
Practical Machine Learning with TensorFlow
Dr. Ashish Tendulkar Google

Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

Lecture – 01
Overview of TensorFlow

[FL] Let us try to understand, what TensorFlow exactly is?

(Refer Slide Time: 00:46)

(Refer Slide Time: 00:48)

This is a logo of Tensor Flow, which is an end-to-end open-source platform for machine

learning.

(Refer Slide Time: 00:55)

Tensorflow has a meaning, TensorFlow is made up of two words: tensor and flow.

Tensor is the multidimensional array and flow is a graph of operations. Internally,

TensorFlow implements machine learning algorithms as a graph of operations on the

multidimensional array.

(Refer Slide Time: 01:18)

Tensorflow was developed by Google Brain and it was released under Apache 2.0

license in November 2015. The current stable version of TensorFlow is 1.14 and it is a

popular GitHub repo with 100 and 29k plus stars. TensorFlow is a vibrant active

community of developers with more than 1800 developers actively contributing to the

code base. This course covers concepts from TensorFlow API version 2.0, which is the

newest version of TensorFlow.

(Refer Slide Time: 01:55)

Why do we really care about TensorFlow? TensorFlow provides easy to build and

deploy machine learning models for a newcomer in machine learning. If you are in

expert in machine learning or a machine learning researcher, TensorFlow enables you to

build a state of machine learning models with Keras functional API and model

subclassing APIs.

Another important thing about TensorFlow is that it supports the production of machine

learning models, anywhere from CPUs, GPUs to edge devices as well as web servers.

TensorFlow API is available for Python, for Java and for Go programming languages.

TensorFlow has a very flexible architecture. It enables easy deployment across different

hardware platforms like CPUs, TPUs and GPUs, and computing devices like desktops,

servers, mobile devices, and edge devices.

Another important thing about TensorFlow is that it supports production of machine

learning models, anywhere from CPUs, GPUs, to edge devices as well as web servers.

TensorFlow API is available for Python, for Java and for Go programming languages.

TensorFlow has a very flexible architecture; it enables easy deployment across different

hardware platforms like CPUs, TPUs and GPUs, and computing devices like desktops,

servers, mobile devices, and edge devices.

(Refer Slide Time: 02:54)

.

(Refer Slide Time: 03:00)

Tensorflow is being used by lots of companies around a world; these companies operate

in different domains and are using TensorFlow to carry out build machine learning

models in different domains. For example, Google is using TensorFlow to better its

products various products like Gmail or doc, Airbnb, for example, is using TensorFlow

to classify images and detect objects in their set of photographs.

AIRBUS is using TensorFlow to detect interesting objects from the satellite imagery and

make it available to its customer. TensorFlow is also used for a lot of social good

applications as well as in the financial domain like PayPal is using TensorFlow for

detecting fraudulent transactions, Twitter is using TensorFlow to run tweets. So, you can

see that TensorFlow is a versatile product and is being used for developing and

deploying machine learning models by companies across different domains. You can

check out some of these case studies on tensorflow.org website.

(Refer Slide Time: 04:18)

Let us try to build our first machine learning model with TensorFlow, we call it as

TensorFlow Hello World. We will train our first machine learning model with

TensorFlow API.

(Refer Slide Time: 04:30)

This machine learning module helps us recognize handwritten digits. We will train the

machine learning model with famous MNIST dataset. MNIST dataset contains grace

skilled images of handwritten digits. There are 60,000 images in the training set and

10,000 images in the test set of MNIST dataset. Each image is of size 28 x 28 pixel and

each image is tagged with a label that is the actual number it represents.

So, this is a Google Colab environment, it allows us to run Python programs directly in

the browser. Here we code our model in the Colab environment, it has got text and code

cell. This is an example of a text cell and this is an example of a code cell. In the text-

cell, we have written comments or some text that will help us understand what is going

on in the Colab. In the code cell, we write essentially the Python code, we will first go

through the Colab cell by cell and then run it. In the first code cell, we import the

required packages and install TensorFlow 2.0. After installing TensorFlow 2.0 we import

the TensorFlow package.

(Refer Slide Time: 05:59)

Next, we load the MNIST dataset, MNIST dataset is available in the TensorFlow dataset

package. So, we can directly load that with this particular command and so, essentially

MNIST dataset is defined as tf.keras.dataset.mnist and we load MNIST dataset with the

load data command. The load data command essentially gives us MNIST dataset in two

tuples, the first tuple contains the training data and the second tuple contains a test data.

So, we have the training features in x_train matrix, y_train vector contains the label of

the training examples, x_test metric contains the features and y_test vector contains the

label corresponding to each of the examples. The ith entry in x_train metric represents

features for the ith example and ith entry in the y_train gives us the corresponding label.

After loading the dataset we normalize the dataset by dividing each pixel value by 255.

The normalization helps us achieve faster conversions during training.

Now, that we have loaded the dataset and pre-process state, the next task is to build a

model. We will build tf.keras.models.sequential() model by stacking the layers. Next, we

use loss function and an optimizer for the model, we select the

sparse_categorical_crossentropy loss as the loss for this particular model and we choose

Adam as an optimizer for this particular model. You can note that we first flattener input,

so our original input is 28 by 28 pixels.

So, we will flatten it to make it into a vector of size 784 and this particular input is fed

into the dense layer which has got 128 units. We use Relu activation in this particular

dense layer and this is the only hidden layer that we use in this particular neural network.

In addition, we use dropout regularization with a dropout rate of 0.2, the output layer

contains 10 units one corresponding to each of the digits between 0 to 9 and we use

softmax as an activation function for the output layer.

Now that we have compiled our model the next step is to train the model. We use

model.fit() function for training the model. The fit() function takes the training features

and training labels as an argument along with the number of epochs, just to remind you

an epoch is one full iteration of the training set. After training the model we evaluate the

model on the test set which has the test features and the test labels. Notice that the model

was trained on the training data and it is performance was evaluated on the test data. This

ensures that we have a fair estimate of the model performance on unseen data. You can

observe that we have specified our model its training and evaluation all in less than 10

lines of code with tf API. This is the ease of use that makes TensorFlow an API of choice

for machine learning developers.

Now that we have written the code for model specification, training and evaluation let us

execute the code in the notebook to see what kind of performance we achieve on this

model. So, in order to run the code, we have to first connect to the Colab environment

which we have are already connected here. After connecting to Colab environment we

can execute this notebook cell by cell. This run button over here, if you press this the

code in this particular code cell will get executed, alternatively, we can press the control

enter button to execute the cell as a keyboard short cut.

(Refer Slide Time: 10:50)

Let us download the TensorFlow 2.0 beta version which we have we have already

download in this case. If this is not downloaded it will take some time to download the

version from the internet and hence this particular code cell might take a bit longer for

you. Next, we load the MNIST data and normalize it, next we compile our model.

(Refer Slide Time: 11:16)

As we press the train button we can see that the model is getting trained and the progress

of the model is shown with a progress bar and in each of the epoch, we see some

statistics about loss and accuracy and amount of time the training takes per sample. So,

you can observe that the loss is going down with each epoch starting with 0.3 we got the

loss down to 0.07 and the accuracy is going up, we started with an accuracy of 0.91 and

accuracy has climbed up all the way up to 0.97.

We started with 91 per cent accuracy and after 50 epoch we have an accuracy of 97 per

cent. After training the model when we evaluated the model we achieve similar

performance on the test data. One can see that the loss on test data is very close to the

loss on the training data as well as the accuracy that we are getting on the test data is

comparable to the accuracy that we are getting on the training data.

In this module, we build our first TensorFlow model for recognizing handwritten digits

from MNIST dataset. Just now, we finished building our first machine learning model

with TensorFlow, we called it a TensorFlow Hello World. You must have observed that

we used Python in our browser. So, for most of the exercises in this course, we are going

to use this tool called Google Colab. Colab is a Jupyter notebook that can be run from

the browser. It uses cloud run time and can run in the browser without you needing to do

a lot of complicated setup on your machine. Let us try to understand the basic features of

Colab.

(Refer Slide Time: 13:23)

(Refer Slide Time: 13:30)

Colab can be accessed by colab.research.google.com URL and when you open Colab

you can either load one of your existing notebooks that you can get it from the drive, you

can load notebooks from the drive. You can also load notebooks from the GitHub. All

that you have to do is you have to enter the GitHub URL of the notebook and the

notebook will be open for you.

(Refer Slide Time: 13:50)

You can also upload your existing Jupyter notebooks through the upload tab and then the

notebook will be available to you in the browser that you can run. Then we also have

several example Colabs that shows the functionality of Colab like reading external data

from drive, sheet and cloud storage, Colab for getting data from Google Big Query or

creating interesting input and output forms in the Colab.

So, let us try to start a new Python notebook.

(Refer Slide Time: 14:38)

This is how we start Colab we start a new Python notebook. We can save a copy in drive

or we can save a copy in GitHub. Let us call this as “HelloWorld”. So, Colab file has an

extension ipynb which is exactly same as the extension of Jupyter notebooks and in

Colab we can seamlessly mix text and the code this mix it a very nice platform to write

the documentation along with the code. So that it is easier for the reader to follow what is

going on in the notebook. In addition to that, there are elements of collaboration inbuilt

in the Colab, one can comment on the cell or one can share the Colab with their

collaborators with the share button here.

The Colab has mainly two cells, one is called a code cell and the second is called a text

cell. In code cell, we essentially write the Python program whatever we write in the code

cell and if we execute the code cell with the Run button over here the content of the code

cell is interpreted by the Python interpreter and if it is the valid Python code then only

that particular code would be run. So, let us try to print “Hello World”, in order to run

the Colab we need to first connect to the cloud run time it is right now connecting it has

connected and now initialize it is initializing.

You can see that you are connected to a cloud run time and we see the status of the RAM

and disk in this particular cloud run time. In order to execute the cell, we simply need to

run the cell and you can see that hello world is being printed over here. So, the other type

of cell is a text cell; In the text cell, we can write content using what is called mark-

down. So, I can write some sample content here: “This is my first Colab” and I can

highlight some of the content using a visual editor here or if you are familiar with mark-

down you can straight away use markdown syntax in Colab.

Apart from text we can also insert links or we can also insert images, we can also have

list of items in Colab. So, we can say that in my first Colab here we demonstrate, “how

to print using Python print statement” and “perform basic mathematical operations” and

you can see that as I was typing the actual output is visible in this part of the screen. So,

if you go to the other cell the output of the markdown can be seen over here. So, let us

try to perform addition of two numbers and say that a=3, b=2, y = a + b. And we can

simply print and we can see that the addition operation is carried out and we can see here

finally, print y we can also write the content of this particular code cell across different

code cells. Let us try to see that.

So, I can write comments like “initialize the variables” and then I can have simple code

cell initializing a to 10 and b to 20, then I can say add a and b, let us say I want to write

this a. So, I can also insert mathematical equations using latex I can simply write the

code saying that y is equal to a plus b and I can say print y.

(Refer Slide Time: 20:18)

Let us write the code to print the addition of two numbers here. Now, we can run each of

the cells and then perform the addition and finally, print the number, you can see that a

was 10 and b is 20, we added this 2 numbers to get 30 in the resulting variable. So, this is

the Colab environment, we can also import useful Python libraries like TensorFlow in

Colab and then we can execute or we can build practical machine learning applications

in Colab. One of the great point about Colab is that you can execute your Python code in

the browser and you do not need to do a lot of complicated set up on your own machines.

So, this brings us to the end of our first module. Hope you enjoyed it [FL].

