
Practical Machine Learning
Dr. Ashish Tendulkar 

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture – 11
Mathematical Foundations of Deep Learning - Contd.

[FL]. In the last session you studied basics of tensors and we also looked at tensors that

we often encounter in practice. In this session we will focus on key operations on tensors

in the context of Deep Learning.

(Refer Slide Time: 00:29)

In neural network we specify the layer  with tf.keras.layers.dense().  Here we use 128

units in a hidden layer and we use Relu as an activation function.



(Refer Slide Time: 00:44)

The layer takes 2D tensor as an input and returns another 2D tensor as an output. The

core  operation  that  layer  does  is  as  follows,  the  layer  computes  dot()  between  the

parameter  vector  and  the  input  adds  a  bias  vector  to  it.  So,  this  becomes  a  linear

combination and this linear combination is subjected to non-linear activation like Relu or

Sigmoid. So there are three distinct operations here one is the linear combination of input

and the corresponding weights and then we add bias in the calculation and finally we

apply a non-linear activation on the result.
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Let us take a concrete example. 

(Refer Slide Time: 02:12)

So, we have a toy neural network with two inputs let us say this is feature x1 and this is

feature x2. Then we have a layer with two units this particular layer is a dense layer, so it

receives  input  from all  the  units  from the  previous  layer.  And let  us  set  w are  the

parameters for each of the layers. So, for the first layer we have 1 and 0.5 as the weight

and each of the unit has a bias term. This bias term is -2 for the first unit and 0.5 for the

second unit. So, you can see that we can represent the weights of these units as tensor.

The first unit has weights 1 and 0.5 and the second unit has weight 0.5 and 1. So, you put

this in a tensor. This is a matrix or alternatively this is a 2D tensor with shape 2 by 2.

This is the weight tensor. You also have the input tensor and how does input tensor look

like input tensor has two components x 1 and x 2.

So, this is a vector. When we combine multiple examples it becomes a 2D tensor.  We

have a tensor which is again a 2D tensor which shape (2,2) . In addition to that we also

have a bias vector. So there is a bias unit for each of the hidden unit in the layer. We can

represent the biases. Bias is a scalar quantity for individual  unit,  we combine all  the

biases we get a vector. So, we have 2 and 0.5 in this case this is the bias vector which is a

1D tensor with shape 2. 



Let us say we have input, so we have  w here which is [[1, 0.5], [2, 1]]; then we have

input which is [[1,2], [-1, 2]]. So, let us look at the shape of each of these tensors and

number of dimensions. So, you can see that w is a 2D tensor which shape 2 x 2.
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Input is also a 2D tensor which shape 2 x 2. Here there are two examples and axes and

bias is a 1D tensor with a shape of 2. We apply a linear combination. That means, we

will perform a dot product between the weight vector and the input and we add a bias

term to it. 

Let us look at shape of each of the terms or each of the tensors that are involved here

which is w, input and b and we also look at shape of the resulting tensor, z, and we will

also print the value of z.



(Refer Slide Time: 08:04)

You can see that all the tensors weight and a input tensors are 2D tensors with shape of 2

x 2 and bias is a vector which shape of 2, we get z as a 2D tensor which shape 2 x 2. So,

we essentially get two outputs for each example. You can see that these two outputs are

nothing but z coming from the first unit and z coming from the second unit. So, for every

example that we input here we get z1 and z2 for each of the examples. So, here there are

two examples so we get a 2D tensor with shape (2,2).
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Now, let us apply Relu on the output of linear combination. So, relu essentially does a

max between 0 and z. Let us print the shape of the output and the output itself. 

So, you can see that the output is also a 2D tensor of shape 2 x 2 and we get 0 when you

apply relu on these values, because relu puts 0 for negative inputs and positive numbers

are written as they are. Let us look at how relu activation function looks like.

(Refer Slide Time: 10:14)

So, here we calculate the value of Relu between -10 to +10 at hundred samples. So, we

have the value x on the x-axis and Relu on the y-axis. So, you can see that relu outputs 0

for the negative numbers and it outputs the positive number as it is. So we have a 45

degree line after 0.
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In  the  same manner  you also  visualize  the  sigmoid  activation  function  by  sampling

hundred points between -10 to +10 and we calculated sigmoid function for each of these

points.
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Sigmoid squashes the input between 0 to 1. As we go away from zero in the positive

direction sigmoid tends to give 1 and as we go to the left of 0 in the negative direction,

the sigmoid becomes closer and closer to 0. Now, note that Relu and tensor additions are

both element wise operations and can be parallelized.



You will find vectorized implementation of these operations in deep neural network, that

helps  us  to  speed  up  the  competitions.  The  vectorized  implementation  exploits  the

parallelization. Note that relu and tensor additions are both element wise operations and

hence can be parallelized. The vectorized implementations exploit it is characteristics for

efficiency of competitions.

(Refer Slide Time: 12:24)

So, imagine a situation where we have to add two matrix which are not compatible in

terms of the shapes, so this is where broadcasting helps us. In broadcasting we perform

two steps so that two matrices become compatible in their shapes. We first start axes in

the smaller tensor to match the dimension of the larger tensor these axes are called as

broadcast axes. The smaller tensor is then repeated alongside these new axis to match the

full shape of the larger tensor.

Let us take a concrete example. Let us say we have two tensors x_1 and x_2.  x_1 has

shape of 32 x 10. Whereas, x_ 2 has a shape of 10. So the first tensor is a matrix and the

second tensor is a vector. So, we will first expand the dimension of the second matrix

along the zeroth axis. This will make sure that we have the same number of the same

number of components on the zeroth axis and after that we repeat the x_2 tensor 32 times

along the zeroth axis. So, that the shape of x_2 becomes fully compatible with the shape

of x_1.
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Let us look at the shapes of tensors that are involved here shape of  x_1 is 32 x 10 the

original shape of x_2 was 10. So, x_1 was a 2 D tensor and x_2 was a 1D tensor. After

adding broadcast axis we get a 2 D tensor which shape 1 x 10 and then we broadcast x_2

along the broadcast axis to get a shape of 32 x 10. So, essentially you first add broadcast

axis and then copied x_2 along each of those axis. In actual implementation the entries

are not repeated, but algorithms implement these operations virtually.

So,  numpy implements broadcasting. So if we try to add a 2D tensor with 1D tensor

numpy automatically does the broadcasting and we can see the shape of the output which

will be same as the shape of the 2D tensor.



(Refer Slide Time: 15:34)

Let us look at the next operation in a tensor which is reshaping, reshaping is used to

rearrange the rows and columns of tensor to match the shape of the target tensor. The

reshape tensor has the same number of elements as the initial tensor. Reshaping is mainly

used in data preprocessing. So, let us take a concrete example of tensor.

(Refer Slide Time: 16:07)

The shape of the tensor is 3 x 2 we are going to reshape it into a tensor of shape 6 x 1.

So, to reshaping it to a tensor of shape 6 x 1 we get the we get a reshape tensor.
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Later we reshape this tensor to a target tensor of shape 2 x 3, here what happens is that

first three values are copied in the first row and the next three values are copied in the

next row. So, this is how we get a (2, 3) 2D tensor. 

Transposition is  a special  case of reshaping. In transpose rows becomes column and

columns becomes rows. So, np.transpose does the transpose of the matrix  the origin

original shape of the matrix was 300 x 20, after transpose operation it became 20 x 300. 

Having studied tensors and key operations on the tensor, let us move on to understand

how  neural  network  training  is  performed.  We  will  first  formulate  the  problem  of

training in neural network.
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Let us take a toy neural network with two inputs one hidden layer with two units and an

output layer with a single unit. These are the inputs x1 and x2, these are two hidden units

they also have bias term. 

So, the problem of training here is to estimate the weights of each of the units in the

neural network. This particular unit has three weights the weight corresponding with this

connection and to a bias. So, there are three weights for this particular unit, in the same

manner there are three weights corresponding to the this particular unit. This particular

unit also has three weights one corresponding to each of the connection, there are two

weights corresponding to the inputs coming from the previous layer and one bias term.

The problem of training is: given the training data you want to estimate the parameters of

this  neural  network  model.  How  many  parameters  are  there?  There  are  total  nine

parameters. In this particular network and our job is to come up with weights of these

nine parameters such that the loss function is minimized.

We studied in previous sessions that we define loss function for each of the machine

learning algorithm. So, in case of neural network, if you are solving a regression problem

we use least-square as a loss function. If you are solving a binary classification problem

we  use  binary_crossentropy_loss  as  the  loss  function  and  we  have  to  find  out  this

parameters such that the loss function is minimized.



We use gradient descent and stochastic gradient descent as basic techniques for solving

the optimization problem or for parameter estimation. There is a difference between the

way  we  apply  gradient  descent  in  standard  machine  learning  algorithms  and  neural

network.  Let  us  try  to  understand that  difference  that  will  help  us  to  appreciate  the

complexity of training neural networks.

So, along with this  neural  network, we will  draw let  us define a regression problem

involving two variables: x1 and x 2. So, in this particular regression problem, we have two

weights one corresponding to x1 and the second is corresponding to x2. So, weights are

w1 and w2. The problem is  to identify these weights,  such that the least  square error

between the prediction and the actual output is minimized.

Remember that when you apply gradient descent, we find out the gradient of the loss

function with respect to each of the parameters. In case of linear regression we get the

output over here, the prediction over here, and once we get a prediction let us say ŷ is a

prediction and if you know the actual y. We calculate the loss for that particular instance

of the parameter value.

We calculate loss over here and we compute the gradient of the loss with respect to both

the parameters in this case. Here the situation is slightly more complicated. We get the

value of the y at  the output layer.  Here we can calculate  the loss.  Now, we have to

compute the derivative of this loss with respect to the parameters and we do not know

the loss at each layer or at each unit.

So,  that  makes  it  complicated.  So we are  getting  the loss  at  the final  layer  and our

challenge is to find out what is the contribution to the loss by individual units in the

neural network. It is important to understand that this is the direction of prediction. It is

called  as  forward  pass.  In  forward  pass  we  pass  the  values  we  perform  linear

combination followed by non-linear activation steps repetitively in each layer to get the

prediction.

And once you get a prediction we can find out a loss and our job is to propagate this

particular loss in the reverse direction. So, we calculate the gradient with respect to the

direct  connections  to  the  output  layer  and  then  we  apply  chain  rule  of  derivative

successively  to  find  out  losses  at  intermediate  levels  and  this  is  called  as

backpropagation. This is the direction in which gradients are propagated.



So, this is the backward pass, so we use a backpropagation to propagate that gradient of

the loss function with respect  to parameters  in the network.  So, in the modern deep

learning packages like TensorFlow the gradient operation is already implemented using

symbolic differentiation. So, we do not really implement backpropagation algorithm by

hand. But instead we call this particular gradient API or gradient function to calculate

gradient of the loss function with respect to each of the parameters. So, we do not focus a

lot on back propagation in this course.

So,  neural  network  implements  a  variation  of  stochastic  gradient  descent  for  foster

optimizations. One class of optimization method focus on applying adaptive learning rate

instead of using the same learning rate.

As  in  case  of  classical  gradient  descent  they  try  to  adopt  the  learning  rate,  so  that

convergence can be attained faster. Adam and RMSProp are optimization algorithms in

this particular class. T

he  other  set  of  algorithms  which  are  worth  mentioning  here  are  momentum-based

algorithms. So, in case of deep learning the loss function is a non convex loss function.

So, there is a great chance that we will get in we will get stuck into one of the local

minima and we won’t be able to come out of that if you apply classical algorithms.

So, here we use what is called as momentum based strategies, where we calculate the

momentum at a point and use that to get out of the local minima. Think of momentum

based algorithm using a ball and let us say you are sliding this particular ball on the slope

if the ball has enough momentum it will not get stuck at a local minima. But it will get it

will slide pass local minima and will go towards the next local minima. 

So, momentum based strategies are used to tackle problems with respect to local minima,

that  we  offer  encounter  in  deep  learning  loss  functions.  We use  some of  the  novel

regularization strategies for neural network apart from l1 and l2 regulation that we apply

in classical machine learning algorithms.

We also apply techniques like early stopping. In case of early stopping we apply a simple

strategy of stopping training early. This helps us to prevent overtraining of the model.

We keep track of the training error and the validation error and if validation error is not



improving after few iterations we stopped the training. So, this is possibly an automated

way of deciding when to stop the training.

Apart from early stopping there is another clever idea called dropout which is popularly

used as  regularize  mechanism in  neural  network.  Let  us  understand idea  of  dropout

through a concrete example.

(Refer Slide Time: 29:01)

Let us say this a toy neural network. In case of dropout, you define a dropout rate let us

say dropout rate is 0.2 or 20 %. So, what happens is 20 % of the node in each layer

where we define dropout are dropped during an epoch. So for example, let us define a

dropout rate of 50 %  at this layer. So, in one of the epoch what might happen is we look

at the node and let us say we flip a coin if coin turns in the head we decide to return the

node otherwise we drop it. So, let us say we decide to drop this node and this particular

node. Let us say we also apply 50 % dropout in this layer. So, this could happen in one

of the epochs, in the next epoch we again check we again decide to randomly shut down

50 % nodes in each of these layers.

In the second round it could be possible that this particular node and this node is dropped

or this node and this node is dropped and you can see that every time we drop node we

are effectively cutting the connections to and from that particular node. So, this gives us

a new kind of a neural network architecture and we are training a lot of such kind of

different architectures in one training iteration.



So  we  apply  dropout  during  training.  In  order  to  compensate  for  drop  out   during

prediction time we multiply the activation of each of the unit where drop out is applied

by the factor of dropout. So, in this case what will happen is the activations out of this

particular node we will be scaled by 50 %, because that was the dropout rate. So, this is

how we apply dropout as a regularization strategy in case of neural network. 

When we face the problem over fitting in neural network, we either  try to get more

examples or we apply one of these regularization strategies. Whenever we are faced with

under fitting problem in neural network we can increase the complexity of the model by

simply adding more layers to the network.

In this  session,  we looked at  mathematical  foundations of deep learning. We studied

basics of tensors. The tensors that we encounter in practice the key tensor operations in

deep learning and some of the basics of training and regularization in the deep learning.

With  this  session,  you are  now well  equipped  with  basic  understanding  of  machine

learning flow. From the next session onwards we will start diving deeper into practical or

implementation aspect of machine learning pipeline with TensorFlow.


