Practical Machine Learning
Dr. Ashish Tendulkar
Department of Computer Science Engineering
Indian Institute of Technology, Bombay

Lecture — 13
Building Data Pipelines for Tensor flow-Part 2

[FL] In this session, we will study how to construct dataset from different formats. We
will cover formats like CSV or in memory structures from NumPy and Pandas we will

also study how to construct dataset objects for images and text.
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>~ Load CSV with tf.data

1 View on TensorFlow.org Runin Google Colab OV\ew source on GitHub == Download notebook

This tutorial provides an example of how to load CSV data from a file into a tf.data. Dataset.

The data used in this tutorial are taken from the Titanic passenger list. The model will predict the likelihood a passenger survived based on
characteristics like age, gender, ticket class, and whether the person was traveling alone.

v Setup

[] try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass

[ ] from _future_ import absolute_import, division, print_function, unicode_literals
import functools

So, let us start with CSV data. So, the data that we use in this session is taken from
Titanic passenger list where you want to build a model to predict the likelihood of a
passenger survival based on their characteristics like age, gender, the ticket class,

whether the passenger was travelling alone etc.
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v Setup
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y:

# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x

except Exception:
pass

from __future__ import absolute_import, division, print_function, unicode_literals
import functools

3 import numpy as np
import tensorflow as tf

[ ] TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv"
TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv"
train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL)
test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL)

[ ] # Make numpy values easier to read.

np.set_printoptions(precision=3, suppress=True)

Install Tensor Flow 2.0 and import essential libraries.
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import functools

import numpy as np
import tensorflow as tf

[3] TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv"
TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv"

train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL)
test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL)

Downloading data from https://storage.googleapis.com/tf-datasets/titanic/eval.csv
16384/13049 [ ] - @s eus/step

PO RT
° # Make numpy values easier to read.
np.set_printoptions(precision=3, suppress=True)

X

v Load data

To start, let's look at the top of the CSV file to see how it is formatted.

[ ] 'head {train_file_path}

Then, download the train and test data from titanic dataset. The titanic dataset

available in tf.dataset. We set the precision to 3.
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To start, let's look at the top of the CSV file to see how it is formatted

>

PV RT
o thead {train_file_path}

survived,sex,age,n_siblings_spouses,parch,far‘e,class,m,smbark_town,alcne
0,male,22.0,1,0,7.25,Third, unknown, Southampton,n
1,female,38.9,1,0,71.2833,First,C,Cherbourg,n
1,female,26.0,0,0,7.925,Third, unknown, Southampton, y
1,female,35.0,1,0,53.1,First,C,Southampton,n

0,male, 28.9,0,0,8.4583,Third, unknown,Queenstown,y
0,male,2.9,3,1,21.075,Third, unknown, Southampton,n
1,female,27.0,0,2,11.1333,Third, unknown, Southampton,n
1,female,14.9,1,0,30.0708, Second, unknown, Cherbourg,n
1,female,4.9,1,1,16.7,Third,G, Southampton,n

You can oad this using pandas, and pass the NumPy arrays to TensorFlow. If you need to scale up to a large set of files, or need a loader
that integrates with TensorFlow and t.data then use the tf.data. experimental .make_csv_dataset function:

The only column you need to identify explicitly is the one with the value that the model is intended to predict.

[ ] LABEL_COLUMN = ‘survived"
LABELS = [, 1]

Let us look at first few examples from CSV file. So, you can see that the label survived
is the first column it is either 0 or 1. Then, we have features or characteristics like gender
or sex, age, number of siblings or spouses that were travelling together, parch, fare,

class, deck, embark town and whether the traveler was alone.

We loaded the data using Pandas and pass the NumPy arrays to Tensor Flow. If you want
to scale if you want to scale up to a large set of files then we will have to use
make csv_dataset() function which is currently in the experimental version of

TensorFlow.
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> that integrates with TensorFlow and tf.data then use the tf.data. experimental .make_csv_dataset function:

The only column you need to identify explicitly is the one with the value that the model is intended to predict

[ ] LABEL_COLUMN

= 'survived'
LABELS = [0, 1]

Now read the CSV data from the file and create a dataset
(For the full documentation, see t.data.experimental.make_csv_dataset)

PR
def get_dataset(file_path, **kwargs):
dataset = tf.data.experimental.make_csv_dataset(
file_path,
batch_size=5, # Artificially small to make examples easier to show.
label_name=LABEL_COLUMN,
na_value="?",
num_epochs=1,
ignore_errobs=True,
**kwargs)
return dataset

raw_train_data = get_dataset(train_file_path)
raw_test_data = get_dataset(test_file_path)

We separate the label column and as we said there are two labels 0 or 1. Let us read the
file and create a dataset. Here we demonstrate the make csv_dataset() function which
can be used for large datasets the current dataset is pretty small, but still we decide to
demonstrate make csv dataset() function with Titanic dataset because this will be
applicable for large CSV files as well. Here we are taking a small batch size
internationally, so that we can examine the examples in each batch. We specify the label
name, specify how null values are predicted how null values are specified with question

mark here in this case and number of epochs we set it to 1.

We construct the training data by giving the training file to get dataset() function and
test data by providing the path of the test file to the get dataset()function. The

get dataset() function makes a dataset from CSV file and returns the dataset.



(Refer Slide Time: 05:29)

« ¥ -
Q i\g
+ Text # Copy to Drive 5, RD“\:Q i =T /' Editing NPJEL

raw_train_uata = gEL_uaLadciiLiadi_i 1ic_paui)

y 17 raw_test_data = get_dataset(test_file_path)

WARNING: Logging before flag parsing goes to stderr.

WO817 06:30:54.446334 140620027758464 deprecation.py:323] From /tensorflow-2.0.0b1/python3.6/tensorflow/pyt
Instructions for updating:

Use "tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experiment

PR
° def show_batch(dataset):
for batch, label in dataset.take(1):
for key, value in batch.items():
print("{:20s}: {}".format(key,value.numpy()))

Each item in the dataset is a batch, represented as a tuple of (many examples, many labels). The data from the examples is organized in
column-based tensors (rather than row-based tensors), each with as many elements as the batch size (12 in this case)
Itmight heip to see this yourself.

[ ] show_batch(raw_train_data)

As you can see, the columns in the CSV are named. The dataset constructor will pick these names up automatically. If the file you are

working with does not contain the column names in the first line, pass them in a list of strings to the column_names argument in the

Each item in the dataset is a batch represented as a tuple of examples and labels. The
data from the examples is organized in column based tensors each with as many

elements as the batch size.
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Use Tt.0aTa.UaTaset.lnterleave(map_tunc, cycle_1engtn, DIOCK_Lengtn, num_parallel_CallS=Tt,data.experiment

e

[8] def show_batch(dataset):
for batch, label in dataset.take(1):
for key, value in batch.items():
print("{:20s}: {}".format(key,value.numpy()))

Each item in the dataset is a batch, represented as a tuple of (many examples, many labels). The data from the examples is organized in
column-based tensors (rather than row-based tensors), each with as many elements as the batch size (12 in this case)

It might help to see this yourself.

rVeoRd

o show_batch(raw_train_data)

sex : [b'male’ b'female’ b'male’ b'female' b'male']

age :[28. 22, 2. 45.18.)

n_siblings_spouses : [0 14 11]

parch t[e111080)

fare :[26.55 29, 39.688 164.867  6.496]

class : [b'First' b'Second' b'Third' b'First’ b'Third']

deck ¢ [b'unknown' b'unknown’ b'unknown' b'unknown' b'unknown']

embark_town : [b'Southampton’ b'Southampton' b'Southampton' b'Southampton’

b'Southampton' ]

Let us look at one of the batch. You can see that since you set out the batch size to 5 for

each of the feature you have exactly 5 values. Each feature is organized as a column



based tensor. So, you can see that there is one tenser for feature, one tenser for sex,

another for age and so on, and in each of the tensor you will find exactly five values.
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> (1] sex : [b'male’ b'female' b'male' b'female' b'male']
age :[28. 47, 29. 22. 28.]
n_siblings_spouses : [0 110 0]
parch :[060000)]
fare [ 7.25 145 27.721 7.75 7.896]
class ¢ [b'Third" b'Third" b'Second’ b'Third' b'Third']
deck : [b'unknown' b'unknown' b'unknown' b'unknown' b'unknown"]
embark_town : [b'Southampton' b'Southampton’ b'Cherbourg' b'Southampton' b'Cherbourg']
alone c[b'y b'n" b'n" b'y' b'y']

This example is going to use all the available columns. If you need to omit some columns from the dataset, create a list of just the
columns you plan to use, and pass it into the (optional) select_columns argument of the constructor.

ORZCE N |
° SELECT_COLUMNS = ['survived', 'age', 'n_siblings_spouses', 'class', ‘deck', 'alohe']

temp_dataset = get_datpset(train_file_path, select_columns=SELECT_COLUMNS)

show_batch(temp_dataset)

~ Data preprocessing

A CSV file can contain a variety of data types. Typically you want to convert from those mixed types to a fixed length vector before feeding

We can specify the columns that we want to use to construct a dataset and pass that in the

select_columns argument of the get dataset() function that we wrote earlier.
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This example is going to use all the available columns. If you need to omit some columns from the dataset, create a list of just the

columns you plan to use, and pass it into the (optional) select_columns argument of the constructor.
rVeoRd
° SELECT_COLUMNS = ['survived', 'age', 'n_siblings_spouses', 'class', 'deck', 'alohe']

temp_dataset = get_dataset(train_file_path, select_columns=SELECT_COLUMNS)

show_batch(temp_dataset)

age : [51. 28, 2. 16. 23.]
n_siblings_spouses : [0 @ 3 0 @]
class ¢ [b'First’ b'Second' b'Third" b'Third' b'Third')
deck : [b'E' b'E" b'unknown' b'unknown' b'unknown']
alone c[b'y b’y b'n" b'y' b'y']

X

~ Data preprocessing

A CSV file can contain a variety of data types. Typically you want to convert from those mixed types to a fixed length vector before feeding
the data into your model.

TensorFlow has a built-in system for describing common input conversions: tf. feature_column, see this tutorial for details.

You can preprocess your data using any tool you like (like nitk or sklearn), and just pass the processed output to TensorFlow.

The primary advantage of doing the preprocessing inside your model is that when you export the model it includes the preprocessing. This

And, since we choose only hand full of the features we can see that there are only those

many features that were selected are shown here.
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> deck : [b'E' b'E’ b'unknown' b'unknown' b'unknown']
alone c[b'y' b'y' b'n" b'y' b'y']

~ Data preprocessing

A CSV file can contain a variety of data types. Typically you want to convert from those mixed types to a fixed length vector before feeding
the data into your model.

TensorFlow has a built-in system for describing common input conversions: tf . feature_column, see this tutorial for details.

You can preprocess your data using any tool you like (like nitk or sklearn), and just pass the processed output to TensorFlow.

The primary advantage of doing the preprocessing inside your model is that when you export the model it includes the preprocessing. This
way you can pass the raw data directly to your model.

<

Continuous data

If your data is already in an apropriate numeric format, you can pack the data into a vector before passing it off to the model:

[ ] SELECT_COLUMNS = ['survived', 'age', 'n_siblings_spouses', 'parch', 'fare']
DEFAULTS = [0, 0.0, 0.0, 0.0, 0.9]
temp dataset = get dataset(train file path

A CSV file can contain a variety of data types and typically you want to convert the mix
type to a fix length vector before feeding the data into the model. So, TensorFlow uses a

construct called #f.feature column for such kind of convergence.
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If your data is already in an apropriate numeric format, you can pack the data into a vector before passing it off to the model:

[12] SELECT_COLUMNS = ['survived', 'age’, 'n_siblings_spouses', 'parch', 'fare']
DEFAULTS = [e, 0.9, 0.0, 0.9, 0.0]
temp_dataset = get_dataset(train_file_path,
select_columns=SELECT_COLUMNS,
column_defaults = DEFAULTS)

show_batch(temp_dataset)

age : [19. 52, 4. 28. 17.]

n_siblings_spouses : [0. 0. 4. 0. 1.]

parch :[0.0.1.0.0.]

fare [ e 30.5 29.125 7.75 108.9 ]

[13] examplel batch, labels_batch = next(iter(temp_dataset))

Here's a simple function that will pack together all the columns:

roRd
def pack(features, label):
return tf.stack(list(features.values()), axis=-1), label

Apply this to each element of the dataset

If a data is already in a numeric format we can pack the data into a vector before passing
it out of the model. So, we select columns which are numeric is specify by the default

values and we batch the dataset. We can look at example batch and the label batch. We



will pack together all the columns and we apply this to each element of the dataset. We

apply the pack() function to each element in the dataset.
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° packed_dataset = temp_dataset.map(pack)

for features, labels in packed_dataset.take(1):
print(features.numpy())
print()
print(labels.numpy())

[ 19. 0. 0 0. ]
[ 52. 0. 0 30.5 ]
[ 4 a, 1 29.125]
[ 2. 0. ] 7.75 ]
[ 1. 1. 0. 108.9 ]]
[e1001)

If you have mixed datatypes you may want to separate out these simple-numeric fields. The tf. feature_column api can handle them, but
this incurs some overhead and should be avoided unless really necessary. Switch back to the mixed dataset:
[\

[ ] show_batch(raw_train_data)

[ ] example_batch, labels_batch = next(iter(temp_dataset))

x4 - A X

We can see that we have a feature metric or a 2D tensor of features and a 1D tensor of

labels. If we have mixed data types we may want to separate out this simple numeric

features. The tf.feature_column API can handle them, but this incurs some overhead and

should be avoided unless really necessary.
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I s2. 0. 0. 305 ]
117, 4. 1. 29.125]
[ 2. 0. 0. 7.75 ]
[17. 1. 0. 108.9 ]]
e1001]

If you have mixed datatypes you may want to separate out these simple-numeric fields. The tf. feature_column api can handle them, but
this incurs some overhead and should be avoided unless really necessary. Switch back to the mixed dataset:

rNORE

° show_batch(raw_train_data)

sex : [b'male’ b'female' b'male' b'female’ b'male']

age :[28. 22, 2. 45. 18.]

n_siblings_spouses : [61411]

parch :[01110]

fare :[26.55 29, 39.688 164.867  6.496]

class : [b'First’ b'Second' b'Third" b'First' b'Third']

deck : [b'unknown' b'unknown’ b'unknown' b'unknown' b'unknown"]

embark_town : [b'Southampton' b'Southampton' b'Southampton' b'Southampton'

b’ Southampton']
alone :[b'y' b'n" b'n" b'n' b'n']
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So define a more general preprocessor that selects a list of numeric features and packs them into a single column:

[18] class PackNumericFeatures(object):
def _init_ (self, names):
self.names = names

def _call_ (self, features, labels):
numeric_freatures = [features.pop(name) for name in self.names]
numeric_features = [tf.cast(feat, tf.float32) for feat in numeric_freatures]
numeric_features = tf.stack(numeric_features, axis=-1)
features[ 'numeric'] = numeric_features

return features, labels
TVl
@ NUMERIC_FEATURES = ['age','n_siblings_spouses', ‘parch', 'fare']

packed_train_data = raw_train_data.map(
PackNumericFeatures(NUMERIC_FEATURES))

packed_test_data = raw_test_data.map(
PackNumericFeatures(NUMERIC_FEATURES))

[ 1 show_batch(packed_train_data)

Let us define a more general preprocessor that selects a list of numeric features and

packs them into a single column. We take the numeric features and pack them.
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Jid [19] NUMERIC_FEATURES = ['age','n_siblings_spouses','parch’, ‘fare']

packed_train_data = raw_train_data.map(
PackNumericFeatures (NUMERIC_FEATURES))

packed_test_data = raw_test_data.map(
PackNumericFeatures(NUMERIC_FEATURES))

TRl
° show_batch(packed_train_data)

sex : [b'male' b'female' b'male’ b'female' b'male']

class : [b'First' b'Second' b'Third' b'First’ b'Third']

deck : [b'unknown' b'unknown’ b'unknown’ b'unknown' b'unknown']
embark_town : [b'Southampton' b'Southampton' b'Southampton' b'Southampton'
b'Southampton']

alonel t[b'y" b'n" b'n" b'n" b'n']
numeric d

[ ] example_batch, labels_batch = next(iter(packed_train_data))

You can see that all the numeric features are packed into a tensor, whereas the other

features are kept separate.
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> [0 22 1. 1 9. ]
[ 2 4, 1. 39.688]
[ 45. 1. 1. 164.867)
[ 18. 1. 0 6.496]]

° example_batch, labels_batch = next(iter(packed_train_data))
v Data Normalization
Continuous data should always be normalized.

import pandas as pd
desc = pd.read_csv(train_file_path) [NUMERIC_FEATURES].describe()

[ ] MEAN = np.array(desc.T['mean'])
STD = np.array(desc.T['std'])

[ ] def normalize_numeric_data(data, mean, std):
# Center the data
return (data-mean)/std

=L

\

/ Editing NPFJEL

PV ORT

We need to normalize the continuous data.
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import pandas as pd
desc = pd.read_csv(train_file_path)[NUMERIC_FEATURES].describe()
desc

age n_siblings_spouses parch fare

count 627000000 627.000000 627.000000 627.000000
mean  29.631308 0.545455 0379585  34.385399

std 12511818 1151090  0.792999  54.597730

\ min 0.750000 0.000000  0.000000  0.000000
25%  23.000000 0.000000  0.000000  7.895800

50%  28.000000 0.000000  0.000000 15.045800

75%  36.000000 1.000000  0.000000  31.387500

max  80.000000 8.000000  5.000000 $512.329200

[ ] MEAN = np.array(desc.T['mean'])
STD = np.array(desc.T['std"])

a @
/ Editing NPFJEL

P ORT

One of the ways of normalizing is by using z-score normalization that we studied earlier.

Let us see how to do the z-score normalization on the numerical data or on continuous

data. So, if first give the mean and standard deviation of each continuous column and

then define a normalized function that centers the data.
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> Now create a numeric column. The tf. feature_columns.numeric_column APl accepts a normalizer_fn argument, which will be run

on each batch

Bind the MEAN and STD to the normalizer fn using functools.partial.

rNVoRi
# See what you just created.
normalizer = functools.partial(normalize_numeric_data, mean=MEAN, std=STD)

numeric_column = tf.feature_column.numeric_column('numeric', normalizer_fn=normalizer, shape=[len(NUMERIC_FEATURES
numeric_columns = [numeric_column]
numeric_column

When you train the model, include this feature column to select and center this block of numeric data:

[ ] example_batch['numeric']

numeric_layer = tf.keras.layers.DenseFeatures(numeric_columns)
numeric_layer(example_batch).numpy()

The mean based normalization used here requires knowing the means of each column ahead of time.

We create a numeric column with tf.feature columns.numeric_column API and pass the

normalization function as an argument. The normalization will be run on each batch.
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> Bind the MEAN and STD to the normalizer fn using functools.partial.

[25] # See what you just created.
normalizer = functools.partial(normalize_numeric_data, mean=MEAN, std=STD)

numeric_column = tf.feature_column.numeric_column('numeric', normalizer_fn=normalizer, shape=[len(NUMERIC_FEATURES

numeric_columns = [numeric_column]
numeric_column

NumericColumn(key="numeric', shape=(4,), default_value=None, dtype=tf.float32, normalizer_fn=functools.part

When you train the model, include this feature column to select and center this block of numeric data:

rNVo QR

! example_batch[ 'numeric']

[ ] numeric_layer = tf.keras.layers.DenseFeatures(numeric_columns)
numeric_layer(example_batch).numpy()

The mean based normalization used here requires knowing the means of each column ahead of time.
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° example_batch[ 'numeric']

<tf.Tensor: 1d=579, shape=(5, 4), dtype=float32, numpy=

array([[ 28. , @. , @. , 26.55],
[22. , 1. , 1. , 2. 1,
[ 2., 4 , 1. , 39.68],
[4s. , 1. , 1. , 164.867],
[18. , 1. , @. , 6.49]], dtype=float32)>

numeric_layer = tf.keras.layers.DenseFeatures(numeric_columns)
\, numeric_layer(exanple_batch).numpy()

The mean based normalization used here requires knowing the means of each column ahead of time.

v Categorical data

Some of the columns in the CSV data are categorical columns. That is, the content should be one of a limited set of options.

Use the tf . feature_column APl to create a collection with a tf . feature_column. indicator_column for each categorical column.

Let us put all the numeric columns in the dense features and pass it to the model.
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> [26]

<tf.Tensor: 1d=579, shape=(S, 4), dtype=float32, numpy=

array([[ 28. , @. , . 26.55 ],
(2. , 1., 1 , 2. ],
[ 2., 4 , 1., 39.688)],
(4. , 1. , 1. , 164.867),
[18. , 1. , @. , 6.49]], dtype=float32)>

PO RE
° numeric_layer = tf.keras.layers.Densefeatures(numeric_columns)
numeric_layer (example_batch).numpy()

array([[-0.13 , -0.474, -0.479, -0.144],
[-0.61, ©.395, 0.782, -0.099],
[-2.208, 3.001, 0.782, 0.097],
[ 1.228, .395, 0.782, 2.39 ],
[-0.93, e&ss,k-e.m. -0.511]], dtype=float32)

The mean based normalization used here requires knowing the means of each column ahead of time

v Categorical data

Some of the columns in the CSV data are categorical columns. That is, the content should be one of a limited set of options.

So, you can see that the numeric layer has normalized data for each of the numeric

features. Let us see how to handle the categorical variable.
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v Categorical data
Some of the columns in the CSV data are categorical columns. That is, the content should be one of a limited set of options.
Use the tf . feature_column APl to create a collection with a tf . feature_column. indicator_column for each categorical column.

rNVoRid

° CATEGORIES = {
‘sex': ['male', 'female'],

‘class' : ['First', 'Second', 'Third'],
e Ck I [ A e G ) i e G H T ]
‘embark_town' : ['Cherbourg', 'Southhampton', 'Queenstown'],

‘alone' : ['y', 'n']

[ ] categorical_columns = []
for feature, vocab in CATEGORIES.items():
cat_col = |f.feature_column.categorical_column_with_vocabulary_list(
key=feature, vocabulary_list=vocab)

categorical_columns.append(tf.feature_column.indicator_column(cat_col))

[ ] # See what you just created.
categorical_columns

We use tf.feature column.indicate column to convert each categorical variable into a
one hot encoding. We construct dictionaries of values in each of the categorical
variables. For example, sex has male and female in it, class has first second and third in
it. There are A to J decks then there are few embarkation towns, and alone has two
values yes or no. Then we take each of these categorical variables along with their

vocabularies and convert as categorical variables into indicator columns using the

vocabulary list.
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cat_col = tf.feature_column.categorical_column_with_vocabulary_list(
key=feature, vocabulary_list=vocab)
categorical_columns.append(tf.feature_column.indicator_column(cat_col))

v

> (3]

rORT
° # See what you just created.
categorical_columns

[IndicatorColumn(categorical_column=VocabularylListCategoricalColumn(key=
IndicatorColumn(categorical_column=VocabularylListCategoricalColumn(key=
IndicatorColumn(categorical_column=VocabularylListCategoricalColumn(key=
IndicatorColumn(categorical_column=VocabularylListCategoricalColumn(key=
IndicatorColumn(categorical_column=VocabularylistCategoricalColumn(key=

N

‘sex', vocabulary_list=('male’, 'fe
‘class', vocabulary_list=('First’,
‘deck’, vocabulary_list=('A', '8,
‘embark_town', vocabulary_list=('Ch
‘alone', vocabulary_list=('y', 'n')

categorical_layer = tf.keras.layers.DenseFeatures(categorical_columns)
print(categorical_layer(example_batch).numpy()[@])

This will be become part of a data processing input later when you build the model.

v Combined preprocessing layer




We can see that there are indicator columns that are created from this exercise.
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categorical_layer = tf.keras.layers.DenseFeatures(categorical_columns)
print(categorical_layer(example_batch).numpy()[@])

WO817 06:41:07.084450 140620027758464 deprecation.py:323] From /tensorflow-2.0.0b1/python3.6/tensorflow/pyt
Instructions for updating:

Use tf.where in 2.0, which has the same broadcast rule as np.where

Wo817 06:41:07.121545 140620027758464 deprecation.py:323] From /tensorflow-2.0.0b1/python3.6/tensorflow/pyt
Instructions for updating:

The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.

Wo817 06:41:07.123295 140620027758464 deprecation.py:323] From /tensorflow-2.0.0b1/python3.6/tensorflow/pyt
Instructions for updating:

The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
[1.0.1.0.0.0.0.0.0.0.0. O.JO. 0.0.0.0. 0.1.0.]

This will be become part of a data processing input later when you build the model

v Combined preprocessing layer

Add the two feature column collections and pass them to a tf .keras. layers.DenseFeatures to create an input layer that will extract
and preprocess both input types:

We also create a dense feature layer out of the categorical columns.
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[1.0.1.0.0.0.0.0.0.0.0. 0.0.0.0.0.0.0.1.0.]

This will be become part of a data processing input later when you build the model

v Combined preprocessing layer

Add the two feature column collections and pass them to a tf .keras. layers.DenseFeatures to create an input layer that will extract
and preprocess both input types:

PNV RT

° preprocessing_layer = tf.keras.layers.DenkeFeatures(categorical_columns+numeric_columns)

[ ] print(preprocessing_layer(example_batch).numpy()[@])

~ Build the model

Build a tf.keras. Sequential, starting with the preprocessing_layer.

Since the categorical columns are converted into numbers you can combine categorical

columns and numerical columns into dense feature layer and pass it to the model.
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> and preprocess both input types:

[33] preprocessing_layer = tf.keras.layers.DenseFeatures(categorical columns+numeric_columns)

TVl
° print(preprocessing_layer(example_batch).numpy()[8])

[ 1. 0. 0. 0. 0. 0. 0. 0. 0.

1.
0. 0. 0. 0. 0. 0. 0. 0. -0.13 -0.474
-0.479 -0.144 1. 0. ]

~ Build the model

Build a tf.keras.Sequential, starting with the preprocessing_layer.

J

[ ] model = tf.keras.Sequential([
preprocessing_layer,
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid'),

1))
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v Build the model

Build a tf.keras. Sequential, starting with the preprocessing_layer.

rNVoRid
° model = tf.keras.Sequential([
preprocessing_layer,
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(128, activation="relu'),
tf.keras.laylers.Dense(1, activation='sigmoid'),

model. compile(
loss="binary_crossentropy’,
optimizer="adam',
metrics=['accuracy'])

v Train, evaluate, and predict

Now the model can be instantiated and trained.

You can see that the preprocessing layer which is a dense feature layer is passed to a

model. This is how we handle the dataset creation using CSV and preprocessing. Let us

check how do we do shuffling and batching.
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loss=" binéry_:rossentropy' 9
> [35] optimizer="adan',
metrics=['accuracy'])

v Train, evaluate, and predict
Now the model can be instantiated and trained.

PV RT

train_data = packed_train_data.shuffle(500)
test_data = packed_test_data

model.fit(train_data, epochs=20)

Once the model is trained, you can check its accuracy on the test_data set.

[ ] test_loss, test_accuracy = model.evaluate(test_data)

print('\n\nTest Loss {}, Test Accuracy {}'.format(test_loss, test_accuracy))

Use tf.keras.Model.predict toinfer labels on a batch or a dataset of batches.

So, we can simply call a shuffle transformation on the training data by specifying the

buffer size.
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> [37] Epoch 16/20
126/126 [== - @s 3ms/step - loss: .3152 - accuracy: 0.8533
Epoch 17/20
126/126 [== - @s 3ms/step - loss: 0.3115 - accuracy: 0.8616
Epoch 18/20
126/126 [== - 0s 3ms/step - loss: 9.3083 - accuracy: ©.8592
Epoch 19/20
126/126 [ - @s 3ms/step - loss: 0.3054 - accuracy: 0.8554
Epoch 20/20
126/126 [== ==] - @s 3ms/step - loss: 0.3026 - accuracy: 0.8633

<tensorflow.python.keras.callbacks.History at @x7fe4678c8898>
Once the model is trained, you can check its accuracy on the test_data set.
[38] test_loss, test_accuracy F model.evaluate(test_data)

print('\n\nTest Loss {}, Test Accuracy {}'.format(test_loss, test_accuracy))

53/Unknown - 1s 11ms/step - loss: @.5138 - accuracy: 0.7955

Test Loss 0.5137907432497673, Test Accuracy 0.7954545617103577

Use tf.keras.Model.predict to infer labels on a batch or a dataset of batches.

Then we can evaluate the model on the test data and see the accuracy.
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° predictions = model.predict(test_data)

# Show some results
for prediction, survived in zip(predictions[:10], list(test_data)[@][1][:10]):
print("Predicted survival: {:.2%}".format(prediction[@]),
" | Actual outcome: ",
("SURVIVED" if bool(survived) else "DIED"))

Predicted survival: 19.78% | Actual outcome: DIED
Predicted survival: 95.65% | Actual outcome: SURVIVED
Predicted survival: 99.93% | Actual outcome: SURVIVED
Predicted survival: 34.27% | Actual outcome: DIED
Predicted survival: 19.13% | Adtual outcome: DIED

You can also check out the model predictions and compare that against the actual
outcome. We will be doing more and more of model tanning and evaluation in the
subsequence secessions. So, we are not giving much stress on that particular part. In the
sessions more stress is given on creating input pipelines from multiple sources. Let us

look at another source of creating input pipeline, this time with NumPy.
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['1 Licensed under the Apache License, Version 2.0 (the "License");

~ Load NumPy Data with tf.data \

1‘ View on TensorFlow.org Runin Google Colab OV\EW source on GitHub == Download notebook

This tutorial provides an example of loading data from NumPy arrays into a tf.data.Dataset.

This example loads the MNIST dataset from a . npz file. However, the source of the NumPy arrays is not important.

~ Setup

[] try: )

# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x

except Exception:

pass




So, here the data is stored in NumPy array and you want to construct the dataset from
this NumPy arrays. We read the NumPy array where we have Fashion-MNIST dataset

which is stored as NumPy array.
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> [ ] dimport numpy as np
import tensorflow as tf

v Load from .npz file

[ ] DATA_URL = 'https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz'

path = tf.keras.utils.get_file('mnist.npz', DATA_URL)
with np.load(path) as data:

train_examples = data['x_train']

train_labels = data['y_train']

test_examples = data['x_test']

test_labels = data['y_test']

~ Load NumPy arrays with tf.data.Dataset

Assuming you have an array of examples and a corresponding array of labels, pass the two arrays as a tuple into
tf.data.Dataset.from_tensor_slices to create a tf.data.Dataset.

[ ] train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))

We read that we get train _examples, test examples, train labels and test labels

corresponding to train examples, test examples, training labels and test labels.
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> tf.data.Dataset.from_tensor_slices to create a tf.data.Dataset.

[ ] train_dataset = tf.data.Dataset.from_tensor_slices((train_examples, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_examples, test_labels))

v Use the datasets

v Shuffle and batch the datasets
PV RE

° BATCH_SIZE = 64
SHUFFLE_BUFFER_SIZE = 160

train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE)
test_dataset = test_dataset.batjth(BATCH_SIZE)

v Build and train a model

[ ] model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu’




We use from_tensor slices from the dataset API for constructing datasets from NumPy
arrays. Finally, we can do shuffling and batching of the training dataset, whereas on the
test dataset we can apply let say batch transformation and then you can build a model

and evaluate its accuracy on the test dataset.
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1‘ View on TensorFlow.org Runin Google Colab OV\ew source on GitHub == Download notebook

This tutorial provides an example of how to load pandas dataframes into a tf.data.Dataset.

This tutorials uses a small dataset provided by the Cleveland Clinic Foundation for Heart Disease. There are several hundred rows in the

CSV. Each row describes a patient, and each column describes an attribute. We will use this information to predict whether a patient has
heart disease, which in this dataset is a binary classification task.

~ Read data using pandas

[

from __future__ import absolute_import, division, print_function, unicode_literals

try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x

except Exception:

pass
import pandas as pd
import tensorflow as tf

Let us look, how to construct datasets from panda’s data frames. Here we have a dataset
provided by Cleveland Clinic Foundation for Heart Disease. There are several hundred
rows in the dataset. The dataset is in CSV format. Each row describes a patient and each
column describe an attribute of a patient. We will use this information to predict whether

a patient has heart disease or not.
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N [ ] df.head()

v Load data using tf.data.Dataset

Use tf.data.Dataset. from_tensor_slices toread the values from a pandas dataframe.

One of the advantages of using tf. data.Dataset is it allows you to write simple, highly efficient data pipelines. Read the Joading data

quide to find out more.
[ ] target = df.pop('target')
[ ] dataset = tf.data.Dataset.frdk_tensor_slices((df.values, target.values))

[ ] for feat, targ in dataset.take(5):
print ('Features: {}, Target: {}'.format(feat, targ))

Since a pd. Series implements the __array__ protocol it can be used transparently nearly anywhere you would use a np.array or a

tf.Tensor.

So, let us look at the steps to create a dataset. We use dataset.from_tensor slices to
create the dataset from the Pandas DataFrame. So, in NamPy and Pandas whether data is
sitting in memory we use from tensor slices() function of dataset api to create data

sources.
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v Copyright 2019 The TensorFlow Authors.

[ 1 Licensed under the Apache License, Version 2.0 (the "License");

- Load images with tf.data

1 View on TensorFlow.org Runin Google Colab OV\ew source on GitHub == Download notebook

This tutorial provides a simple example of how to load an image dataset using tf.data.

The dataset used in this example is distributed as &ectories of images, with one class of image per directory.

v Setup

[ ] from _future_ import absolute_import, division, print_function, unicode_literals




Let us try to understand how to create a dataset from an image dataset. The image class
is provided in the directory name and we have multiple directories of the images. So, let

us see how to create input data pipeline for such a data through this example.
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v Retrieve the images

Before you start any training, you will need a set of images to teach the network about the new classes you want to recognize. You have
already created an archive of creative-commons licensed flower photos to use initially:

[ 1 import pathlib
data_root_orig = tf.keras.utils.get_file(origin="https://storage.googleapis.com/download.tensorflow.org/example_im
fname="flower_photos', untar=True)
data_root = pathlib.Path(data_root_orig)
print(data_root)

After downloading 218MB, you should now have a copy of the flower photos available:

[ ] for item in data_root.iterdir():
print(item)

z

[ 1 import random
all_image_paths = list(data_root.glob('*/*"))
all_image_paths = [str(path) for path in all_image_paths]
random. shuffle(all_image_paths)

@mage_count = len(all_image_paths)

First download the file.
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v Retrieve the images

Before you start any training, you will need a set of images to teach the network about the new classes you want to recognize. You have
already created an archive of creative-commons licensed flower photos to use initially:

TRl
° import pathlib
data_root_orig = tf.keras.utils.get_file(origin="https://storage.googleapis.com/download.tensorflow.org/example_im
i fname="flower_photos', untar=True)
data_root = pathlib.Path(data_root_orig)
print(data_root)

/root/.keras/datasets/flower_photos

After downloading 218MB, you should now have a copy of the flower photos available:

[ ] for item in data_root.iterdir():
print(item)

[ ] import random
all_image_paths
all_image_paths

1e

list(data_root.glob('*/*"))
[str(path) for path in all_image_paths]

I Lshy 1 inage paths
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After downloading 218MB, you should now have a copy of the flower photos available:

[4] for item in data_root.iterdir():
print(item)

/root/.keras/datasets/flower_photos/dandelion
/root/.keras/datasets/flower_photos/daisy
/root/.keras/datasets/flower_photos/tulips
/root/.keras/datasets/flower_photos/sunflowers
/root/ .keras/datasets/flower_photos/LICENSE.txt
/root/.keras/datasets/flower_photos/roses

TR
import random
all_image_paths = list(data_root.glob('*/*'))
all_image_paths = [strgpath) for path in all_image_paths]
random.shuffle(all,lmaEe_paths)

image_count = len(all_image_paths)
image_count

3670

You can see that there are directories like dandelion, daisy, tulips which contain images

of the respective flowers. There are 3670 images in all.

(Refer Slide Time: 20:45)

+Text 4 CopytoDrive v RD‘T:C L v/ Eding NIEL

randon. shuffle(all image_paths)

image_count = len(all_image_paths)
image_count

3670
PNV RT
° all_image_paths[:10]

['/root/.keras/datasets/flower_photos/dandelion/9726260379_4e8ee66875_m.jpg",
' /root/ .keras/datasets/flower_photos/sunflowers/14698136411_23bdcff7bf_n.jpg',
' /root/ .keras/datasets/flower_photos/sunflowers/15069459615_7e0fd61914_n.jpg',
' /root/.keras/datasets/flower_photos/roses/7820626638_3e2d712303.3pg",
' /root/ .keras/datasets/flower_photos/daisy/2573240560_ff7ffdd449.jpg",
' /root/.keras/datasets/flower_photos/tulips/8717900362_2aa508e9e5.3pg",
'/root/. keraé/datasets/flower_photos/tulips/69582&3974_8851425ddb_n .jpg',
'/root/.keras/datasets/flower_photos/dandelion/8681388520_c697dee897_n.jpg',
'/root/.keras/datasets/flower_photos/daisy/9467543719_c480@becbb_m. jpg’,
' /root/.keras/datasets/flower_photos/sunflowers/20148493928_9f75a99783.jpg" ]

v Inspect the images

Now let's have a quick look at a couple of the images, so you know what you are dealing with:

And, these are top ten image paths. You can see that there are few images of dandelion
flower, some images of sun flowers, some of roses, tulips, daisy and so on. Let us look at

couple of images.
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v Determine the label for each image
List the available labels:
TVl

{o} label_names = sorted(item.name for item in data_root.glob('*/') if item.is_dir())
D4

==*  label_names

Asksign an index to each label:

[ ] label_to_index = dict((name, index) for index, name in enumerate(label_names))
label_to_index

Create alist of every file, and its label index:

[ ] all_image_labels = [label_to_index[pathlib.Path(path).parent.name]
for path in all_image_paths]

print("First 10 labels indices: ", all_image_labels[:10])

We will first assign the label to each of the images.
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label_names = sorted(item.name for item in data_root.glob('*/') if item.is_dir())
label_names

~

, 'dandelion’, 'roses', 'sunflowers' ]

Assign an index to each label:

[12] label_to_index = dict((name, index) for index, name in enumerate(label_names))
label_to_index

{'daisy': @, 'dandelion': 1, 'roses': 2, 'sunflowers': 3, 'tulips': 4}

Create a list of every file, and its label index:

[13] all_image_labels = [label_to_index[pathlib.Path(path).parent.name]
for path in all_image_paths]

print("First 10 labels indices: ", all_image_labels[:10])

First 10 labels indices: [L, 3, 3, 2, 0, 4, 4, 1, 0, 3]

For this what we did is we took the string labels and assign an index to each of the labels.

So, we have converted those strings into numbers.



(Refer Slide Time: 21:41)

x| + SR
o € @
ode + Text 4 Copy to Drive v RD“\:Q v 4 Editing NPJEL

v Load and format the images

TensorFlow includes all the tools you need to load and process images
[14] img_path = all_image_paths[0]
img_path
'/root/.keras/datasets/flower_photos/dandelion/9726260379_de8ee66875_m. jpg"
Here s the raw data:

P ORT

img_raw = tf.io.read_file(img_path)
print(repr(img_raw)[:109]+"...")

<tf.Tensor: id=1, shape=(), dtype=string, numpy=b'\xff\xd8\xff\xe@\xee\x10IFIF\x00\x01\xe1\x00\xe0\x. ..

Decode it into an image tensor:

[ ] img_tensor = tf.image.decode_image(img_raw)

We can read the image using tf.io.read file() function by providing the image path.
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print(img_tensor.shape)
> [16] print(img_tensor.dtype)
(240, 180, 3)
<dtype: ‘uint8">
Resize it for your model
rVeoRW

img_final = tf.image.resize(img_tensor, [192, 192])
img_final = img_final/255.0

print(img_final.shape)
print(img_final.numpy().min())
print(img_final.numpy().max())

(192, 192, 3)
0.0
0.97063416

.
I

Wrap up these up in simple functions for later.

[ ] def preprocess_image(image):
inage = tf.image.decode_jpeg(inage, channelsz3)
R e R e e

And, we can decode the image into an image tensor. So, we can see that an image tensor
is a 3D tensor which shape 240 x 380 x 3; there are three colour channels and each
images of the size 240 x 180. We will resize each of the image to 192 x 192 and we

normalize the image by dividing each pixel value by 255.
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TVeORR
> ° img_final = tf.image.resize(img_tensor, [192, 192])
img_final = img_final/255.0
print(img_final.shape)
print(img_final.numpy().min())
print(img_final.numpy().max())

(192, 192, 3)
0.0
0.97063416

Wrap up these up in simple functions for later.

4 def preprocess_image(image):

"~ image = tf.image.decode_jpeg(image, channels=3)
image = tf.image.resize(image, [192, 192])
image /= 255.0 # normalize to [9,1] range

return image

[ ] def load_and_preprocess_image(path):
image = tf.io.read_file(path)
return preprocess_image(image)

So, we wrap all these transformation into a simple function called preprocess image
where we first decode the jpeg file resize image and then normalize the image in the
range between 0 to 1. We put load and pre process, we wrap it in

load and preprocess image() function.
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image = tf.i0.read_file(path)
> (191 return preprocess_image(inage)

TVORE
° import matplotlib.pyplot as plt

image_path = all_image_paths[0]
label = all_image_labels[@]

plt.imshow(load_and_preprocess_image(img_path))
plt.grid(False)
plt.xlabel(caption_image(img_path))
plt.title(label_names[label].title())

print()

Dandelion

Let us look at some of these images after pre-processing.
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Image (CC BY 2.0) by Marcelo César Augusto Romeo

v Build a tf.data.Dataset

v Adataset of images

The easiest way to build a tf.data.Dataset is using the from_tensor_slices method.

Slicing the array of strings, results in a dataset of strings:
[ ] path_ds = tf.data.Dataset.from_tensor_slices(all_image_paths)
The shapes and types describe the content of each item in the dataset. In this case it is a set of scalar binary-strings

[ 1 print(path_ds)

Now create a new dataset that loads and formats images on the fly by mapping preprocess_image over the dataset of paths.

Let us see how to build a #f dataset from this images. So, you first construct a dataset of

paths. All the paths are in memory.

(Refer Slide Time: 23:37)

+Text 4 CopytoDrive v RD‘T;\: v/ Ediing NPEL

[21] path_ds = tf.data.Dataset.from_tensor_slices(all_image_paths)
The shapes and types describe the content of each item in the dataset. In this case it is a set of scalar binary-strings
[22] print(path_ds)

<TensorSliceDataset shapes: (), types: tf.string>

Now create a new dataset that loads and formats images on the fly by mapping preprocess_image over the dataset of paths.

TRl
° image_ds = path_ds.map(1load_and_prpprocess_image, num_parallel_calls=AUTOTUNE)

[ 1 import matplotlib.pyplot as plt

plt.figure(figsize=(8,8))

for n, image in enumerate(image_ds.take(4)):
plt.subplot(2,2,n+1)

plt.imshow(image)

plt.grid(False)

plt.xticks([])

plt.yticks([])

We use from_tensor slices, as you are doing earlier in case of NumPy and Pandas
datasets. Now, we create a new dataset that loads and formats image on the fly by

mapping preprocess_image over the dataset of path.
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> <TensorSliceDataset shapes: (), types: tf.string>

Now create a new dataset that loads and formats images on the fly by mapping preprocess_image over the dataset of paths.

[23] image_ds = path_ds.map(load_and_preprocess_image, num_parallel calls=AUTOTUNE)

rVoRE
° import matplotlib.pyplot as plt

plt.figure(figsize=(8,8))

for n, image in enumerate(image_ds.take(4)):
plt.subplot(2,2,n+1)
plt.imshow(image)
plt.grid(Falsk)
plt.xticks([])
plt.yticks([])
plt.xlabel(caption_image(all_image_paths[n]))
plt. show()

So, we use a map transformation and the and apply this function on each and every
image in the dataset of paths. Let us look at some of the images from the dataset. We

look at first four images. There are images along with their descriptions.
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v Adataset of (image, label) pairs
rNe /SR

Using the same TRl I bteaImethod you can build a dataset of labels:

[25] label ds = tf.data.Dataset.from_tensor_slices(tf.cast(all_image_labels, tf.int64))

[26] for label in label ds.take(10):
print(label_names[label.numpy()])

dandelion
sunflowers
sunflowers

roses
daisy
tulips
tulips
dandelion
daisy
sunflowers

We build dataset of labels next using from_tensor_slices function.
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tulips
tulips
dandelion
daisy
sunflowers

Since the datasets are in the same order you can just zip them together to get a dataset of (image, label) pairs:

[27] image_label ds = tf.data.Dataset.zip((image_ds, label _ds))

The new dataset's shapes and types are tuples of shapes and types as well, describing each field:

roRT
° print(image_label_ds)

<ZipDataset shapes: ([GEMEVIREN|, 1)), types: (tf.float32, tf.int64)>

Note: When you have arrays like al1_image_labels and all_image_paths an alternative to tf.data.dataset.Dataset.zip s to slice
the pair of arrays.

We use dataset.zip to assign label to each of the image. And, you can see that each

images of the size 192 x 192 x 3 and each label is a scalar.
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v Basic methods for training

To train a model with this dataset you will want the data:

* To be well shuffled

+ To be batched.

* To repeat forever.

« Batches to be available as soon as possible.

These features can be easily added using the tf. data api.
rVeRd
° BATCH_SIZE = 32

# Setting a shuffle buffer size as large as the dataset ensures that the data isi

# completely shuffled.

ds = image_label_ds.shuffle(buffer_size=image_count)

ds = ds.repeat()

ds = ds.batch(BATCH_SIZE)

# “prefetch’ lets the dataset fetch batches in the background while the model is; training.
ds = ds.prefetch(buffer_fize:AUTOTUNE)

ds

There are a few things to note here:

In order to train a model with this dataset, we want to first shuffle the data and then we
want to batch it and repeat forever and we want to make sure that batches are available

as soon as possible.



So, we use shuffle() transformation for shuffling the data by giving sufficient buffer size,
then we use repeat() for repeating the dataset, epochs after epochs; specify the batch and

we use a prefetch() function that clears the dataset page batches in the background while

model is training.
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R 31 ds

<PrefetchDataset shapes: ((None, 192, 192, 3), (None,)), types: (tf.float32, tf.int32)>

There are a few things to note here:

1. The order is important.
A .shuffle aftera .repeat would shuffle items across epoch boundaries (some items will be seen twice before others are
seen atall).
A .shuffle aftera .batch would shuffle the order of the batches, but not shuffle the items across batches
2. You use a buffer_size the same size as the dataset for a full shuffle. Up to the dataset size, large values provide better
randomizgtlon, but use more memory.

3. The shuffle buffer is filled before any elements are pulled from it. So a large buffer_size may cause a delay when your Dataset is
starting.

4. The shuffeled dataset doesn't report the end of a dataset until the shuffle-buffer is completely empty. The Dataset is restarted by
.repeat, causing another wait for the shuffle-buffer to be filled.

This last point can be addressed by using the tf.data.Dataset.apply method with the fused
tf.data.experimental. shuffle_and_repeat function:

rORE

There are few points you note here; the order is important. A shuffle after repeat would
shuffle items app across epoch boundaries. Some items will be seen twice before others
are seen at all. A shuffle after batch would shuffle the order of the batches, but not
shuffle the items across the batches. We use buffer size of the same size as a dataset for a
full shuffle up to the dataset size large values provide better randomization, but they need

more memory. Shuffle buffer is filled before any elements they are pulled from it.

Large buffer size may cause a delay when your dataset is starting. The shuffle dataset
does not report the end of a dataset until the shuffle buffer is completely empty a dataset
is started by repeat causing another wait for shuffle buffer to be filled. We use the

dataset.apply() method to address the last point.
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> 4. The shuffeled dataset doesn't report the end of a dataset until the shuffle-buffer is completely empty. The Dataset is restarted by

.repeat, causing another wait for the shuffle-buffer to be filled.

This last point can be addressed by using the tf.data.Dataset.apply method with the fused
tf.data.experimental. shuffle_and_repeat function:
PR

° ds = image_label _ds.apply(
tf.data.experimental. shuffle_and_repeat (buffer_size=image_count))
ds = ds.batch(BATCH_SIZE)
ds = ds.prefetch(buffer_size=AUTOTUNE)
ds

<PrefetchDataset shapes: ((None, 192, 192, 3), (None,)), types: (tf.float32, tf.int32)>

4

Pipe the dataset to a model
Fetch a copy o‘f MobileNet v2 from tf .keras.applications.
This will be used for a simple transfer learning example.

Set the MobileNet weights to be non-trainable:

[ ] mobile net = tf.keras.applications.MobileNetV2(input_shape=(192, 192, 3), include_top=False)

And, we fuse it with shuffle and repeat() function as seen here.
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> rNVoRi

° mobile_net = tf.keras.applications.MobileNetV2(input_shape=(192, 192, 3), include_top=False)
nobile_net.trainableFalse

Downloading data from https://github.com/JonathanCMitchell/mobilenet v2 keras/releases/download/vl.1/mobile
9412608/9406464 [ =] - 0s Qus/step

This model expects its input to be normalized to the [-1,1] range:

help(keras_applications.mobilenet_v2.preprocess_input)

This function applies the "Inception" preprocessing which converts
the RGB values from [0, 255] to [-1, 1]

Before you pass the input to the MobilNet model, you need to convert it from a range of [@,1] to [-1,1]
I

[ ] def change_range(image,label):
return 2*image-1, label

Finally, we pipe the dataset to the model and model and train the model. The MobileNet
expects the input to be normalized to -1 to +1 range. So, we convert our data from 0 to 1

range to -1 to 1 range.
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Before you pass the input to the MobilNet model, you need to convert it from a range of [@,1] to [-1,1]:

[34] def change_range(image,label):
return 2*image-1, label

keras_ds = ds.map(change_range)

The MobileNet returns a 6x6 spatial grid of features for each image.

Pass it a batch of images to see:

f\ # The dataset may take a few seconds to start, as it fills its shuffle buffer.
image_batch, label_batch = next(iter(keras_ds))

PR
:'o;v feature_map_batch = mobile_net(image_batch)
=" print(feature_map_batch.shape)

Build a model wrapped around MobileNet and use tf.keras. layers.GlobalAveragePooling2D to average over those space
dimensions before the output tf.keras.layers.Dense layer:

model = tf.keras.Sequential(

We define a change range() function and apply the tern each element with map function.
The MobileNet returns 6 x 6 special grade of features for each image. We pass it a batch

of images to see the output of the MobileNet.
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feature_map_batch = mobile_net(image_batch)
> [36] print(feature_map_batch.shape)

(32, 6,6, 1280)

Build a model wrapped around MobileNet and use tf.keras. layers.GlobalAveragePooling2D to average over those space
dimensions before the output tf.keras.layers.Dense layer:
Py ORT
model = tf.keras.Sequential([
mobile_net,

tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(len(label_names), activation = 'softmax')])

Now it produces outputs of the expected shape:

[ ] logit_batch = model(image_batch).numpy()

print("min logit:", logit_batch.min())
print("max logit:", logit_batch.max())
print()

(

print("Shape:", logit_batch.shape)

You can see that it returns 6 x 6 special grids. Finally, we built a model wrapped around
MobileNet and GlobalAveragePooling2D to average over those special dimensions and

then use a dense layer with softmax activation as output layer.
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[37]  tf.keras.layers.Dense(len(label names), activation = 'softmax')])

de
>
Now it produces outputs of the expected shape:
rNVoOoRi

° logit_batch = model(image_batch).numpy()

print("min logit:", logit_batch.min())

print("max logit:", logit_batch.max())

print()

print("Shape:", logit_batch.shape)

min logit: ©.0030280098
max logit: 0.9256049

Shape: (32, 5)

Compile the model to describke the training procedure:

[ ] model.compile(optimizer=tf.keras.optimizers.Adam(),
loss="sparse_categorical_crossentropy',
metrics=["accuracy"])

We can see that it produces output of the shape 32 x 5.
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> Compile the model to describe the training procedure:
[39] model.compile(optimizer=tf.keras.optimizers.Adam(),
loss="sparse_categorical_crossentropy’,
metrics=["accuracy"])
There are 2 trainable variables - the Dense weights and bias:
[40] len(model.trainable_variables)
2
PR

r model. summary ()

R
You are ready to train the model.
Note that for demonstration purposes you will only run 3 steps per epoch, but normally you would specify the real number of steps, as
defined below, before passing it to model . fit()

[ ] steps_per_epoch=tf.math.ceil(len(all_image_paths)/BATCH_SIZE).numpy()

We compile the model to describe the training procedure and train the model.
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° model . sunmary ()

Model: “sequential”

Layer (type) Output Shape Param #
mobilenetv2_1.00_192 (Model) (None, 6, 6, 1280) 2257984
global_average_pooling2d (Gl (None, 1280) [}
dense (Dense) (None, S) 6405

Total params: 2,264,389
Trainable param ,405
Non-trainable params: 2,257,984

You hre ready to train the model.

Note that for demonstration purposes you will only run 3 steps per epoch, but normally you would specify the real number of steps, as
defined below, before passing it to model . fit():

[ ] steps_per_epoch=tf.math.ceil(len(all_image_paths)/BATCH_SIZE).numpy()
steps_per_epoch

 Copy to Drive Tf‘\:ﬂ L v/ cditng NREL
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[42] steps_per_epoch=tf.math.ceil(len(all_image_paths)/BATCH_SIZE).numpy()
steps_per_epoch

115.0

PR
Q model.fit(ds, epochs=1, steps_per_epoch=3)
v WO817 07:00:47.466316 140085485397888 deprecation.py:323] From /tensorflow-2.0.0b1/python3.6/tensorflow/pyt

Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where

~ Performance
Note: This section just shows a couple of easy tricks that may help performance. For an in depth guide see Input Pipeline Performance.

The simple pipeline used above reads each file individually, on each epoch. This is fine for local training on CPU, but may not be sufficient
for GPU tram]gg and is totally inappropriate for any sort of distributed training.

To investigate, first build a simple function to check the performance of our datasets:

For the demonstration purpose, we will only run three steps per epoch.
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> ° We817 ©7:00:47.466316 140085485397888 deprecation.py:323] From /tensorflow-2.0.0b1/python3.6/tensorflow/pyt
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
3/3 [= - 18s 6s/step - loss: 1.9683 - accuracy: 0.1979
<tensorflow.python.keras.callbacks.History at @x7f67edf32fde>

Performance

Note: This section just shows a couple of easy tricks that may help performance. For an in depth guide see Input Pipeline Performance.

<

The simple pipeline used above reads each file individually, on each epoch. This is fine for local training on CPU, but may not be sufficient
for GPU training and is totally inappropriate for any sort of distributed training.

To investigate, first build a simple function to check the performance of our datasets:

[ ] import time
default_timeit_steps = 2*steps_per_epoch+1

def ti;eit(ds, steps=default_timeit_steps):
overall_start = time.time()
# Fetch a single batch to prime the pipeline (fill the shuffle buffer),
# before starting the timer




