one-hot

encoding here because that representation will be extremely sparse representation.

So, instead of using one hot encoding here we use what is called as an embedding column.
Embedding column represents the data as a lower dimensional dense vector in which each
cell can contain any number between any number and not just 0 and 1. The size of the
embedding is a parameter that must be tuned. In this particular example here we are creating
an embedding for thal column and we are using number of dimensions as 8. So, let us try to

see how it works.

In this particular case we can see that it is a dense representation we are we have converted
thal into 8 values and each value can take any number; number can be either positive or

negative.

(Refer Slide Time: 16:29)

& feature_columns.ipynb
= Py E COMMENT &\ SHARE o
File Edit View Insert Runtime Tools Help

CODE @ TEXT ?Nk' v em A
o o e) S S i SN A
[32] 0.03273271 0.2324378]
[0.3356727 -0.91319397 -0.07878387 0.4069587 -0.01670497 -0.3012962
D 0.17124803 0.11943647]
[0.3356727 -0.91319397 -0.07878387 ©.4069587 -0.01670497 -0.3012962
0.17124803 0.11943647]]

<«

Hashed feature columns

Another way to represent a categorical column with a large number of values is to use a categorical_column_with_hash_bucket. This feature
column calculates a hash value of the input, then selects one of the hash_bucket_size buckets to encode a string, When using this column, you
do not need to provide the vocabulary, and you can choose to make the number of hash_buckets significantly smaller than the number of actuel
categories to save space
Key point: An important downside of this technique is that there may be collisions in which different strings are mapped to the same bucket. In
practice, this can work well for some datasets regardless

rVveoB RN

o thal_hashed = feature_column.categorical column_with_hash_bucket(
'thal', hash_bucket size=1006)
demo(feature_column.indicator_column(thal_hashed))

;'/gg 0723 09:38:58.364€95 139714354923392 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tensorflow/py
1% &nstructions for updating:

The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
|~:’h=""reﬂ,[[e. 0. 0. ... 0.8 0.]

fa o o a o a1

Apart from embedding column we also have another way to represent a categorical column, it
is called hash column or hashed feature column. Here the central idea is to use hashing. This
feature column calculates a hash value of the input and then select one of the buckets to
encode a string. When using this column we do not need to specify a vocabulary and we can
choose to make the number of buckets significantly smaller than the number of actual

categories to save the space.

One of the important things to note while using this particular technique is that it has a
downside that there may be collisions in which different strings would get map to the same
bucket. However, in practice this scheme works quite well for some datasets. So, let us
convert thal into numbers using the method of hash buckets. So, we use
categorical column with hash bucket to convert thal into hash buckets of size 1000. Then

convert the hashed representation into an indicator column representation.

(Refer Slide Time: 18:03)

& feature_columns.ipynb
= py a COMMENT && SHARE °
File Edit View Insert Runtime Tools Help

CODE @ TEXT m‘ v I A
do not need to provide the vocabulary, and you can choose to make the number of hash_buckets significantly smaller than the number of actuel
categories to save space.

Key point: An important downside of this technique is that there may be collisions in which different strings are mapped to the same bucket. In
practice, this can work well for some datasets regardless

rVveoBRE
° thal_hashed = feature_column.categorical_column_with_hash_bucket(
'thal', hash_bucket size=1000)
demo(feature_column.indicator_column(thal_hashed))

[» We723 @9:38:58.364695 139714354923392 deprecation.py:323] From /usr/local/lib/pythen3.5/dist-packages/tensorflow/p
Instructions for updating:
The old _FeatureColunn APIs are being deprecated. Please use the new FeatureColumn APIs instead.

[[0. 0. @. ... 0. 6 0.]
[6. 0. 0. ...0. 6 0.]
[e. 0. 0. ... 0.6 0.]
[0. 0. 0. ...0. ¢ 0]
[6. 0. 0. ... 0. € 0.]]

:.-"%ed feature columns

ining features into a single feature, better known as feature ciosses enables a model to learn separate weights for each combination of
NREhes. Here, we will create a new feature that is the cross of age and thal, Note that crossed_column does not build the full table of all possible
combinations (which could be very large). Instead, it is backed by a hashed_colunn, so you can choose how large the table is

So, we will again get a one hot encoding kind of representation after we convert the feature
column into an indicator column and you can see that now we have one hot encoding in with
one hot encoding done with the vector which has got 1000 entries. Only one of them we will
be be 1 based on based on the bucket ID in which the value was hashed. In the past, we also

saw that in order to construct complex dataset we often need to cross columns.

(Refer Slide Time: 18:37)

& feature_columns.ipynb
= Py E COMMENT 2% SHARE o
File Edit View Insert Runtime Tools Help

CODE TEXT RAM = /7 Eomh A

Disk
¢

¥ Crossed feature columns

Combining features into a single feature, better known as feature crosses, enables a model to learn separate weights for each combination of
features, Here, we will create a new feature that is the cross of age and thal, Note that crossed_column does not build the full table of all possible
combinations (which could be very large). Instead, it is backed by a hashed_colunn, so you can choose how large the table is.

rVveoBRE

o crossed_feature = feature_column.crossed_colunn([age_buckets, thal], hash_bucket_size=1eee)
demo(feature_column.indicator_column(crossed_feature))

[> We723 09:41:12.358826 139714354923392 deprecation.py:323] From /usr/local/1ib/python3.6/dist-packages/tensorflow/py
Instructions for updating:
The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
[[e. o. .0, 0]

] .0

co e oo

[e. o. 0.¢. 0]
[e. 0. 0. ...0. € 0.]
[e. 0. 0. ...0. ¢ 8.]
[e. o. 0. €. 0.]

s’

1

igose which columns to use

We have seen how to use several types of feature columns. Now we will use them to train a model. The goal of this tutorial is to show you the

So, combining features commonly known as feature crossing, is a popular way to build
complex decision boundaries. So, after crossing the features we create a new feature that is
cross of two original features. In this case we cross two columns one is the age bucket that we

created based on bucketization and thal value.

The cross column does not build the full table of all possible combinations, just because it
could be very large and take a lot of memory. Instead of that we use hash column for hashing
the values coming out of the crossed column. So, we can see here we have to simply use
crossed column to cross two columns and we have to specify the hash bucket size. After
crossing the values in the columns hashing is automatically carried out based on the bucket

size that we specify here.

Then we can convert the hash representation of the cross feature to an indicator
representation using indicator column command. You may recall that indicator column
command is used to create one hot encoding representation for a feature. We have studied a
few methods to convert the non-numeric features into numbers, specifically we looked at
methods like one-hot encoding using list or one-hot encoding using values mentioned in files

or used in hashing technique or embedding techniques to convert strings into numbers.

For numerical attributes, we looked at the numerical columns or we also use bucketized
column to bucketize the number into various buckets and then get representation of that
particular column in a bucketized format. And, we also looked at how to construct feature

crosses and represent the crossed features using crossed column.

(Refer Slide Time: 21:01)

& feature_columns.ipynb
= Py E COMMENT &\ SHARE o
File Edit View Insert Runtime Tools Help

RAM » chrTIM
CODE @ TEXT Disk s &

~ Choose which columns to use

We have seen how to use several types of feature columns. Now we will use them to train a model. The goal of this tutorial is to show you the
complete code (e.g. mechanics) needed to work with feature columns, We have selected a few columns arbitrarily to train our model below.

Key point: If your aim is to build an accurate model, try a larger dataset of your own, and think carefully about which features are the most
meaningful to include, and how they should be represented.

*r Vo BB
° feature_columns = []

numeric cols
for header in ['age', 'trestbps’, 'chol’, 'thalach', 'oldpesk', 'slope’, 'ca']:
feature_columns.append(feature_column.numeric_colunn(header))

bucketized cols
age_buckets = feature_column.bucketized_column(age, boundaries=[18, 25, 3@, 35, 4¢, 45, 5@, 55, 6@, 65])
feature_colunns. append(age_buckets) :

indicator cols
thal = feature_column.categorical_column_with_vocabulary list(
'thal’, ['fixed', 'normal', 'reversible'])
thal_one_hct = feature_column.indicator_column(thal)
~ feature_colunns. append(thal_one_hot)

anbedding cols
‘thal embedding = feature_column.embedding_column(thal, dimension=8)
NP ﬂfeatur‘e_mlumns‘append(thal_emhedding)

crossed cols

Next, we will choose the columns to use for training a model. Here we select a few columns
arbitrarily to train our model. If your aim is to build an accurate model you should take a
larger data set and think carefully about what features are more meaningful for your model
and then include only those features or construct meaningful features from the from the given

representation.

We will define feature columns as a list to hold the features that we are going to use. So, here
what we do is for all the numeric columns we use numeric underscore column function and
construct numeric feature columns, then we construct bucketized feature columns for age
based on the boundaries given over here. Then we can then we construct indicator feature
columns for thal and we also construct an embedding feature column for thal and we cross

the age buckets with thal and construct call and construct crossed column feature columns.

(Refer Slide Time: 22:27)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

RAM
Disk

CODE TEXT v JENNG A

v Create a feature layer

Now that we have defined our feature columns, we will use a DenseFeatures layer to input them to our Keras model

[34] feature_layer| = tf.keras.layers.DenseFeatures(feature_columns)

Earlier, we used a small batch size to demonstrate how feature columns worked. We create a new input pipeline with a larger batch size.

+voB 8%

-

° batch_size = 32
train_ds = df_to_dataset(train, batch_size=batch_size)
val_ds = df_to_dataset(val, shufflesFalse, batch_size=batch_size)
test_ds = df_to_dataset(test, shuffle=False, batch_size=batch_size)

~ Create, compile, and train the model

~ Create a baseline model with logistic regression

odel = tf.keras.Sequential([

feature_layer,

NPTEL layers.Dense(1, activation='sigmoid')
j)l

Now, that we have defined our feature columns we will use a dense features layer to input

them to our keras model. The dense features layer takes feature columns as an input.

(Refer Slide Time: 22:39)

& feature_columns.ipynb
= Py E COMMENT &\ SHARE o
File Edit View Insert Runtime Tools Help

CODE @ TEXT e~ /oms A

>
~ Create, compile, and train the model

v Create a baseline model with logistic regression

[] model = tf.keras.Sequential([!
feature_layer,
layers.Dense(1, activation='sigmoid')

)]

[] model.compile(optimizer="adam’,
loss="binary_crossentropy ',
metrics=['accuracy'],
run_eagerly=True)

model. fit(train_ds,
validation_data=val_ds,
epochs=5)

L] loss, accuracy = model.evaluate(test ds)
print("Accuracy”, accuracy)

IBIE Neural Network based model

Rlocccoool ool oo oo oo b el oo

Let us create a model based on the feature columns defined earlier. First we will create a

baseline model with logistic regression. The logistic regression model is constructed with

tf.keras.Sequential in which we specify the feature layer and then there is an output unit

which is which has got one unit with a sigmoid activation.

Once you define a logistic regression model, we compile it and we compile it with adam
optimizer, we use binary cross entropy as a loss because we are solving a binary classification
problem and we will use accuracy as a metric to track during the training. Finally, we will

find out the loss and accuracy of the model based on the test data. Let us run this particular

code.

(Refer Slide Time: 23:35)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

RAM d ENITIA
[CODE [TEKT Disk ¥ | o HRe A

Py B RT

>

' o model, compile(optimizer="adam',
loss="binary_crossentropy’,
metrics=['accuracy'],
run_eagerly=True)

model, fit(train_ds,
validation_data=val_ds,
epochs=5)

C
- 1s 114ms/step - loss: @.6518 - accuracy: 8.7151 - val_loss: 0.5679 - val_aci

-

- Bs 26ms/step - loss: @.5880 - accuracy: .7116 - val_loss: 8.5231 - val_acct
- @s 25ms/step - loss: @.6@85 - accuracy: 8.7116 - val_loss: 8.5224 - val_acci

- Bs 26ms/step - loss: @.5688 - accuracy: .7116 - val_loss: 8.5174 - val_acci

- @s 28ms/step - loss: @.5520 - accuracy: 0.7116 - val_loss: ©.4954 - val_acc
ctensorflow.python.keras.callbacks.History at @x7f11809€74ed>

loss, accuracy = model.evaluate(test_ds)
Y H
‘.‘d;prmti“Mcmac\,’", accuracy)

NPTEL

Ruild Mool os ol boood oo odol

So, let us construct the model then we will compile it and you can see that the model is
getting trained and after 5 epochs the model has an accuracy of 71 percent on training set and

validation accuracy is slightly higher, it is 77 percent.

(Refer Slide Time: 23:59)

& feature_columns.ipynb
= Py E COMMENT 2% SHARE o
File Edit View Insert Runtime Tools Help

RAM

CODE @ TEXT o . JEme A
"4 ctensorflow.python.keras. callbacks. History at @x7f11809¢74ed>
(i -
OIRCN = I - 3 I
loss, accuracy = model.evaluate(test_ds)
print("Accuracy”, accuracy)
[2/2 [================sz=z=s==z=sm=x] - @5 2Ims/step - loss: 8.533@ - accuracy: 0.7541

Accuracy @,75489836

~ Build Neural Network based model

Please take a couple of minutes to draw the neural network architecture.

[] model nn = tf.keras.Sequential([
feature_layer,
layers.Dense(128, activation='relu'),
layers.Dense(128, activation='relu'),
layers.Dense(1, activation='sigmoid')

)]

model_nn.compile(optinizer="adam',
loss="binary_crossentropy’,
metrics=['accuracy'],
run_eagerly=True)

fLmodel nn.fit(train_ds,
validation_data=val_ds,
epochs=5)

Let us look at the accuracy on the test set. On test set we got accuracy of 75 percent. So, this
is our baseline model let us try to build a neural network model. It is always a good idea to
build a baseline model for a classification problems logistic regression serves as a good
baseline model. If you are solving a regression model always start with a linear regression

model as a baseline model.

Baseline model also helps us to understand what kind of performance we can obtain just
using the data that is given to us and then we can and then we can use a bunch of strategies to
improve the performance and doing the base lining also helps us to understand how each of
these new strategies help you to improve the performance of the model further. Let us build a
neural network model. In this particular case let us look at the structure of this neural network

model.

(Refer Slide Time: 25:03)

LOﬂ\S%C Neurod 2 etroork

AN

o0

kﬂ‘“'“

So, we had a logistic regression model as a baseline model and we have a neural network
model here. In case of logistic regression model what we did is we had a bunch of feature
columns and we had exactly one output. These are all features and we had sigmoid as an
activation function here. Your sigmoid as an activation function here which gives us a

probability of a patient having a heart disease.

In case of neural network what we do is we take these features and we define we set up a
neural network with two hidden layers each containing 128 units and each of this input. And
finally, we have a single output node. So, you got sigmoid activation for the output later and

use relu as an activation for the hidden layers. So, this is the neural network architecture.

We are using a feed forward neural network with two hidden layers each containing 128 units
and relu has an activation and we have an output layer with a sigmoid activation as we can
see over here. We use adam as an optimizer, we use binary cross entropy as a loss because we

are solving a binary classification problem and we will track accuracy as a metric.

After compiling the model we will we will run a training loop with train_ds as a training data

and val ds as a validation data and we train for five epochs.

(Refer Slide Time: 27:41)

& feature_columns.ipynb
File Edit View Insert Runtme Tools Help

E] COMMENT 2% SHARE o

RAM 1 ;
CODE TEXT v tskmm— -~ 7

EDITING A
e e
run_eagerly=True
o _eagerly=True)
model_nn.fit(train_ds,
validation_data=val ds,
epochs=5)

53 Epoch 1/5
=] - 1s 87ms/step - loss: 1.2253 - accuracy: 0.6398 - val_loss: ©.8230 - val_acci

- @s 35ms/step - loss: .8215 - accuracy: 0.6895 - val_loss: 0.8009 - val_acci
- @5 34ms/step - loss: 1.4673 - accuracy: 0.7116 - val_loss: 0.7936 - val_accl

=] - @s 33ms/step - loss: .989@ - accuracy: 0.7190 - val_loss: 8.4671 - val_accl

- @s 33ns/step - loss: 1,430 - accuracy: 0.7511 - val_loss: 0.7435 - val_acct
<tensorflow.python.keras.callbacks.History at @x7f11a5586868>

CODE TEXT

[1 print (model_nn.summary())

loss, accuracy = model_nn.evaluate(test ds)
rint("Accuracy”, accuracy)

M'@%mm: You will typically see best results with deep learning with much larger and more complex datasets. When working with a small dataset

kedh W gmmend using 9 decision free or random forest 3¢ 3 strong baceline The goal of thic exer fot 1o {rain ap accirate mode

You can see that we get accuracy of about 75 percent at the end and validation accuracy is

still slightly higher and let us look at the model summary.
(Refer Slide Time: 27:55)

& feature_columns.ipynb

File Edit View Insert Runtime Tools Help

E] COMMENT &% SHARE o

CODE @ TEXT e - BTG A
39 - o > = =

U1 tensorflow.python.keras. callbacks. History at 0x7f11a5586860>
1)

PNV o B RE
° print (model_nn.summary())

[> Model: "sequential 1"

Layer (type) Output Shape Param #
dense_features_10 (DenseFeat multiple P
dense_1 (Dense) multiple 131848
dense_2 (Dense) multiple 16512
dense_3 (Dense) multiple 129

Total parans: 148,505
Trainable params: 148,585
Non-trainable params:

MNPTELloss, accuracy = model_nn.evaluate(test_ds)
print("Accuracy”, accuracy)

Model summery helps us to see what kind of model we have setup and we can also see the
number of parameters of the model. We can see that the total number of parameters in the

model is very large. We have about 148k parameters.

(Refer Slide Time: 28:11)

& feature_columns.ipynb
= Py E COMMENT &% SHARE o
File Edit View Insert Runtime Tools Help

RAM §ieam
CODE @ TEXT Disk > | DTG A
L , =
2/2 [==mzz==mmmemmmmmmmmmmcocemeee] - @s 17ms/step - loss: @.9671 - accuracy: 8.7541
5 Accuracy 8.75409836

Key paint: You will typically see best results with deep learning with much larger and more complex datasets, When working with a small dataset
like this one, we recommend using a decision tree or random forest as a strong baseline. The goal of this exercise is not to train an accurate model,
but to demonstrate the mechanics of working with structured data, so you have code to use as a starting point when working with your own
datasets in the future

Next steps

The best way to learn more about classifying structured data is to try it yourself. We suggest finding another dataset to work with, and training a
model to classify it using code similar to the above. To improve accuracy, think carefully about which features to include in your model, and how
they should be represented

“

Closing Remarks

‘.-"-[‘\Qmodule, we learnt how to use build ML models for structured data with TensorFlow API. We built a logistic regression model followed by a
‘{\éig network model for the prediction of heart disease in the patient. We also leant how to read features from the structured data and convert
NE@Bilinto feature column that can be consumed by TensorFlow APIs. You are now equipped with lots of potent tools to build you own ML models

for a variety of data types. Hope you had fun time learning these concepts. See you in the next module.

And, let us evaluate the accuracy of model with the test data we get an accuracy of 75, 0.75
or 75 percent accuracy of the test data. You will typically see best results with deep learning
with much larger and more complex data sets. When working with a small dataset we
recommend using other classifiers like decision tree or random forest as the strong baseline.
The goal of this exercise was to demonstrate the mechanics of working with structured data,
so that you have some idea of how to work with structured data when you start working on

your own.

The best way to learn more about classifying structured data is to try it yourself with some
datasets. I would strongly encourage you to find a structured data and apply the concepts that
we studied in this particular session. To improve the accuracy you should think carefully

about which features to include in the model and how they should be represented.

In this module, we learnt how to use machine learning models for structured data with
TensorFlow API. We build a logistic regression model followed by neural network model for
prediction of heart disease in a patient. We also learnt how to read features from the
structured data and convert them into feature columns. You are now equipped with lots of
potent tools to build your own machine learning models for a variety of data types. Hope you

had a fun time learning these concepts.

