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Lecture – 13

Building Data Pipelines for Tensor flow-Part 2

[FL] In this session, we will study how to construct dataset from different formats. We 

will cover formats like CSV or in memory structures from NumPy and Pandas we will 

also study how to construct dataset objects for images and text.
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So, let us start with CSV data. So, the data that we use in this session is taken from 

Titanic passenger list where you want to build a model to predict the likelihood of a 

passenger survival based on their characteristics like age, gender, the ticket class, 

whether the passenger was travelling alone etc.
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Install Tensor Flow 2.0 and import essential libraries.
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Then, download the train and test data from titanic dataset. The titanic dataset is 

available in tf.dataset. We set the precision to 3.
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Let us look at first few examples from CSV file. So, you can see that the label survived 

is the first column it is either 0 or 1. Then, we have features or characteristics like gender 

or sex, age, number of siblings or spouses that were travelling together, parch, fare,  

class, deck, embark_town and whether the traveler was alone.

We loaded the data using Pandas and pass the NumPy arrays to Tensor Flow. If you want 

to scale if you want to scale up to a large set of files then we will have to use 

make_csv_dataset() function which is currently in the experimental version of 

TensorFlow.
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We separate the label column and as we said there are two labels 0 or 1. Let us read the 

file and create a dataset. Here we demonstrate the make_csv_dataset() function which 

can be used for large datasets the current dataset is pretty small, but still we decide to 

demonstrate make_csv_dataset() function with Titanic dataset because this will be 

applicable for large CSV files as well. Here we are taking a small batch size 

internationally, so that we can examine the examples in each batch. We specify the label 

name, specify how null values are predicted how null values are specified with question 

mark here in this case and number of epochs we set it to 1.

We construct the training data by giving the training file to get_dataset() function and 

test data by providing the path of the test file to the get_dataset()function. The 

get_dataset() function makes a dataset from CSV file and returns the dataset.
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Each item in the dataset is a batch represented as a tuple of examples and labels. The 

data from the examples is organized in column based tensors each with as many 

elements as the batch size.
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Let us look at one of the batch. You can see that since you set out the batch size to 5 for 

each of the feature you have exactly 5 values. Each feature is organized as a column 



based tensor. So, you can see that there is one tenser for feature, one tenser for sex, 

another for age and so on, and in each of the tensor you will find exactly five values.
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We can specify the columns that we want to use to construct a dataset and pass that in the 

select_columns argument of the get_dataset() function that we wrote earlier.
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And, since we choose only hand full of the features we can see that there are only those 

many features that were selected are shown here.
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A CSV file can contain a variety of data types and typically you want to convert the mix 

type to a fix length vector before feeding the data into the model. So, TensorFlow uses a 

construct called tf.feature_column for such kind of convergence.
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If a data is already in a numeric format we can pack the data into a vector before passing 

it out of the model. So, we select columns which are numeric is specify by the default 

values and we batch the dataset. We can look at example batch and the label batch. We 



will pack together all the columns and we apply this to each element of the dataset. We 

apply the pack() function to each element in the dataset.
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We can see that we have a feature metric or a 2D tensor of features and a 1D tensor of 

labels. If we have mixed data types we may want to separate out this simple numeric 

features. The tf.feature_column API can handle them, but this incurs some overhead and 

should be avoided unless really necessary.
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Let us define a more general preprocessor that selects a list of numeric features and 

packs them into a single column. We take the numeric features and pack them.
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You can see that all the numeric features are packed into a tensor, whereas the other 

features are kept separate.
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We need to normalize the continuous data.
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One of the ways of normalizing is by using z-score normalization that we studied earlier. 

Let us see how to do the z-score normalization on the numerical data or on continuous 

data. So, if first give the mean and standard deviation of each continuous column and 

then define a normalized function that centers the data.
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We create a numeric column with tf.feature_columns.numeric_column API and pass the 

normalization function as an argument. The normalization will be run on each batch.
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Let us put all the numeric columns in the dense features and pass it to the model.
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So, you can see that the numeric layer has normalized data for each of the numeric 

features. Let us see how to handle the categorical variable.
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We use tf.feature_column.indicate_column to convert each categorical variable into a 

one hot encoding. We construct dictionaries of values in each of the categorical 

variables. For example, sex has male and female in it, class has first second and third in 

it.  There are A to J decks then there are few embarkation towns, and alone has two 

values yes or no. Then we take each of these categorical variables along with their 

vocabularies and convert as categorical variables into indicator columns using the 

vocabulary list.
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We can see that there are indicator columns that are created from this exercise.
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We also create a dense feature layer out of the categorical columns.
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Since the categorical columns are converted into numbers you can combine categorical 

columns and numerical columns into dense feature layer and pass it to the model.
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You can see that the preprocessing layer which is a dense feature layer is passed to a 

model. This is how we handle the dataset creation using CSV and preprocessing. Let us 

check how do we do shuffling and batching.
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So, we can simply call a shuffle transformation on the training data by specifying the 

buffer size.
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Then we can evaluate the model on the test data and see the accuracy.
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You can also check out the model predictions and compare that against the actual 

outcome. We will be doing more and more of model tanning and evaluation in the 

subsequence secessions. So, we are not giving much stress on that particular part. In the 

sessions more stress is given on creating input pipelines from multiple sources. Let us 

look at another source of creating input pipeline, this time with NumPy.
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So, here the data is stored in NumPy array and you want to construct the dataset from 

this NumPy arrays. We read the NumPy array where we have Fashion-MNIST dataset 

which is stored as NumPy array.
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We read that we get train_examples, test_examples, train_labels and test_labels 

corresponding to train examples, test examples, training labels and test labels.
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We use from_tensor_slices from the dataset API for constructing datasets from NumPy 

arrays. Finally, we can do shuffling and batching of the training dataset, whereas on the 

test dataset we can apply let say batch transformation and then you can build a model 

and evaluate its accuracy on the test dataset.
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Let us look, how to construct datasets from panda’s data frames. Here we have a dataset 

provided by Cleveland Clinic Foundation for Heart Disease. There are several hundred 

rows in the dataset. The dataset is in CSV format. Each row describes a patient and each 

column describe an attribute of a patient. We will use this information to predict whether 

a patient has heart disease or not.
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So, let us look at the steps to create a dataset. We use dataset.from_tensor_slices to 

create the dataset from the Pandas DataFrame. So, in NamPy and Pandas whether data is 

sitting in memory we use from_tensor_slices() function of dataset api to create data 

sources.
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Let us try to understand how to create a dataset from an image dataset. The image class 

is provided in the directory name and we have multiple directories of the images. So, let 

us see how to create input data pipeline for such a data through this example.
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First download the file.
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You can see that there are directories like dandelion, daisy, tulips which contain images 

of the respective flowers. There are 3670 images in all.
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And, these are top ten image paths. You can see that there are few images of dandelion 

flower, some images of sun flowers, some of roses, tulips, daisy and so on. Let us look at 

couple of images.
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We will first assign the label to each of the images.
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For this what we did is we took the string labels and assign an index to each of the labels. 

So, we have converted those strings into numbers.
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We can read the image using tf.io.read_file() function by providing the image path.
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And, we can decode the image into an image tensor. So, we can see that an image tensor 

is a 3D tensor which shape 240 x 380 x 3; there are three colour channels and each 

images of the size 240 x 180. We will resize each of the image to 192 x 192 and we 

normalize the image by dividing each pixel value by 255.
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So, we wrap all these transformation into a simple function called preprocess_image 

where we first decode the jpeg file resize image and then normalize the image in the 

range between 0 to 1. We put load and pre process, we wrap it in 

load_and_preprocess_image() function.
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Let us look at some of these images after pre-processing.
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Let us see how to build a tf.dataset from this images. So, you first construct a dataset of 

paths. All the paths are in memory.

(Refer Slide Time: 23:37)

 

We use from_tensor_slices, as you are doing earlier in case of NumPy and Pandas 

datasets. Now, we create a new dataset that loads and formats image on the fly by 

mapping preprocess_image over the dataset of path.
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So, we use a map transformation and the and apply this function on each and every 

image in the dataset of paths. Let us look at some of the images from the dataset. We 

look at first four images. There are images along with their descriptions.
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We build dataset of labels next using from_tensor_slices function.
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We use dataset.zip to assign label to each of the image. And, you can see that each 

images of the size 192 x 192 x 3 and each label is a scalar.
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In order to train a model with this dataset, we want to first shuffle the data and then we 

want to batch it and repeat forever and we want to make sure that batches are available 

as soon as possible.



So, we use shuffle() transformation for shuffling the data by giving sufficient buffer size, 

then we use repeat() for repeating the dataset, epochs after epochs; specify the batch and 

we use a prefetch() function that clears the dataset page batches in the background while 

model is training.
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There are few points you note here; the order is important. A shuffle after repeat would 

shuffle items app across epoch boundaries. Some items will be seen twice before others 

are seen at all. A shuffle after batch would shuffle the order of the batches, but not 

shuffle the items across the batches. We use buffer_size of the same size as a dataset for a 

full shuffle up to the dataset size large values provide better randomization, but they need 

more memory. Shuffle buffer is filled before any elements they are pulled from it.

Large buffer size may cause a delay when your dataset is starting. The shuffle dataset 

does not report the end of a dataset until the shuffle buffer is completely empty a dataset 

is started by repeat causing another wait for shuffle buffer to be filled. We use the 

dataset.apply() method to address the last point.
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And, we fuse it with shuffle and repeat() function as seen here.
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Finally, we pipe the dataset to the model and model and train the model. The MobileNet 

expects the input to be normalized to -1 to +1 range. So, we convert our data from 0 to 1 

range to -1 to 1 range.
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We define a change_range() function and apply the tern each element with map function. 

The MobileNet returns 6 x 6 special grade of features for each image. We pass it a batch 

of images to see the output of the MobileNet.
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You can see that it returns 6 x 6 special grids. Finally, we built a model wrapped around 

MobileNet and GlobalAveragePooling2D to average over those special dimensions and 

then use a dense layer with softmax activation as output layer.
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We can see that it produces output of the shape 32 x 5.
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We compile the model to describe the training procedure and train the model.
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For the demonstration purpose, we will only run three steps per epoch.
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