
Python for Data Science

Prof. Ragunathan Rengasamy

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture – 06

Operators

 (Refer Slide Time: 00:17)

Welcome, to the lecture on Operators! In this lecture, we are going to see what an

operator is and what an operand is. We will also look at the different types of operators

that is used in python and these are arithmetic, assignment, relational, logical and

bitwise. We will also be looking at the precedence of operators and how to use them in

an expression.

(Refer Slide Time: 00:37)

So, let us see what operators and operands are. An operator is a special symbol that will

help you carrying out an assignment operation or some kind of a computation the nature

of the computation can be arithmetic or logical.

Now, the value that the operator operates on is called an operand. So, let us take a small

example here to illustrate what an operator and operand is. In this case, the plus symbol

that you see in the plus sign that is an operator. This operator denotes addition. So, you

see two numbers before and after the operator. So, 2 and 3 in this case are called

operands.

(Refer Slide Time: 01:19)

So, let us look at arithmetic operators. Now, arithmetic operators are used to perform

mathematical operations between any two operands. So, let us take an example to

illustrate the use of arithmetic operators. Create two variables a and b with values 10 and

5. In the previous lectures we have already seen how to create a variable. So, we were

going to use the same procedure here.

So, the first operator that we are going to look at is the addition operator. It is denoted by

a plus symbol and this is how an addition operation is carried out. If I want to add two

variables, then I am just going to separate the variables with the plus symbol in this case

a is 10, b is 5 so, the result in sum that you get is 15. The next operation is subtraction

denoted by a hyphen. I have the corresponding example here. So, in this case I am going

to subtract a and b and the output that I get here is 5.

(Refer Slide Time: 02:17)

So, the next arithmetic operation that we are going to look at is the multiplication

operation, it is denoted by an asterisk and if you want to multiply two variables separate

the variable and insert an asterisk symbol. The product that you get in this example is 50;

a is 10, b is 5 again. Now, 10 into 5 is 50 and that is the output that you get .

The next operation is division that is denoted by a forward slash. So, you separate the

variables and insert a forward slash between them, what you get is basically the quotient.

So, in this case 10 by 5 gives you a quotient of 2 which is the output here. So, the next

operation is getting a remainder and it is denoted by the percentage symbol. So, let us

take the same example here. I am trying to get the remainder when I divide a and b and

you just separate the variables and insert the percentage symbol and that returns the

remainder. In this case a is 10 and b is 5. So, 10 is divisible by 5 and hence I get a

remainder of 0.

The next operation is exponent and it is denoted by double asterisk. So, let us say if I

want to raise a variable to the power of another variable then I am going to use this

operation. So, let us say in this case I want to raise a to the power of b, then I just say a

double asterisk b. So, in this case since we have a as 10 and b as 5, I am just going to

raise 10 to the power of 5 and the corresponding output that you get here is 1 lakh.

(Refer Slide Time: 03:51)

So, let us look at the hierarchy of operators. Now, I have ordered the operators in the

decreasing order of precedence. So, the first is parentheses. So, parentheses is not really

an operator, but anything that is enclosed within parentheses gets the topmost priority.

So, therefore, I have included parenthesis also as an operation. Now, this is followed by

exponential operations and then division, multiplication and addition and subtraction are

given the same precedence. So, let us take an example here in this case.

I have the following expression. I have

So, to avoid confusion I am going to add bracket for this 27 by 3 square term. So, 27 is

the numerator, the denominator is 3 square and to denote 3 square I add a double asterisk

here and the entire term I am enclosing it within parentheses. So, once you execute the

command in your console, if you print the value of A, it should return 5. So, this is how

you will use the operators in an expression. You can also try out this example.

(Refer Slide Time: 05:03)

So, now let us look at assignment operators. So, an assignment operator is used to assign

a value to a variable. So, the first assignment operator that we are going to look into is

the equal to symbol. Now, this is the most commonly huge assignment operation and that

is because whenever you want to create a variable you want to assign a value to it. So,

we have learnt how to use this operator in our earlier lectures.

So, what it basically does is that it will assign values from the right side operand to the

left side operand. Now, the left side operand is a variable name and the right side

operand is the value that is given to the variable. So, let us take an example in this case. I

am retaining the same variable names a and b, I am assigning a value of 10 to a. In this

case 10 is my right side operand and a is my left side operand. So, the same definition

also holds good for b equal to 5.

So, the next operator that we are going to look into is the += operator. So, what it

basically does is that, it first adds the right operand to the left operand and then it will

store the result on the left side operand. Now, let us take the same variables a and b.

Now, if I were to denote a += b then this would translate to a= a + b. I have indicated

that within parentheses here. So, whenever I give a += b, then I am saying a = a + b, so,

the first operation that happens is the addition operation which is a + b. So, the value of a

+ b gets stored in a and hence you can see that the value of a gets updated to 15 a was

earlier 10, and now the value gets updated to 15.

The next operator is the minus equal to operator. So, this is also similar to the addition

operator that we earlier saw. It basically subtracts the right operand from the left and it

will store the result on the left side operand. Now, whenever I give a -= b then it

translates to a = a - b. Now, whenever I compute the difference in this case I am getting a

difference of 5 and that is what I am printing.

(Refer Slide Time: 07:19)

So, asterisk operator will multiply the right operand from the left and will store the result

on the left operand. Now, in this case again I am going to retain the same values of a and

b; a is 10, b is 5 which means I am multiplying a and b first. So, a * b will give me a

product of 50. Now, whenever I print the value of a it will give me the updated value

which is 50. Forward slash equal to means division. So, whenever I use this operator, I

am going to divide the right operand from the left and store the value on the left operand.

Now, in this case a /= b translates to a = a / b. Now, if you print the value of a you can

see that the value of two has been updated 2 to from 10.

(Refer Slide Time: 08:09)

So, now let us see what relational or comparison operators are. A relational operator will

test for a numerical equality or an inequality between two operands. The value that a

relational operator returns is Boolean in nature which means it will basically return true

or false. Now, all the relational operators that we are going to look into have the same

precedence which means they all have the same priority.

So, let us create two variables x and y. I am assigning a value of 5 to x and 7 to y. The

first relational operation is the strictly less than operation. It is denoted by the angle

operator with its tip towards the left. So, let us take an example and see how this operator

works. Now, we already have the values for x and y. Now, I am just giving the relation x

< y. So, now, what will happen is that it will check whether x is strictly less than y? In

our case, yes, x is 5, y is 7. So, yes, 5 is strictly less than 7 and hence the output that you

will see is true.

The next operation is the less than equal to operation. It is denoted again with the angled

operator with it is tip towards the left followed by an equal to symbol. Now, let us take

an example. Now, in this case I am trying to print the output for x <= y. So, in this case

we are checking if x < y or is x = y. So, these are the two conditions that we are going to

check. So, x is of course, not equal to y, but x is less than y. So, that condition is satisfied

and hence the output that you get is true.

(Refer Slide Time: 09:49)

So, similar to the strictly less than and less than equal to operator, you have the strictly

greater than and greater than equal to operator. So, contrary to what a strictly less than

operator does, in this case you are strictly checking whether x is greater than y. Of

course, it is not and hence the output is false. For greater than equal to you basically are

checking whether x > y or is x = y. So, both the conditions are false anyways and hence

the output that you get is also false. So, a strictly greater than operator is denoted by an

angled operator with its tip to the right and a greater than equal to operator is denoted by

an angled operator with its tip to the right followed by an equal to symbol.

The next operation is the equal to equal to operation. It is denoted by a double equal to

symbol and what we really check when we give double equal to? We check if the left

hand side operand is it exactly equal to the right hand side operand. In this case the value

of x and y are 5 and 7 respectively and I am checking if 5 is exactly equal to 7 or not.

No, it is not and hence the output is false.

The next operation is not equal to. It is denoted by an exclamation followed by an equal

to symbol(!=). So, in this case the output is going to be true as long as x is not equal to y.

So, this operator is frequently used when you are iterating through a loop and you want

to run the loop or you want to iterate through the loop as long as a certain condition is

obeyed. So, you can use not equal to in that case. Now, as long as x is not equal to y my

output is always going to remain as true.

(Refer Slide Time: 11:31)

So, the next set of operators are the logical operators. A logical operator is used when the

operands are conditional statements. The output for logical operators are Boolean in

nature which means they return true or false. So, strictly from the point of view of

python logical operators are designed to work only with scalars and Boolean values. So,

if you want to compare two arrays, then a logical operator cannot be used. So, let us take

the first logical operation which is logical or it is denoted by the letters or, both letters in

lowercase.

Now, let us take a small example here, I am retaining the same values for x and y; x is 5,

y is 7. Now, if I give (x > y) or (x < y), I get an output that says true. Now, why does it

happen? So, a logical OR is designed to give an output true when one of the statement is

satisfied. In this case x > y it is not satisfied. So, it is a false, but however, x < y that

statement is satisfied. So, this gives you an output which is true. So, the inputs to the or

operator is basically false and true. So, whenever you have a false and a true operand,

then the resultant is always true. So, hence you are also getting an output which is true.

The next is the logical AND which is represented by the letters and, all letters again in

lower case. Let us take a small example here, I am taking the same expressions that I

have considered above. Now, in this case instead of or I am replacing them by and. So,

for the same conditions I am getting a different output and in this case it is false. So, why

does this happen? If you look at the conditional statements the first is x > y, we know

that this is a false statement it gives you a Boolean value of false. The second conditional

statement is x < y. Now, this is true like I earlier said.

So, the way a logical AND works is that whenever you have a false and a true condition

as the operands you will basically get a false output and this is because logical AND

expects you to satisfy both the conditions and unless both these values are true it will

never return the output as true. So, even when you have false true or true false the output

is always false.

So, the next logical operator is not represented by the letter not, again in lowercase. So,

not basically negates your statement. So, I have taken the example of x == y. Now, we

know the value of x is 5, value of y is 7 of course, both of them are not equal. Now, the

output that you will get from this conditional statement is false. So, we are trying to

negate false which means not false. So, that gives you a result which is true. So, that is

why you get the output as true.

Now, another important point to note in logical operators is that, whenever you giving

these conditional or relational statements, make sure that you enclose them within

parentheses because if you are not going to do it then you are likely to get an error.

(Refer Slide Time: 14:55)

So, let us move on to bitwise operators. So, bitwise operators are used when the operands

are integers. So, these integers are treated as a string of binary digits and are binary

encoded. So, when you are going to use a bitwise operator on two integers which are

binary coded, the operator is going to compare bit by bit of the binary code and that is

how the operator got its name bitwise.

The other advantage of using a bitwise operator is that, they can operate on conditional

statements. Now, these conditional statements can compare scalar values or they can also

compare arrays. Now, if you would like to compare arrays you would be using a bitwise

operator. We earlier saw that we cannot use logical operators to handle arrays and this is

where bitwise operators step in.

So, throughout the course we are going to be looking into two bitwise operators. The first

says bitwise OR which is represented by a pipe and second operator is the bitwise AND

represented by an ampersand.

(Refer Slide Time: 15:53)

So, create two variables x and y with values 5 and 7. Now, these are the binary codes for

5 and 7 and we are going to be using these variables for our example. So, 0 corresponds

to false and 1 corresponds to true. And, in a bitwise OR the operator will copy bit by bit

of the result if it is there in either of the operands. But, in a bitwise AND the operator

will copy the bit only if it exists across both the operands.

So, let us take an example and see what these two statements mean.

(Refer Slide Time: 16:23)

Now, I am going to be illustrating a bitwise OR on integers. Now, I am using the bitwise

OR operator which is a pipe symbol between x and y; x and y are my operands. The

output that you will be getting is 7. So, let us see how this output was achieved.

So, I have created two arrays here. The cells in these arrays consists of the individual

binary code for 5 and 7, and I have color coded them for reference. So, the first two

positions of both the binary codes is 0. So, both these serve as my input operands. Now,

both these positions have 0 and hence the resultant will also contain 0.

(Refer Slide Time: 17:07)

Now, let us take the second position. The second position also has 0 for both the binary

codes and hence my corresponding position in the resultant binary code is also going to

be 0. I have highlighted the positions using circles to just show you which cells I am

referring to.

So, now you can also see that positions 3, 4 and 5 consists of 0’s for both the binary

codes. So, hence the corresponding positions of the resultant binary code will also

contain 0. Another important point to note is that the sixth position of both the binary

codes consists of 1. So, the binary code for 5 and the binary code for 7, in both of these

codes the sixth position corresponds to 1 and hence in the resultant binary code I am

copying 1 for the sixth position.

(Refer Slide Time: 17:59)

Moving further, if you compare the 7th position for both these binary codes you can see

that for the binary code 5 the 7th position has 0 and for the binary code 7, the 7th

position has 1. So, in this case there is a difference in values between both these

operands. So, we are going to see how to fill in the corresponding position of the

resultant binary code.

So, since we are using an OR operator, when one of the condition is true the resultant

always becomes true. In this case, if you can recall so, like I earlier said 0 corresponds to

false and 1 corresponds to true so, we have one true condition. So, the resultant will also

contain the true value which is 1. So, an OR operator will give you the output as true

when one of the operands is true.

Now, we are left with the last position and for both these binary codes the last position is

1 and I am going to be copying this value to the corresponding position in my resultant

binary code. So, this is the binary code that you get when you apply a bitwise OR

between two integers. This is the binary code for 7 that we earlier started with and this is

how a bitwise or operator works between two integers.

(Refer Slide Time: 19:17)

We can also use bitwise operators for conditional statements. Now, if I were to use the

bitwise OR for a relational statement, this is how it could look. So, I am giving two

conditional statements here. The first is where I am checking if x is less than y; the

second is where I am checking if x is equal to equal to y.

Now, I am in this case x is less than y that results in a value which is true and whereas,

the second conditional statements which is x equal to equal to y will result in false. In

this case, the first condition is true and hence the output that you get is also true.

(Refer Slide Time: 19:53)

So, now let us look at the precedence of operators, I have ordered the operators in the

decreasing order of precedence. So, like I earlier mentioned parenthesis is not an

operator. Now, any expression with operators that are enclosed within parentheses they

get the topmost priority. So, that is why parentheses always occupy the first line in terms

of precedence.

Now, after parentheses I have the exponential operation followed by division,

multiplication, addition and subtraction are given the same precedence, I then follow it

up with my bitwise AND bitwise OR, all relational operators are given the same

precedence.

(Refer Slide Time: 20:31)

And, then comes the logical NOT, logical AND, and logical OR. So, this is the

decreasing order of precedence for all the operators put together.

(Refer Slide Time: 20:45)

So, to summarize in this lecture we saw what are the important operators. We looked at

what arithmetic, assignment, relational, logical and bitwise operators do. We also took an

example in each of these case to illustrate how the operator works and what is the nature

of the output.

Thank you.

