
Practical Machine Learning
Dr. Ashish Tendulkar

Department of Computer Science Engineering
Indian Institute of Technology, Bombay

Lecture – 12

Building Data Pipelines for Tensorflow- Part 1

 (Refer Slide Time: 00:13)

[FL] We will study how to build input pipelines for TensorFlow. As you know,

TensorFlow processes different kind of data sets. We have already seen couple of those

kinds of data sets in this course so far: one was the Fashion-MNIST dataset.

(Refer Slide Time: 00:43)

Apart from image dataset, then TensorFlow supports text data, it also supports structured

data and sequence data sets like time series data. You can see that the data sets are quite

varied, and their requirements are also quite different. For structured data, we want to

pre-process the data by say normalizing it or by getting rid of missing values. In case of

images, we might want to read images from multiple files on the system. Then we do

image augmentation by rotating the images or by applying other kind of transformations

on the image.

In case of text data, we want to read the text data, and extract tokens from the data by

processing the text before we can use it in TensorFlow. Other important thing that we do

in text data is to obtain embeddings for the words and convert words into integers or into

some numeric data. So, the API for input pipeline building should be versatile to support

all these kinds of operations on the varied data.

Apart from the variety of structures, the data can be very big that it may not be possible

to fit that data in memory or data may be small data that can be easily fit in memory. So,

this API also should support both the scenarios where it should be equally easy for the

programmers to read data in memory as well as data that is sitting on the disc. So, tf.data

API that is implemented by TensorFlow supports input pipeline building. So, the tf.data

API enables us to build complex input pipelines from simple reusable pieces. It makes it

possible to handle large amount of data different data format and perform complex

transformations on the data. It introduces tf.data.dataset abstraction that represents a

sequence of elements, in which each element consists of one or more components.

To take a concrete example of an image pipeline, an element might be a single training

example with a pair of tensors representing image and its label.

How do we create these datasets? There are two distinct ways of creating the dataset. We

construct the dataset from data source, where the data might be stored in memory or it

could be stored in one or more files.

(Refer Slide Time: 05:05)

We can also perform transformations on one or more dataset to get a new dataset object.

(Refer Slide Time: 05:19)

Let us try to understand basic mechanics of the data source and how to create the input

pipeline from the data source. So, we will first construct data source based on data that is

in memory. We can use one of the two functions: from_tensors or from_tensor_slices

from tf.data.dataset API.

Alternatively, if a data is stored in TFRecord format, we can use the tf.data.tfrecord

dataset for reading that data. Let us construct a dataset from tensor slices, here the data is

stored in an array there are 6 elements. Let us construct the dataset using

from_tensor_slices() function. You can see that the resulting dataset is a scalar because

the shape is null, and it stores int32 type of elements in it.

(Refer Slide Time: 07:01)

Let us look at elements in the dataset. You can see that this particular dataset has 6

scalars which are integers. This dataset is constructed from this particular array. We can

also use python iterator for iterating over the dataset. We can use next() to get the next

element in the dataset. So, here we show you the first element of the dataset which is 8.

Apart from creating the dataset from the data that is stored in memory or in files, we can

also perform transformation on the existing dataset objects to obtain a new dataset. We

can apply this transformation on every element in the dataset using a map() function, or

we can apply this transformation on multiple elements using a batch() function.

(Refer Slide Time: 08:31)

So, let us try to use a reduced transformation that reduces all the elements to produce a

single result. To take a concrete example, we take the dataset that we constructed here,

and we reduce the dataset to its sum.

(Refer Slide Time: 08:53)

So, here we use a reduce() where we give the initial state which is 0 and then we define a

lambda() on state on the and value, where we add the existing state to the value, and

store the results into the state variable. As we go through the entire dataset, the effect of

this particular reduced transformation is to get the sum of dataset of integers. Let us run

it and check the results. We can see that all the elements in this data source sums to 22

which is what is the output that we got here.

Let us understand the structure of dataset. A dataset contain elements where each element

has the same structure, and individual component of the structure can be of any type

represented by tf.TypeSpec. This includes sparse tensors, tensors, tensor array or dataset.

Dataset.element_spec property allows us to inspect the type of each element component.

So, let us check out the element_spec of a dataset here in a concrete example. So, here

we construct the dataset from tensor slices, where we have created a 4 x 10 tensor with

random values from uniform distribution. Let us run this code cell to understand the

element specification. We can see that each element in this dataset is a vector or 1D

tensor containing 1D tensor with shape of 10, and each value stored in this tensor is a

float value.

(Refer Slide Time: 11:47)

Let us construct another tensor and here you can see that this particular tensor stores

ordered pairs of two tensors: one is a scalar and second is a vector. We can zip dataset1

and dataset2 and inspect the element_spec of the resulting dataset. We can see that the

resulting dataset has element which is a pair of tensor where the first tensor is a vector or

1D tensor with shape 10, then we have a scalar followed by another 1D tensor with

shape of 100. We store float values in first two tensors, and integer values in the last

tensor.

(Refer Slide Time: 13:05)

We can also create a sparse tensor where we specify indices where there are values

present in the tensor, and provide the values in the values argument. And it also give the

dense shape of the tensor. Let us look at the element specification of this sparse tensor.

So, we can see that we have a sparse tensor, where the tensor is a 2D tensor with shape 3

x 4 and each element is a 32-bit integer.

We can use value_type to see the type of the value represented by the element spec. So,

we can see that in this dataset 4 each value is a sparse tensor. The dataset transformation

supports dataset of any structure. When using map and filter transformation which apply

a function to each element, the element structure determines the argument of the

function.

(Refer Slide Time: 14:33)

So, we can construct dataset from different sources. We can construct it by consuming

NumPy array, by consuming python generators, TFRecord, by consuming text data or

CSV data or by consuming bunch of files.

(Refer Slide Time: 14:47)

(Refer Slide Time: 14:51)

So, in the next session, we will go through example of each of these data type and see

how to construct a dataset object based on these different formats. Let us look at some of

the operations on the dataset element.

(Refer Slide Time: 15:17)

One of the important operation that we use during the training is batching. The simplest

form of batching stacks and consecutive elements of a dataset into a single element. We

use batch transformation with same constraint as tf.stack() operator. The batch is applied

to each component of the element. And here there is a condition that all elements must

have a tensor of exactly the same shape.

Let us see a concrete example of batching. So, here we construct two dataset. One is

inc_dataset containing values between 0 to 100, and then dec_dataset containing values

between 0 to -100. We construct a new dataset by zipping both these data sets. We

construct a batch of 4 elements using batch transformation, and we call that dataset as

batched_dataset. Let us iterate our batched_dataset and see the elements in the batched_

dataset.

(Refer Slide Time: 16:51)

So, you can see that since we have constructed batches of 4, from the inc_dataset we get

0, 1, 2 and three as the first batch of four. From the dec_dataset the first batch of four has

0,-1, -2, -3. The second element starts at 4 for the inc_dataset, whereas dec_dataset it

start at -4 and goes up to -7. And we print first four elements by using the take() function

and using 4 as an argument to the take() function. We print first four elements in the

batch.

Let us try to change it to 5 and you can see that you have we have five elements that are

captured here or the first five entries in the batched_dataset are printed on the screen.

While tf.data tries to propagate shape information, the default setting of dataset.batch

results in an unknown batch size, because the last batch may not be full. So, we can

check the shape of the batched_dataset and we can see that there is a none in the shape.

(Refer Slide Time: 18:43)

We can use drop_remainder argument to ignore the last batch and get full shape

propagation. So, let us say if we batched dataset into a batch size of 7 and said drop

remainder = true, we will checkout the shape of the resulting batch. Now, we can see that

the batch is a full shape which is each element or each tensor is a 1D tensor with shape

of 7. So, this is particular recipe works for tensor that have the same size.

However, there could be many models which might have varying size of tensors. To

handle this case, we use padded_batch transformation. It enables us to batch tensors of

different shapes by specifying one or more dimension in which they may be padded.

(Refer Slide Time: 20:05)

Let us look at a concrete example. So, we can start the dataset of elements between 0 to a

100. And then we define a lambda() function that repeats the element by the element

time. For example, the number 1 will be repeated once, number 2 will be repeated twice,

number 3 will be repeated twice and so on. And we applied padded_batch transformation

on the dataset by specifying padded_shape and the number of elements in each batch

which is 4.

(Refer Slide Time: 20:53)

(Refer Slide Time: 21:07)

Let us look at the first two batches. You can see that in the first case since the last

element which is 3 is repeated three times. We have padding of 3 applied on the first

element, padding up 2 as applied on the on the second element, padding up 1 was applied

on the third element. Second batch has 7, which is repeated seven times. So, each

element from 4 to 6 are extended to shape 7 by padding the required number of zeros.

(Refer Slide Time: 21:59)

So, the padded_ batch transformation allows us to set different padding for each

dimension of each component. It is also possible to override the padding value which

was 0 in the example.

(Refer Slide Time: 22:31)

Let us look at some other training workflows with respect to the datasets. When we train

neural network or any other machine learning model, we make multiple pass over the

dataset. One complete pass over dataset is known as epoch. And in many batch grading

descent, we use a small batch size to update the parameter value.

So, what do we need to do is we need to support the repeat transformation in the dataset.

Dataset as a repeat transformation that enables us to iterate over a dataset in multiple

epochs. Let us create a dataset that repeat its input for 3 epochs. We read we construct a

dataset from a csv file.

(Refer Slide Time: 23:53)

We define a function to plot the batch size to understand the effect of repeat and any

other transformations that will be applying.

(Refer Slide Time: 24:17)

So, you apply repeat transformation with no argument to repeat the input infinitely. The

repeat transformation concatenates its argument without signaling the end of an epoch

and the beginning of the next epoch. Because of this a dataset.batch applied after

dataset.repeat will yield batches that straddle epoch boundaries. So, let us repeat the

dataset 3 times and we process the dataset with a batch of 128, and let us plot the batch

sizes.

(Refer Slide Time: 25:07)

You can see that for different batches the batch size was constant which was 128 except

the last batch. So, you can see that we applied batch after repeat and that causes the

batches to straddle the epoch boundaries.

(Refer Slide Time: 25:31)

Now, let us apply repeat after batch and see what happens. Now, you can see that when

we apply a batch, when you apply repeat after batch, we can see incomplete batches after

every 4 batches. So, you can see that here the batches are not straddling the epoch

boundaries when we apply batch before repeat. In this case, it helps us to clear epoch

separations.

(Refer Slide Time: 26:37)

If you want to perform a custom computation at the end of each epoch, then it is simple

to restart the dataset iteration on each epoch. So, let us say we want to print the shape of

the batch and also print the epoch id at the end of the epoch. We essentially do that in

two loops two for loops. The first for loop is for epoch, and within epoch we use batches

on the dataset. So, here we define epoch to be 3, and we construct a dataset by batching

the titanic_lines dataset into batches of 128.

(Refer Slide Time: 27:31)

There are first four batches with 128 examples in it, whereas the fifth batch has 116

examples. And you can see this happening epochs after the epochs.

(Refer Slide Time: 27:47)

Other important transformation is shuffle. And we have seen in some of the earlier

classes that is it that it is important to shuffle their training data to remove any systematic

temporal biases that are present in the dataset. So, dataset.shuffle transformation helps us

to shuffle the dataset. Shuffle maintains a fixed size buffer and chooses the next element

uniformly at random from that buffer. The large buffer sizes shuffle more thoroughly, but

they take a lot of memory and significant time to fill. In such cases one can try in

interleaved transformation across files which heals the similar kind of effect and shuffle

transformation.

(Refer Slide Time: 29:13)

So, let us try to use the shuffle transformation on the titanic dataset. So since the buffer is

100 as you are defining it over here and the batch size of 10 and the batch size of 20, the

first batch contains no element with an index or 120.

(Refer Slide Time: 29:47)

Let us check it out. Yes, you can see that the maximum value of the element in the first

batch is 104 as with the batch transformation the order related to repeat maters for batch.

The shuffle does not signal the end of the epoch until the shuffle buffer is empty. So, a

shuffle placed before a repeat will show every element of one epoch before moving to

the next.

(Refer Slide Time: 30:33)

So, here you have placed shuffle before repeat and we can see the elements.

(Refer Slide Time: 30:43)

And let us look at the mean id of the element.

(Refer Slide Time: 30:53)

(Refer Slide Time: 30:57)

Now, we put shuffle after repeat and see what happens.

(Refer Slide Time: 31:07)

They are the item ids near the epoch boundaries.

(Refer Slide Time: 31:13)

And if you plot two graphs where we compare shuffle before repeat and shuffle after

repeat. So, you can see that shuffle before repeat make sure that each element in the

epoch is presented to the training data, whereas shuffle after repeat does not give us that

kind of guarantee. So, depending on your requirement you can either use shuffle before

or after repeat.

(Refer Slide Time: 32:01)

Another important step in data pipeline is pre-processing data, where we want to apply

some function on each element of the dataset. So, there are things like normalization or

applying some kind of transformation on each element becomes an important part of data

pre-processing. So, we use a map transformation for applying a given function or

transform each element of the input dataset. We can also use map function to apply

arbitrary python function on each of the element of the dataset.

(Refer Slide Time: 33:07)

So, let us try to apply map on the image data. To begin with the images are in different

sizes, we will convert them into a common size, so that they can be batched into a fixed

sizes. Let us look at this transformation in the image data.

(Refer Slide Time: 33:37)

We read images from a file decodes into a dense tensor and resizes it to a fixed shape.

So, we first find out the label of the image, we read the image from the file. We decode

the jpeg. We convert the image into float and then we resize the image into 128 x 128

tensor.

(Refer Slide Time: 34:09)

Let us apply it on the first image and see the result. We use imshow() command to plot

the image. So, this is the first image that is converted into 128 x 128 tensor.

(Refer Slide Time: 34:39)

We apply it on a couple of more images, and you can see that the transformation converts

each image into the same size which is 128 x 128.

(Refer Slide Time: 34:57)

We can also apply arbitrary python logic using tf.py_function. Note that for performance

reason, it is better to use TensorFlow operations for preprocessing the data whenever

possible, but sometimes it is useful to call external python libraries and this is where

tf.py_function helps us to perform map transformation. Let us look at a concrete example

for this. So, here you want the use a rotate function from scipy library.

(Refer Slide Time: 35:49)

So, first we import the scipy.ndimage library, and we will be using the rotate function.

And the image is rotated using the rotate function where we provide the image you

provide the angle to rotate which is decided randomly through a uniform distribution any

angle between -30 to 30, and it returns the image.

(Refer Slide Time: 36:25)

Let us apply it on the first image and see the result. You can see that this particular tulips

flower is rotated by and you can see the rotated image of the tulip flower.

(Refer Slide Time: 36:41)

Let us use its function with dataset.map. So, you can see that we used tf.py_function to

wrap the random_rotate_image function. And we call this particular tf_random_rotate

image function that in turn wraps the rotation function through py_function.

(Refer Slide Time: 37:25)

So, you can see that both the images are rotated with different angles, chosen based on a

uniform distribution between - 30 to 30.

(Refer Slide Time: 37:47)

Let us see how to use the data sets with high level APIs. There are two high level APIs.

One is tf.keras and tf.estimator, we will first see how to use the data API with tf.keras.

So, let us use a Fashion-MNIST dataset.

(Refer Slide Time: 38:15)

And build a sequential model or a neural network model through tf.keras.sequential.

(Refer Slide Time: 38:31)

And here will use we construct a dataset object for tensor slices of images and labels

which are from the training set. Then we shuffle with buffer size of 5000 and batch it

into a batch of 32 examples.

(Refer Slide Time: 39:07)

And we pass the training dataset into the fit function and provide epochs for which you

want to train the model.

(Refer Slide Time: 39:33)

If we pass an infinite dataset by calling the repeat without any arguments, we need to

pass steps per epoch along with repeat where we do not specify any argument for repeat.

Here if we want to evaluate accuracy on the training set, we pass the training dataset to

the evaluate() function. If a dataset is big, we set number of steps to evaluate. Here we

said number of steps to 10. So, we get estimation of performance of the model on the

training set on a sample.

(Refer Slide Time: 40:35)

So, the labels are not required while calling model.predict() even if we pass a dataset

containing label, the labels are ignored by the predict() function.

(Refer Slide Time: 40:53)

In case of tf.estimator, we need to define input_fn() that returns a dataset object, and then

the framework will take care of consuming its element for you. So, if you wanted to give

titanic dataset as input to tf.estimator.estimator, we define train_input_fn(). We recreated

titanic dataset and perform transformations like repeat and shuffle.

And we also specify the pre-fetch, so that the batch is fetched before time, so that the

training is not stalled. In addition to that, you have to convert the non-numerical columns

into numerical columns. For example, categorical columns how to be converted into

numbers either using hash buckets or a vocabulary list. And then in the train() function

of the estimator, we specify the input() function.

(Refer Slide Time: 42:13)

We can also specify the input() function in the evaluation in the evaluate() function to get

the evaluation results.

(Refer Slide Time: 42:27)

(Refer Slide Time: 42:45)

We can get the predictions for each of the example in the training by running a predict()

function on the estimator by specifying the training input() function which consumes one

element at a time and gives the predictions for each of the element. Here you print the

prediction for the first element after which you break.

So, in this session, we studied how to build input data pipelines with tf.data API. In the

next session you will learn how to construct tf.dataset from different formats like csv,

text data and image data.

