Practical Machine Learning
Dr. Ashish Tendulkar
Department of Computer Science Engineering
Indian Institute of Technology, Bombay

Lecture — 12
Building Data Pipelines for Tensorflow- Part 1

(Refer Slide Time: 00:13)

. EL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v JEding A

> - tf.data: The input pipeline API

1 View on TensorFlow.org Run in Google Colab Owew source on GitHub == Download notebook

The tf.data APl enables you to build complex input pipelines from simple, reusable pieces. For example, the pipeline for an image model
might aggregate data from files in a distributed file system, apply random perturbations to each image, and merge randomly selected
images into a batch for training. The pipeline for a text model might involve extracting symbols from raw text data, converting them to
embedding identifiers with a lookup table, and batching together sequences of different lengths. The tf.data API makes it possible to
handle large amounts of data, different data formats, and perform complex transformations.

The tf.data APl introduces a tf.data.Dataset abstraction that represents a sequence of elements, in which each element consists of
one or more components. For example, in an image pipeline, an element might be a single training example, with a pair of tensor
components representing the image and its label.

There are two distinct ways to create a dataset:

* A data source constructs a Dataset from data stored in memory or in one or more files.

[FL] We will study how to build input pipelines for TensorFlow. As you know,
TensorFlow processes different kind of data sets. We have already seen couple of those

kinds of data sets in this course so far: one was the Fashion-MNIST dataset.

(Refer Slide Time: 00:43)

/-9-54 EENEEEE R }
NPTEL”

Text
stuctured dota

lm:»?

Time- series

Apart from image dataset, then TensorFlow supports text data, it also supports structured
data and sequence data sets like time series data. You can see that the data sets are quite
varied, and their requirements are also quite different. For structured data, we want to
pre-process the data by say normalizing it or by getting rid of missing values. In case of
images, we might want to read images from multiple files on the system. Then we do
image augmentation by rotating the images or by applying other kind of transformations

on the image.

In case of text data, we want to read the text data, and extract tokens from the data by
processing the text before we can use it in TensorFlow. Other important thing that we do
in text data is to obtain embeddings for the words and convert words into integers or into
some numeric data. So, the API for input pipeline building should be versatile to support

all these kinds of operations on the varied data.

Apart from the variety of structures, the data can be very big that it may not be possible
to fit that data in memory or data may be small data that can be easily fit in memory. So,
this API also should support both the scenarios where it should be equally easy for the
programmers to read data in memory as well as data that is sitting on the disc. So, tf.data
API that is implemented by TensorFlow supports input pipeline building. So, the tf.data

API enables us to build complex input pipelines from simple reusable pieces. It makes it

possible to handle large amount of data different data format and perform complex
transformations on the data. It introduces ff.data.dataset abstraction that represents a

sequence of elements, in which each element consists of one or more components.

To take a concrete example of an image pipeline, an element might be a single training

example with a pair of tensors representing image and its label.

How do we create these datasets? There are two distinct ways of creating the dataset. We
construct the dataset from data source, where the data might be stored in memory or it

could be stored in one or more files.

(Refer Slide Time: 05:05)

O dataipynb B FL

@ Share A
File Edit View Insert Runtime Tools Help
A RAM § e
+ Code + Text ¢ Copy to Drive v bisk v / Editng A
W VIEW ON I1ENSOrFIow.org KUNIN GOOQIELOIAD ~ # VIEW SOUICE ON LIMUD — UOWNIOZA NOIED0OK

The tf.data APl enables you to build complex input pipelines from simple, reusable pieces. For example, the pipeline for an image model
might aggregate data from files in a distributed file system, apply random perturbations to each image, and merge randomly selected
images into a batch for training. The pipeline for a text model might involve extracting symbols from raw text data, converting them to
embedding identifiers with a lookup table, and batching together sequences of different lengths. The tf.data APl makes it possible to
handle large amounts of data, different data formats, and perform complex transformations.

The tf.data APl introduces a tf.data.Dataset abstraction that represents a sequence of elements, in which each element consists of
one or more components. For example, in an image pipeline, an element might be a single training example, with a pair of tensor
components representing the image and its label.

There are two distinct ways to create a dataset:
+ Adata source constructs a Datbset from data stored in memory or in one or more files.

« A data transformation constructs a dataset from one or more tf.data.Dataset objects

[1] from _future__ import absolute_import, division, print_function, unicode_literals

We can also perform transformations on one or more dataset to get a new dataset object.

(Refer Slide Time: 05:19)

. O dataipynb B .

@ Share A
File Edit View Insert Runtime Tools Help
" RAM 5 (A
+ Code + Text 4 Copy to Drive v Disk v / Editing A

» v Basic mechanics

To create an input pipeline, you must start with a data source. For example, to construct a Dataset from data in memory, you can use
tf.data.Dataset. from_tensors() or tf.data.Dataset. from_tensor_slices(). Alternatively, if your input data is stored in a file in
the recommended TFRecord format, you can use tf.data. TFRecordDataset()
Once you have a Dataset object, you can transform it into a new Dataset by chaining method calls on the tf.data.Dataset object. For
example, you can apply per-element transformations such as Dataset.map(), and multi-element transformations such as
Dataset.batch(). See the documentation for tf.data.Dataset for a complete list of transformations.
The Dataset object is a Python iterable. This makes it possible to consume its elements using a for loop:

P ORT

dataset = tf.data.Dataset.from_tensor_slices([8, 3, @, 8, 2, 1])
dataset

<TensorSliceDataset shapes: (), types: |[SRpller>
x

[] for elem in dataset:
print(elem.numpy())

Let us try to understand basic mechanics of the data source and how to create the input
pipeline from the data source. So, we will first construct data source based on data that is

in memory. We can use one of the two functions: from_tensors or from_tensor slices

from tf.data.dataset API.

Alternatively, if a data is stored in TFRecord format, we can use the tf.data.tfrecord
dataset for reading that data. Let us construct a dataset from tensor slices, here the data is
stored in an array there are 6 elements. Let us construct the dataset using
from_tensor_slices() function. You can see that the resulting dataset is a scalar because

the shape is null, and it stores int32 type of elements in it.

(Refer Slide Time: 07:01)

x 4 - A
g) EL
O dataipynb B @i &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’TS\: v/ Ediing A
> ;
[14] for elem in dataset:
print(elem.numpy())
8
3
[}
8
2
1
Or by explicitly creating a Python iterator using iter and consuming its elements using next:
P o

° it = iter(dataset)

print(nekt(it).numpy())

Alternatively, dataset elements can be consumed using the reduce transformation, which reduces all elements to produce a single result.

Let us look at elements in the dataset. You can see that this particular dataset has 6
scalars which are integers. This dataset is constructed from this particular array. We can
also use python iterator for iterating over the dataset. We can use next() to get the next

element in the dataset. So, here we show you the first element of the dataset which is 8.

Apart from creating the dataset from the data that is stored in memory or in files, we can
also perform transformation on the existing dataset objects to obtain a new dataset. We
can apply this transformation on every element in the dataset using a map() function, or

we can apply this transformation on multiple elements using a batch() function.

(Refer Slide Time: 08:31)

x4 - S,k X
¢
+ EL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v Eding A
w
> 2

v Dataset structure

A dataset contains elements that each have the same (nested) structure and the individual components of the structure can be of any type
representable by tf. TypeSpec, including Tensor, SparseTensor, RaggedTensor, TensorArray, or Dataset.

The Dataset.element_spec property allows you to inspect the type of each element component. The property returns a nested structure
of tf. TypeSpec objects, matching the structure of the element, which may be a single component, a tuple of components, or a nested
tuple of components. For example:

[] datasetl = tf.data.Dataset.from_tensor_slices(tf.random.uniform([4, 10]))

datasetk.element_spet

[] dataset2 = tf.data.Dataset.from_tensor_slices(
(tf.random.uniform([4]),
tf.random.uniform([4, 100], maxval=109, dtype=tf.int32)))

So, let us try to use a reduced transformation that reduces all the elements to produce a
single result. To take a concrete example, we take the dataset that we constructed here,

and we reduce the dataset to its sum.

(Refer Slide Time: 08:53)

() dataipynb B TEL

@ Share A
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v RD}T:C v /' Editing A

Or by explicitly creating a Python iterator using iter and consuming its elements using next:

[15] it = iter(dataset)

print(next(it).numpy())

8

Alternatively, dataset elements can be consumed using the reduce transformation, which reduces all elements to produce a single result.
The following example illustrates how to us® the reduce transformation to compute the sum of a dataset of integers.

[] print(dataset.reduce(d, lambda state, value: state + value).numpy()

v Dataset structure

A dataset contains elements that each have the same (nested) structure and the individual components of the structure can be of any type
representable by tf . TypeSpec, including Tensor, SparseTensor, RaggedTensor, TensorArray, o Dataset

So, here we use a reduce() where we give the initial state which is 0 and then we define a
lambda() on state on the and value, where we add the existing state to the value, and

store the results into the state variable. As we go through the entire dataset, the effect of

this particular reduced transformation is to get the sum of dataset of integers. Let us run
it and check the results. We can see that all the elements in this data source sums to 22

which is what is the output that we got here.

Let us understand the structure of dataset. A dataset contain elements where each element
has the same structure, and individual component of the structure can be of any type
represented by #f. TypeSpec. This includes sparse tensors, tensors, tensor array or dataset.

Dataset.element_spec property allows us to inspect the type of each element component.

So, let us check out the element spec of a dataset here in a concrete example. So, here
we construct the dataset from tensor slices, where we have created a 4 x 10 tensor with
random values from uniform distribution. Let us run this code cell to understand the
element specification. We can see that each element in this dataset is a vector or 1D
tensor containing 1D tensor with shape of 10, and each value stored in this tensor is a

float value.

(Refer Slide Time: 11:47)

x

4 ’ EL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help

+Code +Text 4 CopytoDrive v RD’TS\: v/ Ediing A

1 dataset2 = tf.data.Dataset.from_tensor_slices(
> [18] (tf.random.uniform([4]),
tf.random.uniform([4, 100], maxval=109, dtype=tf.int32)))

dataset2.element_spec
(TensorSpec(shape=(), dtype=tf.float32, name=None),
TensorSpec(shape=(100,), dtype=tf.int32, name=None))
rNVOoRi
° dataset3 = tf.data.Dataset.zip((datasetl, dataset2))
dataset3.element_spec
(TensorSpec(shape=(10,), dtype=tf.float32, name=None),

(TensorSpec(shape=(), dtype=tf.[FUEIER, name=None),
TensorSpec(shape=(100,), dtype=tf.int32, name=None)))

[] # Dataset containing a sparse tensor
dataset4 = tf.data.Dataset.from_tensors(tf.SparseTensor(indices=[[@, @], [1, 2]], values=[1, 2], dense_shape=[3, 4

dataset4.element_spec

Let us construct another tensor and here you can see that this particular tensor stores
ordered pairs of two tensors: one is a scalar and second is a vector. We can zip datasetl
and dataset2 and inspect the element spec of the resulting dataset. We can see that the

resulting dataset has element which is a pair of tensor where the first tensor is a vector or

ID tensor with shape 10, then we have a scalar followed by another 1D tensor with
shape of 100. We store float values in first two tensors, and integer values in the last

tensor.

(Refer Slide Time: 13:05)

i - s‘;
" O dataipynb FL
0 pynb B @ Share A
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v RDlTsMk v /' Editng A
>

1
(TensorSpec(shape=(10,), dtype=tf.float32, name=None),
(TensorSpec(shape=(), dtype=tf.float32, name=None),
TensorSpec(shape=(109,), dtype=tf.int32, name=None)))

[20] # Dataset containing a sparse tensor.
datasét4 = tf.data.Dataset.from_tensors(tf.SparseTensor(indices=[[@, 8], [1, 2]], values=[1, 2], dense_shape=[3, 4

dataset4.element_spec

SparseTensorSpec(TensorShape([3, 4]), tf.int32)
PO RT
Use value_type to see the type of value represented by the element spec

datasetd.el;ment_spe:,value_type

tensorflow.python.framework.sparse_tensor.SparseTensor

The Dataset transformations support datasets of any structure. When using the Dataset.map(), and Dataset. filter()
transformations, which apply a function to each element, the element structure determines the arguments of the function:

We can also create a sparse tensor where we specify indices where there are values
present in the tensor, and provide the values in the values argument. And it also give the
dense shape of the tensor. Let us look at the element specification of this sparse tensor.
So, we can see that we have a sparse tensor, where the tensor is a 2D tensor with shape 3

x 4 and each element is a 32-bit integer.

We can use value type to see the type of the value represented by the element spec. So,
we can see that in this dataset 4 each value is a sparse tensor. The dataset transformation
supports dataset of any structure. When using map and filter transformation which apply
a function to each element, the element structure determines the argument of the

function.

(Refer Slide Time: 14:33)

e

O dataipynb B i

File Edit View Insert Runtime Tools Help

@ Share A

+Code +Text 4 CopytoDrive v RD’T;\: v Eding A

» v Reading input data

» Consuming NumPy arrays
See Loading NumPy arrays for more examples
If all of your input data fit in memory, the simplest way to create a Dataset from them is to convert them to tf. Tensor objects and use

Dataset.from_tensor_slices().

4 3 cells hidden I

Consuming Python generators
Another common data source that can easily be ingested as a tf.data.Dataset is the python generator.

Caution: While this is a convienient approach it has limited portability and scalibility. It must run in the same python process that created
the generator, and is still subject to the Python GIL.

419 cells hidden

So, we can construct dataset from different sources. We can construct it by consuming
NumPy array, by consuming python generators, TFRecord, by consuming text data or

CSV data or by consuming bunch of files.

(Refer Slide Time: 14:47)

() dataipynb B

File Edit View Insert Runtime Tools Help

@ Share A

+ Code + Text # Copy to Drive v RD“\:Q v /' Editing A

» Consuming TFRecord data

>

See Loading TFRecords for an end-to-end example.

The tf.data APl supports a variety of file formats so that you can process large datasets that do not fit in memory. For example, the
TFRecord file format is a simple record-oriented binary format that many TensorFlow applications use for training data. The
tf.data. TFRecordDataset class enables you to stream over the contents of one or more TFRecord files as part of an input pipeline.

L 6 cells hidden

Consuming text data
See Loading Text for an end to end dxample
Many datasets are distributed as one or more text files. The tf.data. TextLineDataset provides an easy way to extract lines from one or

more text files. Given one or more filenames, a TextLineDataset will produce one string-valued element per line of those files.

4 11 cells hidden

» Consuming CSV data

(Refer Slide Time: 14:51)

i EL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v Ediing A

Many datasets are distributed as one or more text files. The tf.data. TextLineDataset provides an easy way to extract lines from one or
more text files. Given one or more filenames, a TextLineDataset will produce one string-valued element per line of those files.

£ 11 cells hidden

» Consuming CSV data

420 cells hidden

» Consuming sets of files

410 cells hidden

<

Batching dataset elements

4

Simple batching

So, in the next session, we will go through example of each of these data type and see

how to construct a dataset object based on these different formats. Let us look at some of

the operations on the dataset element.

(Refer Slide Time: 15:17)

() dataipynb B TEL

File Edit View Insert Runtime Tools Help

@ Share A

+Code +Text 4 CopytoDrive v RD‘T‘S\C v/ Ediing A

N v Batching dataset elements

v Simple batching

The simplest form of batching stacks n consecutive elements of a dataset into a single element. The Dataset.batch() transformation
does exactly this, with the same constraints as the tf. stack() operator, applied to each component of the elements: i.e. for each
component , all elements must have a tensor of the exact same shape.

[] inc_dataset = tf.data.Dataset.range(100)
dec_dataset = tf.data.Dataset.range(9, -100, -1)
dataset = tf.data.Dataset.zip((inc_dataset, dec_dataset))
batched_dataset = dataset.batch(4)
it = iter(batched_dataset) [
for batch in batched_dataset.take(4):
print([arr.numpy() for arr in batch])

While t.data tries to propagate shape information, the default settings of Dataset. batch results in an unknown batch size because the
last batch may not be full. Note the Nones in the shape:

One of the important operation that we use during the training is batching. The simplest
form of batching stacks and consecutive elements of a dataset into a single element. We

use batch transformation with same constraint as tf.stack() operator. The batch is applied

to each component of the element. And here there is a condition that all elements must

have a tensor of exactly the same shape.

Let us see a concrete example of batching. So, here we construct two dataset. One is
inc_dataset containing values between 0 to 100, and then dec dataset containing values
between 0 to -100. We construct a new dataset by zipping both these data sets. We
construct a batch of 4 elements using batch transformation, and we call that dataset as
batched dataset. Let us iterate our batched dataset and see the elements in the batched

dataset.

(Refer Slide Time: 16:51)

x o+

" () data.ipynb EL
0 pynb B @ Share A
File Edit View Insert Runtime Tools Help
3 RAM e
+ Code + Text # Copy to Drive v Disk v S Eitng A
it = iter(batched_dataset)
> [23] for batch in batched_dataset.take(5):
print([arr.numpy() for arr in batch])

array([e, 1, 2, 3]), array([@, -1, -3])]
-5, -6, -7

array(5, 6, 7]), array([-4,)

[[e -2,
[[4 -6,
[array([8, 9, 10, 11]), array([-8, -9, -10, -11])]
[[1
[[1

array([12, 13, 14, 15]), array([-12, -13, -14, -15])]

array([16, 17, 18, 19]), array([-16, -17, -18, -19])]

While tf . data tries to propagate shape information, the default settings of Dataset. batch results in an unknown batch size because the
last batch may not be full. Note the Nones in the shape:

Py ORT
° batched_dataset

<BatchDataset shapes: ((Ngne,), (None,)), types: (tf.int64, tf.int64)>

Use the drop_remainder argument to ignore that last batch, and get full shape propagation:

So, you can see that since we have constructed batches of 4, from the inc_dataset we get
0, 1, 2 and three as the first batch of four. From the dec dataset the first batch of four has
0,-1, -2, -3. The second element starts at 4 for the inc dataset, whereas dec dataset it
start at -4 and goes up to -7. And we print first four elements by using the take() function

and using 4 as an argument to the take() function. We print first four elements in the

batch.

Let us try to change it to 5 and you can see that you have we have five elements that are
captured here or the first five entries in the batched dataset are printed on the screen.

While tf.data tries to propagate shape information, the default setting of dataset.batch

results in an unknown batch size, because the last batch may not be full. So, we can

check the shape of the batched dataset and we can see that there is a none in the shape.

(Refer Slide Time: 18:43)

« o+

4 ; EL
LIpyN
() dataipynb B osEe i
File Edit View Insert Runtime Tools Help
RAM .
+ Code + Text 4 Copy to Drive v Disk v / Editng A
Use the drop_remainder argument to ignore that last batch, and get full shape propagation:
PV T

batched_dataset = dataset.batch(7, drop_remainder=True),
batched_dataset

<BatchD§taset shapes: ((7,), (@), types: (tf.int64, tf.int64)>

v Batching tensors with padding

The above recipe works for tensors that all have the same size. However, many models (.g. sequence models) work with input data that
can have varying size (.g. sequences of different lengths). To handle this case, the Dataset . padded_batch() transformation enables
you to batch tensors of different shape by specifying one or more dimensions in which they may be padded.

[] dataset = tf.data.Dataset.range(100)
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x))
dataset = dataset.padded_batch(4, padded_shapes=(None,))

for batch in dataset.take(2):

We can use drop remainder argument to ignore the last batch and get full shape
propagation. So, let us say if we batched dataset into a batch size of 7 and said drop
remainder = true, we will checkout the shape of the resulting batch. Now, we can see that
the batch is a full shape which is each element or each tensor is a 1D tensor with shape

of 7. So, this is particular recipe works for tensor that have the same size.

However, there could be many models which might have varying size of tensors. To
handle this case, we use padded batch transformation. It enables us to batch tensors of

different shapes by specifying one or more dimension in which they may be padded.

(Refer Slide Time: 20:05)

i EL
O dataipynb B o sae & 3

File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v/ Ediing A

[25] wervesveess

<BatchDataset shapes: ((7,), (7,)), types: (tf.int64, tf.int64)>

v Batching tensors with padding

The above recipe works for tensors that all have the same size. However, many models (e.g. sequence models) work with input data that
can have varying size (.g. sequences of different lengths). To handle this case, the Dataset . padded_batch() transformation enables
you to batch tensors of different shape by specifying one or more dimensions in which they may be padded.

Py ORT

° dataset = tf.data.Dataset.range(100)
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], X))
dataset = dataset.padded_batch(4, pidded_shapes=(None,))

for batch in dataset.take(2):
print(batch.numpy())
print()

The Dataset. padded_batch() transformation allows you to set different padding for each dimension of each component, and it may be

Let us look at a concrete example. So, we can start the dataset of elements between 0 to a
100. And then we define a /ambda() function that repeats the element by the element
time. For example, the number 1 will be repeated once, number 2 will be repeated twice,
number 3 will be repeated twice and so on. And we applied padded batch transformation
on the dataset by specifying padded shape and the number of elements in each batch
which is 4.

(Refer Slide Time: 20:53)

; TEL
0 data.ipynb B @ she A
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v R[;‘\x v /' Editing A

‘,6-' dataset = tf.data.Dataset.range(100)
' dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], x))
dataset = dataset.padded_batch(4, padded_shapes=(None,))

for batch in dataset.take(2):
print(batch.numpy())
print()

The Dataset. padded_batch() transformation allows you to set different padding for each dimension of each component, and it may be
variable-length (signified by None in the example above) or constant-length. It is also possible to override the padding value, which defaults
t00.

<

Training workflows

<

Processing multiple epochs

The tf.data API offers two main ways to process multiple epochs of the same data.

(Refer Slide Time: 21:07)

) dataipynb B TEL

@ Share A
File Edit View Insert Runtime Tools Help
RAM N
+ Code + Text # Copy to Drive v Disk b4 / Editing A

N you to batch tensors of different shape by specifying one or more dimensions in which they may be padded.

rVORT
dataset = tf.data.Dataset.range(100)
dataset = dataset.map(lambda x: tf.fill([tf.cast(x, tf.int32)], X))
dataset = dataset.padded_batch(4, padded_shapes=(None,))

for batch in dataset.take(2):
print(batch.numpy())
print()

[[e00]
[100)
[220]
333]]

(4444000
[5555500]
[6666660]

7777777

Let us look at the first two batches. You can see that in the first case since the last
element which is 3 is repeated three times. We have padding of 3 applied on the first
element, padding up 2 as applied on the on the second element, padding up 1 was applied
on the third element. Second batch has 7, which is repeated seven times. So, each

element from 4 to 6 are extended to shape 7 by padding the required number of zeros.

(Refer Slide Time: 21:59)

: L
() dataipynb B ® share &

File Edit View Insert Runtime Tools Help

+Code +Text 4 CopytoDrive v RD/T‘S\: v/ Eding A

R—

° [[4 444 0
[55555080]
[6666660]
[7777777]]

>

The Dataset . padded_batch() transformation allows you to set different padding for each dimension of each component, and it may be
variable-length (signified by None in the example above) or constant-length. It is also possible to override the padding value, which defaults
t00.

v Training workflows

v Processing multiple epochs

The tf. data API offers two main ways to process multiple epochs of the same data.

The simplest way to iterate over a dataset in multiple epochs is to use the Dataset . repeat () transformation. For example, to create a

So, the padded batch transformation allows us to set different padding for each
dimension of each component. It is also possible to override the padding value which

was 0 in the example.

(Refer Slide Time: 22:31)

+ -
" O dataipynb FL
0 Py B @ Share A
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v RD}T‘S\: v /' Editng A

THannny WYInnvwo

v Processing multiple epochs
The tf. data API offers two main ways to process multiple epochs of the same data.

The simplest way to iterate over a dataset in multiple epochs is to use the Dataset . repeat () transformation. For example, to create a
dataset that repeats its input for 3 epochs:
rVoRi

titanic_file = tf.keras.utils.get_file("train.csv", "https://storage.googleapis.com/tf-datasets/titanic/train.csv"
titanic_lines = tf.data.TextLineDataset(titanic_file)

[] def plot_batch_sizes(ds):
batch_sizes = [batch.shape[@] for batch in ds]
plt.bar(range(len(batch_sizes)), batch_sizes)
plt.xlabel('Batch number')
plt.ylabel('Batch size')

Applying the Dataset . repeat () transformation with no arguments will repeat the input indefinitely.

Let us look at some other training workflows with respect to the datasets. When we train
neural network or any other machine learning model, we make multiple pass over the
dataset. One complete pass over dataset is known as epoch. And in many batch grading

descent, we use a small batch size to update the parameter value.

So, what do we need to do is we need to support the repeat transformation in the dataset.
Dataset as a repeat transformation that enables us to iterate over a dataset in multiple

epochs. Let us create a dataset that repeat its input for 3 epochs. We read we construct a

dataset from a csv file.

(Refer Slide Time: 23:53)

B - A
. TEL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v Eding A

N =

Downloading data from https://storage.googleapis.com/tf-datasets/titanic/train.csv
32768/30874 [===] - @s eus/step

PR
o def plot_batch_sizes(ds):
batch_sizes = [batch.shape[@] for batch in ds]
plt,bar‘(range(len(batch_sizes)), batch_sizes)
plt.xlabel('Batch number')
plt.ylabel('Batch size')

Applying the Dataset . repeat () transformation with no arguments will repeat the input indefinitely.

The Dataset . repeat transformation concatenates its arguments without signaling the end of one epoch and the beginning of the next
epoch. Because of this a Dataset. batch applied after Dataset . repeat will yield batched that stradle epoch boundaries:

[] titanic_batches = titanic_lines.repeat(3).batch(128)
plot_batch_sizes(titanic_batches)

If you need clear epoch separation, put Dataset . batch before the repeat

We define a function to plot the batch size to understand the effect of repeat and any

other transformations that will be applying.

(Refer Slide Time: 24:17)

« o+

) £l
O dataipynb B ® Share & %

File Edit View Insert Runtime Tools Help

+Code +Text 4 CopytoDrive v R[;Tx v/ Eding A

32768/30874 [=== - s us/step

[28] def plot_batch_sizes(ds):

batch_sizes = [batch.shape[@] for batch in ds]

plt.bar(range(len(batch_sizes)), batch_sizes)

plt.xlabel('Batch number')

plt.ylabel('Batch size')

RN |

Applying the Dataset . repeat () transformation with no arguments will repeat the input indefinitely.
The Dataset. repeat transformation concatenates its arguments without signaling the end of one epoch and the beginning of the next
epoch. Because of this a Dataset. batch applied after Dataset . repeat will yield batched that stradle epoch boundaries:

[] titanic_batches = titanic_lines.repeat(3).batch(128)
plot_batch_sizes(titlanic_batches)

If you need clear epoch separation, put Dataset . batch before the repeat:

[] titanic_batches = titanic_lines.batch(128).repeat(3)

So, you apply repeat transformation with no argument to repeat the input infinitely. The
repeat transformation concatenates its argument without signaling the end of an epoch
and the beginning of the next epoch. Because of this a dataset.batch applied after

dataset.repeat will yield batches that straddle epoch boundaries. So, let us repeat the

dataset 3 times and we process the dataset with a batch of 128, and let us plot the batch

sizes.

(Refer Slide Time: 25:07)

-
O dataipynb B £l

@ Share A
File Edit View Insert Runtime Tools Help

RAM I o
+ Code + Text 4 Copy to Drive v Disk v / Editing A

epoch. Because of this a Dataset. batch applied after Dataset . repeat will yield batched that stradle epoch boundaries:

PV RT

° titanic_batches = titanic_lines.repeat(3).batch(128)
plot_batch_sizes(titanic_batches)

You can see that for different batches the batch size was constant which was 128 except

the last batch. So, you can see that we applied batch after repeat and that causes the

batches to straddle the epoch boundaries.

(Refer Slide Time: 25:31)

x4

SR
data.ipynb L
0 Py’ B @ Share A
File Edit View Insert Runtime Tools Help
+e A RAM [N
ode + Text 4 Copy to Drive V bk mm— 7/ Editing | A
0
> 0
2
0
0 2 4 6 8 0 12 M

Batch number

If you need clear epoch separation, put Dataset . batch before the repeat:

CODE — TEXT -
[] titanic_batches = titanic_lines,bat?h(lzs),repeat(i)

plot_batch_sizes(titanic_batches)

If you would like to perform a custom computation (e.g. to collect statistics) at the end of each epoch then it's simplest to restart the
dataset iteration on each epoch:

[] epochs =3
dataset = titanic_lines.batch(128)

Now, let us apply repeat after batch and see what happens. Now, you can see that when
we apply a batch, when you apply repeat after batch, we can see incomplete batches after
every 4 batches. So, you can see that here the batches are not straddling the epoch
boundaries when we apply batch before repeat. In this case, it helps us to clear epoch

separations.

(Refer Slide Time: 26:37)

4 : L
Lipyn!
Odataipynb B &% 1
File Edit View Insert Runtime Tools Help

+Code +Text 4 CopytoDrive 7 v/ Eding A

Disk
0

Batch number

If you would like to perform a custom computation (e.g. to collect statistics) at the end of each epoch then it's simplest to restart the
dataset iteration on each epoch:

rYORE

o
{o:- epochs = 3
=% dataset = ti‘tanic_lines.batch(lzs)
for epoch in range(epochs):
for batch in dataset:
print(batch. shape)
print("End of epoch: ", epoch)

v Randomly shuffling input data

The Dataset. shuffle() transformation passes the input dataset through a random shuffle queue, tf. queues. RandomShuff1leQueue. It
maintains a fixed-size buffer and chooses the next element uniformly at random from that buffer.

If you want to perform a custom computation at the end of each epoch, then it is simple
to restart the dataset iteration on each epoch. So, let us say we want to print the shape of
the batch and also print the epoch id at the end of the epoch. We essentially do that in
two loops two for loops. The first for loop is for epoch, and within epoch we use batches
on the dataset. So, here we define epoch to be 3, and we construct a dataset by batching

the titanic lines dataset into batches of 128.

(Refer Slide Time: 27:31)

{ O dataipynb B &

@ Share A
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’TS\: v/ Ediing A
TVeOeRE
> ° epochs = 3

dataset = titanic_lines.batch(128)

for epoch in range(epochs):
for batch in dataset:
print(batch. shape)
print("End of epoch: ", epoch)

(
(
(
(
(
End of epoch: @
(
(
(
(
(

End of epoch: 1
(128,)
(128,)

There are first four batches with 128 examples in it, whereas the fifth batch has 116

examples. And you can see this happening epochs after the epochs.

(Refer Slide Time: 27:47)

f EL
Odataipynb B N |
File Edit View Insert Runtime Tools Help

+ Code + Text # Copy to Drive v R[)/Tx v Ediing A

(120,)

>y Q@ ws)

End of epoch: 1

End of epoch: 2

v Randomly s?lufﬂing input data
The Dataset. shuffle() transformation passes the input dataset through a random shuffle queue, tf. queues. RandomShuff1leQueue. It
maintains a fixed-size buffer and chooses the next element uniformly at random from that buffer.
Note: That while large buffer_sizes shuffle more thouroughly, they can take a lot of memory, and significant time to fill. Consider using
Dataset. interleave across files if this becomes a problem.

Add an index to the dataset so you can see the effect:

Other important transformation is shuffle. And we have seen in some of the earlier
classes that is it that it is important to shuffle their training data to remove any systematic
temporal biases that are present in the dataset. So, dataset.shuffle transformation helps us

to shuffle the dataset. Shuffle maintains a fixed size buffer and chooses the next element

uniformly at random from that buffer. The large buffer sizes shuffle more thoroughly, but
they take a lot of memory and significant time to fill. In such cases one can try in
interleaved transformation across files which heals the similar kind of effect and shuffle

transformation.

(Refer Slide Time: 29:13)

X+

4 data.ipynb EL
O dataipynb B ® share &
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v RD/Ts\: Y / Eding A
>
Add an index to the dataset so you can see the effect:
P ORT

° lines = tf.data.TextLineDataset(titanic_file)
counter = tf.data.experimental.Counter()

dataset = tf.data.Dataset.zip((counter, lines))
dataset = dataset.shuffle(buffer_size=100)

dataset = dataset.batch(4@)
dataset

<BatchDataset shapes: ((None,), (None,)), types: (tf.int64, tf.string)>

Since the buffer_size is 100, and the batch size is 20, the first batch contains no elements with an index over 120.

[] n,line_batch = next(iter(dataset))
print(n.numpy())

As with Dataset . batch the order relative to Dataset. repeat matters.

So, let us try to use the shuffle transformation on the titanic dataset. So since the buffer is
100 as you are defining it over here and the batch size of 10 and the batch size of 20, the

first batch contains no element with an index or 120.

(Refer Slide Time: 29:47)

¥ - A
. TEL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T;\: v | / Ediing A

<BatchDataset shapes: ((None,), (None,)), types: (tf.inté64, tf.string)>

Since the buffer_size is 100, and the batch size is 20, the first batch contains no elements with an index over 120.

TVl
n,line_batch = next(iter(dataset))
print(n.numpy())

[31 13 29 16 57162 44 99 [T/MlAs 17 59 65 32 S0 41 9 21
s174]

As with Dataset . batch the order relative to Dataset. repeat matters.

Dataset. shuffle doesn' signal the end of an epoch until the shuffle buffer is empty. So a shuffle placed before a repeat will show every
element of one epoch before movindhto the next:

[] dataset = tf.data.Dataset.zip((counter, lines))
shuffled = dataset.shuffle(buffer_size=100).batch(10).repeat(2)

print("Here are the item ID's near the epoch boundary:\n")
for n, line_batch in shuffled.skip(60).take(5):

Let us check it out. Yes, you can see that the maximum value of the element in the first

batch is 104 as with the batch transformation the order related to repeat maters for batch.

The shuffle does not signal the end of the epoch until the shuffle buffer is empty. So, a
shuffle placed before a repeat will show every element of one epoch before moving to

the next.

(Refer Slide Time: 30:33)

x4 - X

O dataipynb B .

@ Share A
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive ¢%’T‘s\: v/ Eding A
N Y [31 13 29 16 57102 44 99 [TZN48 17 59 65 32 S0 41 96 21
51 74]

As with Dataset . batch the order relative to Dataset. repeat matters.

Dataset. shuffle doesn't signal the end of an epoch until the shuffle buffer is empty. So a shuffle placed before a repeat will show every
element of one epoch before moving to the next:

[] dataset = tf.data.Dataset.zip((counter, lines))
kshuffled = dataset.shuffle(buffer_size=100).batch(10).repeat(2)

print("Here are the item ID's near the epoch boundary:\n")
for n, line_batch in shuffled.skip(60).take(5):
print(n.numpy())

shuffle_repeat = [n.numpy().mean() for n, line_batch in shuffled]
plt.plot(shuffle_repeat, label="shuffle().repeat()")
plt.ylabel("Mean item ID")

plt.legend()

But a repeat before a shuffle mixes the epoch boundaries together:

So, here you have placed shuffle before repeat and we can see the elements.

(Refer Slide Time: 30:43)

() dataipynb B

File Edit View Insert Runtime Tools Help

+ Code + Text # Copy to Drive v RD’T;\:
> dataset = tf.data.Dataset.zip((counter, lines))
shuffled = dataset.shuffle(buffer_size=100).batch(10).repeat(2)

print("Here are the item ID's near the epoch boundary:\n")
for n, line_batch in shuffled.skip(60).take(5):
print(n.numpy())

Here are the item ID's near the epoch boundary:

[582 450 366 587 614 516 623 439 456 545]
[555 619 571 339 602 601 539 592 535 448]
[580 547 532 361 565 590 626 621]

[85 28 57 @ 69 18104 68 38 78]
[24 64 8 13111 7 29 45 66 8]

shuffle_repeat = [n.numpy().mean() for n, line_batch in shuffled]
plt.plot(shuffle_repeat, label="shuffle().repeat()")
plt.ylabel("Mean item ID")

plt.legend()

But a repeat before a shuffle mixes the epoch boundaries together:

@ Share A

v |/ Eding A

And let us look at the mean id of the element.

(Refer Slide Time: 30:53)

O dataipynb B
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v RD/T‘S\:
plt.degend)
N ° plt. legend()
<matplotlib.legend.Legend at @x7f@2d4cfe470>
600

— shuffle() repeat()
500

!

E-3
3

Mean item ID
E-3
s

=
8

S

But a repeat before a shuffle mixes the epoch boundaries together.

@ Share A

v/ Edtng A

(Refer Slide Time: 30:57)

data.ipynb FL
0 py B @ Share A
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v Eding A
>
But a repeat before a shuffle mixes the epoch boundaries together:
Py ORT

° dataset = tf.data.Dataset.zip((counter, lines))
shuffled = dataset.repeat(2).shuffle(buffer_size=100).batch(10)

print("Here are the item ID's near the epoch boundary:\n")
for n, line_batch in shuffled.skip(55).take(15):
print(n.numpy())

Here are the item ID's near the epoch boundary:

[607 587 @ 211 616 535 572 1339 6]
[555 621 19 564 484 540 602 21 351 532]
[31622 11583 44618 8 20579 37]
[388 487 503 601 3 491 40 625 38 36]
[565 542 32 5 448 627 453 68 509 60]
[25 59510 26575 71 7573 317 600]
[668 79 12 521 626 594 528 581 17 43]
[80605366 72 53 49 90 568 74 61]

22 48 18 42 623 76 106 87 45 84

Now, we put shuffle after repeat and see what happens.

(Refer Slide Time: 31:07)

() dataipynb B

File Edit View Insert Runtime Tools Help

@ Share A

+Code +Text 4 CopytoDrive AR v |/ Ediing A

Disk
1565 542 32 5 448 627 453 68 509 60]
> ° [25 59510 26575 71 7 573 317 600]
[668 79 12 521 626 594 528 581 17 43]
[80 605 366 72 53 49 90 568 74 61]
[22 48 18 42623 76 106 87 45 84]
[39545611 4 93 35 70 582 117 439]
[101 105 62 530 121 78 2 97 124 604]
[110 88 63 82 73589 10 41 30 596]
[450 122 46 539 130 139 560 27 99 133]
[83 64 95 456 107 134 125 102 131 474]
[104 497 140 28 161 127 574 614 619 170]

repeat_shuffle = [n.numpy().mean() for n, line_batch in shuffled]

glt.plot(shufﬂe_repeat, label="shuffle().repeat()"
plt.plot(repeat_shuffle, label="repeat().shuffle()"
plt.ylabel("Mean item ID")

plt.legend()

)
)

~ Preprocessing data

They are the item ids near the epoch boundaries.

(Refer Slide Time: 31:13)

e

. EL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T‘S\: v JEding A
S ——

> ° repeat_shuffle = [n.numpy().mean() for n, line_batch in shuffled]

plt.plot(shuffle_repeat, label="shuffle().repeat()
plt.plot(repeat_shuffle, label="repeat().shuffle()
plt.ylabel("Mean item ID")

plt.legend()

)
)

<matplotlib.legend.Legend at @x7f@2d4c704e0>
60!

0
~— shuffle() repeat() [
repeat().shuffe() Al
50 [J

E-3
3

Mean item ID
=1
=4

200 h

And if you plot two graphs where we compare shuffle before repeat and shuffle after
repeat. So, you can see that shuffle before repeat make sure that each element in the
epoch is presented to the training data, whereas shuffle after repeat does not give us that

kind of guarantee. So, depending on your requirement you can either use shuffle before

or after repeat.

(Refer Slide Time: 32:01)

@
EL

O dataipynb B

@ Share A
File Edit View Insert Runtime Tools Help
A RAM 5 £
+ Code + Text # Copy to Drive v Disk v S Eitng A
v [! |
> 0 » & © & 10 10

~ Preprocessing data

The Dataset.map(f) transformation produces a new dataset by applying a given function f to each element of the input dataset. Itis
based on the map(). function that is commonly applied to lists (and other structures) in functional programming languages. The function f
takes the tf.Tensor objectq that represent a single element in the input, and retums the t. Tensor objects that will represent a single
element in the new dataset. Its implementation uses standard TensorFlow operations to transform one element into another.

This section covers common examples of how to use Dataset.map()

<

Decoding image data and resizing it

When training a neural network on real-world image data, it is often necessary to convert images of different sizes to a common size, so
that they may be batched into a fixed size.

Rebuild the flower filenames dataset:

Another important step in data pipeline is pre-processing data, where we want to apply
some function on each element of the dataset. So, there are things like normalization or
applying some kind of transformation on each element becomes an important part of data
pre-processing. So, we use a map transformation for applying a given function or
transform each element of the input dataset. We can also use map function to apply

arbitrary python function on each of the element of the dataset.

(Refer Slide Time: 33:07)

A O dataipynb B TEL

@ Share A
File Edit View Insert Runtime Tools Help
N RAM b gt
+ Code + Text 4 Copy to Drive v bisk v # Editing A

> v Decoding image data and resizing it

When training a neural network on real-world image data, it is often necessary to convert images of different sizes to a common size, so
that they may be batched into a fixed size.

Rebuild the flower filenames dataset

PR
° list_ds = tf.data.Dataset.list_files(str(flowers_root/'*/*'))

Write a function that manipulates the dataset elements.

[10] # Reajis an image from a file, decodes it into a dense tensor, and resizes it
to a fixed shape.
def parse_image(filename):
parts = tf.strings.split(file_path, '/")
label = parts[-2]

image = tf.io.read_file(filename)
image = tf.image.decode_jpeg(image)

image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize(image, [128, 128])

So, let us try to apply map on the image data. To begin with the images are in different
sizes, we will convert them into a common size, so that they can be batched into a fixed

sizes. Let us look at this transformation in the image data.

(Refer Slide Time: 33:37)

x

EL

") dataipynb
0 pynb B @ Share A
File Edit View Insert Runtime Tools Help

+ Code + Text # Copy to Drive v RDA‘S\:

NI WIT UG 1 1S9 uataoet.

v/ Ediing A

> IEE- B I
° list_ds = tf.data.Dataset.list_files(str(flowers_root/'*/*'))

Write a function that manipulates the dataset elements.

Reads an image from a file, decodes it into a dense tensor, and resizes it
|d shape.
|mage(filename):

ooty If.strings.split(file_path, '/')
label = parts[-2]

image = tf.io.read_file(filename)

image = tf.image.decode_jpeg(image)

image = tf.image.convert_image_dtype(image, tf.float32)
image = tf.image.resize(image, [128, 128])

return image, label

Test that it works.

We read images from a file decodes into a dense tensor and resizes it to a fixed shape.
So, we first find out the label of the image, we read the image from the file. We decode

the jpeg. We convert the image into float and then we resize the image into 128 x 128

tensor.

(Refer Slide Time: 34:09)

x

EL

O dataipynb B o sae &
File Edit View Insert Runtime Tools Help

+Code +Text 4 CopytoDrive RD/T‘S\AK v Eding A

5 rVeRE

o file_path = next(iter(list_ds))
image, label = parse_image(file_path)

def show(image, label):
plt.figure()
plt.imshow(image)
plt.title(label.numpy().decode(utf-8'))
plt.axis('off')

show(image, label)

tulips

Let us apply it on the first image and see the result. We use imshow() command to plot

the image. So, this is the first image that is converted into 128 x 128 tensor.

(Refer Slide Time: 34:39)

X

@
EL

O dataipynb B

@ Share A
File Edit View Insert Runtime Tools Help
A RAM [N
+ Code + Text 4 Copy to Drive v ik mm— " / Editng A
> P ORT

° images_ds = list_ds.map(parse_image)

for image, label in images_ds.take(2):
show(image, label)

We apply it on a couple of more images, and you can see that the transformation converts

each image into the same size which is 128 x 128.

(Refer Slide Time: 34:57)

O dataipynb B .

File Edit View Insert Runtime Tools Help

@ Share A

+Code +Text 4 CopytoDrive }B’Tx L] v/ Ediing A

hd ATV

3

v Applying arbitrary Python logic

For performance reasons, we encourage you to use TensorFlow operations for preprocessing your data whenever possible. However, it is
sometimes useful to call external Python libraries when parsing your input data. You can use the tf. py_function() operationina
Dataset.map() transformation.

For example, if you want to apply a random rotation, the tf . image module only has tf. image.rot9e, which is not very useful for image
augmentation.

Note: tensorf1ow_addons has a TensorFlow compatible rotgte in tensorflow_addons. image. rotate.

To demonstrate tf.py_function, try using the scipy.ndimage. rotate function instead:

[] import scipy.ndimage as ndimage

def random_rotate_image(image):
image = ndimage.rotate(image, np.random.uniform(-30,30), reshape=False)

We can also apply arbitrary python logic using #/py function. Note that for performance
reason, it is better to use TensorFlow operations for preprocessing the data whenever

possible, but sometimes it is useful to call external python libraries and this is where

tf.py_function helps us to perform map transformation. Let us look at a concrete example

for this. So, here you want the use a rotate function from scipy library.

(Refer Slide Time: 35:49)

; TEL
() dataipynb B oS &
File Edit View Insert Runtime Tools Help
+ Code + Text 4 Copy to Drive v RD/TsMk — / Editng A

Dataset.map() transtormation.

For example, if you want to apply a random rotation, the tf . image module only has tf. image . rot98, which is not very useful for image
augmentation
Note: tensorflow_addons has a TensorFlow compatible rotate in tensorflow_addons.image.rotate.

To demonstrate tf.py_function, try using the scipy.ndimage. rotate function instead
Py ORT
° import scipy.ndimage as ndimage
def random_rotate_image(image):

image = ndimage.rotate(image, np.random.uniform(-30,38), reshape=False)
return image

image, label = next(iter(images_ds))
image = random_rotate_image(image)
show(image, label)

To use this function with Dataset. map the same caveats apply as with Dataset . from_generator, you need to describe the return shapes

and types when you apply the function:

So, first we import the scipy.ndimage library, and we will be using the rotate function.
And the image is rotated using the rotate function where we provide the image you
provide the angle to rotate which is decided randomly through a uniform distribution any

angle between -30 to 30, and it returns the image.

(Refer Slide Time: 36:25)

+ - A
; TEL
0 dataipynb B @ she A
File Edit View Insert Runtime Tools Help
+ Code + Text # Copy to Drive v RD/T:Q . v /' Editing A
rNeoRlE

> ° image, label = next(iter(images_ds))

image = random_rotate_image(image)
show(image, label)

WARNING: Logging before flag parsing goes to stderr.
Wo817 06:07:07.716159 139651251709824 image.py:648] Clipping input data to the valid range for imshow with

Let us apply it on the first image and see the result. You can see that this particular tulips

flower is rotated by and you can see the rotated image of the tulip flower.

(Refer Slide Time: 36:41)

Ji ‘ =
() dataipynb B oah L
File Edit View Insert Runtime Tools Help
+ Code + Text 4 Copy to Drive v RD/T‘S\C v / Eding A

T
y (44

To use this function with Dataset. map the same caveats apply as with Dataset. from_generator, you need to describe the return shapes
and types when you apply the function:

[45] def tf_random_rotate_image(image, label):
im_shape = image.shape
[image,]= tf.py_function(random_rotate_image, [image], [tf.float32])
image.set_shape(im_shape)
return image, label

P ORTE

:o) rot_ds = images_ds.map(tf_random_rotate_image)

for image, label in rot_ds.take(2):
show(image, label)

» Parsing tf.Example protocol buffer messages

Let us use its function with dataset.map. So, you can see that we used #/.py_function to
wrap the random_rotate image function. And we call this particular ¢/ random rotate

image function that in turn wraps the rotation function through py function.

(Refer Slide Time: 37:25)

+ = §;L
¢
f EL
O dataipynb B ©ses i
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD/T‘s\Ak v/ Ediing A

So, you can see that both the images are rotated with different angles, chosen based on a

uniform distribution between - 30 to 30.

(Refer Slide Time: 37:47)

‘B L
; TEL
() dataipynb B o A
File Edit View Insert Runtime Tools Help
+ Code + Text 4 Copy to Drive v RD/T:C v / Editng =~ A
vy g e
>
v tf.keras

The tf.keras API simplifies many aspects of creating and executing machine learing models. Its . fit() and .evaluate() and
.predict() APIs support datasets as inputs. Here is a quick dataet and model setup:

[] train, test = tf.keras.datasets.fashion_mnist.load_data()
images, labels‘: train
images = images/255.0
labels = labels.astype(np.int32)

fmnist_train_ds = tf.data.Dataset.from_tensor_slices((images, labels))
fmnist_train_ds = fmnist_train_ds.shuffle(5000).batch(32)

model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer="adam',

Let us see how to use the data sets with high level APIs. There are two high level APIs.
One is tf.keras and tf.estimator, we will first see how to use the data API with ¢/ keras.

So, let us use a Fashion-MNIST dataset.

(Refer Slide Time: 38:15)

x4+ =

O dataipynb B

File Edit View Insert Runtime Tools Help

@ Share A

RAM

+Code +Text 4 CopytoDrive v Disk v/ Ediing A

mages, lavels = train
> ° images = images/255.0
labels = labels.astype(np.int32)

Downloading data from https://storage.googlea
32768/29515 [] - 0s Qus/step

Downloading data from https://storage.go pis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.g!
26427392/26421880 [===] - 0s Qus/step
Downloading data from https: i
8192/5148 [] - 0s Qus/ste,

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 | =] - 05 Qus/step

0gled

fmnist_train_ds = tf.data.Dataset.from_tensor_slices((images, labels))
fanist_train ds = fanist_train_ds.shufFle(5008).batch(32)

model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer="adam',

And build a sequential model or a neural network model through ¢/ keras.sequential.

(Refer Slide Time: 38:31)

) TEL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’T;\AK — v/ Edtng A

train, test = tt.keras.datasets.tashion_mnist.load_data()

> (471 :
images, labels = train
images = images/255.0
labels = labels.astype(np.int32)

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idxl-ubyte.g
32768/29515 [] - 0s Qus/step

Downloading data from http storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.g
26427392/26421880 [= =] - @s Qus/step

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [== == - 05 Qus/step

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-
4423680/4422102 [=] - @s Qus/step

datasets/t10k-images-idx3-ubyte.gz

rVoRd

° fmnist_train_ds
fmnist_train_ds

tf.data.Dataset. from_tensor_slices((images, labels))
fmnist_train_ds.shuffle(5000).batch(32)

model = tf.keras.Sequential((
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax")

And here will use we construct a dataset object for tensor slices of images and labels

which are from the training set. Then we shuffle with buffer size of 5000 and batch it

into a batch of 32 examples.

(Refer Slide Time: 39:07)

() dataipynb B

File Edit View Insert Runtime Tools Help

@ Share A

+ Code + Text # Copy to Drive v Disk v /' Editing A
3413 LU L EUUBLEALY LUI LEISUI T LUR/ LIS G3UGLEE LD/ LIUNS LIGEED " LUADTUUYLE L BL
=] - @s Qus/step

[47] vomnavauang vata iiom

Y 4423680/4422102

[48] fmnist_train_ds = tf.data.Dataset.from_tensor_slices((images, labels))
fmnist_train_ds = fmnist_train_ds.shuffle(5000).batch(32)

model = tf.keras.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(10, activation='softmax')

D

model.compile(optimizer="adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])

Passing a dataset of (feature, label) pairsis all that's needed for Model.fit and Model.evaluate:

And we pass the training dataset into the fit function and provide epochs for which you

want to train the model.

(Refer Slide Time: 39:33)

O dataipynb B
File Edit View Insert Runtime Tools Help

+ Code + Text # Copy to Drive v RD/‘MS‘AK

loss, accuracy = model.evaluate(fmnist_train_ds)
> [51] print("Loss :", loss)
print("Accuracy :", accuracy)

EL
@ Share A

v/ Ediing A

===zss===ssss==zsss==========z] - 85 Sms/step - loss: 0. - accuracy: 0.
1875/1875 8s 5ms/ I 0.4343 0.8491

Loss : 0.4342886823217074
Accuracy : 0.8491333

For long datasets, set the number of steps to evaluate:

x

loss, accuracy = model.evaluate(fmnist_train_ds.repeat(), steps=10)
print("Loss :", loss)
print("Accuracy :", accuracy)

Accuracy : 0.853125

The labels are not required in when calling Model. predict.

PNV RT

If we pass an infinite dataset by calling the repeat without any arguments, we need to
pass steps per epoch along with repeat where we do not specify any argument for repeat.
Here if we want to evaluate accuracy on the training set, we pass the training dataset to
the evaluate() function. If a dataset is big, we set number of steps to evaluate. Here we

said number of steps to 10. So, we get estimation of performance of the model on the

training set on a sample.

(Refer Slide Time: 40:35)

() dataipynb B

File Edit View Insert Runtime Tools Help

+ Code + Text # Copy to Drive v RD/TS\T(
> ° 10/10 [======================z=====22) - 05 Ams/step - loss: 0.3739 - accuracy: 0.8531

Accuracy : €.853125

The labels are not required in when calling Model . predict.

[] predict_ds = tf.data.ﬂ)ataset.From_tenscr_slites(images).bat:h(}z)
result = model.predict(predict_ds , steps = 10)
print(result.shape)

But the labels are ignored if you do pass a dataset containing them:

[] result = model.predict(fmnist_train_ds, steps = 10)
print(result.shape)

v tf.estimator

TEL
@ Share A

4 /' Editng A

So, the labels are not required while calling model.predict() even if we pass a dataset

containing label, the labels are ignored by the predict() function.

(Refer Slide Time: 40:53)

« o+

4 i FL
ta.ipyn
O data pynb B @ Share A
File Edit View Insert Runtime Tools Help
+ Code + Text 4 Copy to Drive v RD/TQQ v /' Editng A

> v tf.estimator

Touse aDataset in the input_fn of a tf.estimator.Estimator, simply return the Dataset from the input_fn and the framework will
take care of consuming its elements for you. For example:

import tensorflow_datasets as tfds

def train_input_fn():
titanid = tf.data.experimental.make_csv_dataset (
titanic_file, batch_size=32,
label_name="survived")
titanic_batches = (
titanic.cache().repeat().shuffle(500)
.prefetch(tf.data.experimental . AUTOTUNE))
return titanic_batches

embark = tf.feature_column.categorical_column_with_hash_bucket('embark_town', 32)
cls = tf.feature_column.categorical_column_with_vocabulary_list(‘class’, ['First’, 'Second’, 'Third'])
age = tf.feature_column.numeric_column('age")

[] import tempfile

In case of tf.estimator, we need to define input fn() that returns a dataset object, and then
the framework will take care of consuming its element for you. So, if you wanted to give
titanic dataset as input to tf.estimator.estimator, we define train_input_fn(). We recreated

titanic dataset and perform transformations like repeat and shuffle.

And we also specify the pre-fetch, so that the batch is fetched before time, so that the
training is not stalled. In addition to that, you have to convert the non-numerical columns
into numerical columns. For example, categorical columns how to be converted into
numbers either using hash buckets or a vocabulary list. And then in the train() function

of the estimator, we specify the input() function.

(Refer Slide Time: 42:13)

() dataipynb B

@ Share A
File Edit View Insert Runtime Tools Help
\ RAM I N
+ Code + Text 4 Copy to Drive v ik mm— " / Editng A
CIS = TF.teature_CoLUMN.CaTegor1cal_CoLUMn_W1Th_VOCabulary_L1ST("C1ass", [FIrsT’, “Secona’, “Inira‘])
> [55] age = tf.feature_column.numeric_column('age')

[56

import tempfile

model_dir = tempfile.mkdtemp()

model = tf.estimator.LinearClassifier(
model_dir=model_dir,
feature_columns=[embark, cls, age],
n_classes=2

PR
@ model = model.train(input_fn=train_input_fn, steps=100)

oo WOB17 06:14:23.300734 139651251709824 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
Wo817 06:14:23.307929 139651251709824 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.
Wo817 06:14:23.352890 139651251709824 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
Use "tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experiment

We can also specify the input() function in the evaluation in the evaluate() function to get

the evaluation results.

(Refer Slide Time: 42:27)

X 4

@
EL

O dataipynb B

File Edit View Insert Runtime Tools Help

@ Share A

+Code +Text 4 CopytoDrive G | v/ Eding A

Disk
Instructions for updating:
> ° Please use "layer.add_weight™ method instead.
Wo817 06:14:23,521956 139651251709824 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
Wo817 06:14:23.624100 139651251709824 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
Use "tf.cast™ instead.
Wo817 06:14:23,885725 139651251709824 deprecation.py:506] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
Wo817 06:14:24,140069 139651251709824 deprecation.py:323] From /usr/local/lib/python3.6/dist-packages/tenso
Instructions for updating:
Use tf.TensorShape([]).

result = model.evaluate(train_input_fn, steps=10)

il .A..,, vzile in result.items():
print(key, ":", value)

(Refer Slide Time: 42:45)

«|¥ - A

4 i EL
O dataipynb B o sae &
File Edit View Insert Runtime Tools Help
+Code +Text 4 CopytoDrive v RD’TS\: v/ Ediing A

label/mean @ ©.428125

> [60] loss : 0.594647
precision : 0.67
prediction/mean : 0.4284485
recall : 0.4890511
global_step : 100

° for pred in model.predict(train_input_fn):
for key, value in pred.items():
print(key, ":", value)
brpak

logits : [1.1082]

logistic : [0.7518]
probabilities : [0.2482 0.7518]
class_ids : [1]

classes : [b'1']

all_class_ids : [0 1]
all_classes : [b'@' b'1']

We can get the predictions for each of the example in the training by running a predict()
function on the estimator by specifying the training input() function which consumes one
element at a time and gives the predictions for each of the element. Here you print the

prediction for the first element after which you break.

So, in this session, we studied how to build input data pipelines with tf.data API. In the
next session you will learn how to construct #f.dataset from different formats like csv,

text data and image data.

