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k-Nearest Neighbors (kNN) 

 

In this lecture, we will look at a very very simple yet powerful classification  

algorithm called the k-Nearest Neighbors. So, let me introduce a k-Nearest Neighbor 

classification algorithm. 
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It is what is called a non-parametric algorithm for classification. So, let me explain what 

this non-parametric means. Remember, when we looked at logistics regression for 

example, we said let us say there is data like this and we are going to use the train data to 

develop a hyper plane of this form 𝛽0 +  𝛽11𝑥1 +  𝛽12𝑥2 in the 2D case and any time a 

new data point comes what we do is we use the parameters that have been estimated 

from the train data to make predictions about test data. 

So, remember we had this e power this term divided by 1 plus e power this term right 

here. So, this function is actually a function of 𝛽0 +  𝛽11𝑥1 + 𝛽12𝑥2. So, these are all 

parameters that I have already been derived out of this data and any time a new test data 

comes in, it is sent through this function and then you make a prediction. So, this is a 

parametric method because parameters have been derived from the data. 



k-Nearest Neighbor is a different idea where I do not get parameters like this out of the 

data. I am going to use the data itself to make classification. So, that is an interesting 

different idea that one uses in k-Nearest Neighbors. I just want to make sure that we get 

the terminology right. We will later see that the k-Nearest Neighbor there is one parameter 

that we use for classifying which is the number of neighbors that I am going to look at. So, 

I do not want you to wonder since we are using anyway a parameter in the k-Nearest 

Neighbor why am I calling it non-parametric. 

So, the distinction here is subtle, but I want you to remember this the number of neighbors 

that we use in the k-Nearest Neighbor algorithm that you will see later is actually a tuning 

parameter for the algorithm that is not a parameter that I have derived from the data. 

Whereas, in logistic regression these are parameters I can derive only from the data. I 

cannot say what these values will be a priori whereas, I could say I will use a k-Nearest 

Neighbor with 2 neighbors, 3 neighbors and so on. So, that is a tuning parameter. 

So, I want you to remember the distinction between a tuning parameter and parameters 

that are derived from the data and the fact that k-Nearest Neighbor is a non-parametric 

method speaks to the fact that we are not deriving any parameters from the data itself; 

however, we are free to use tuning parameters for k-Nearest Neighbors. So, that is an 

important thing to remember. 

It is also called a lazy learning algorithm where all the computation is deferred until 

classification. So, what we mean by this is the following: if I give train data for example, 

for logistic regression I have to do this work to get these parameters before I can do any 

classification for a test data point right. So, without these parameters I can never classify 

test data points. However, in k-Nearest Neighbor you just give me data and a test data 

point I will classify. So, we will see how that is done, but no work needs to be done before 

I am able to classify a test data point. So, that is another important difference between k-

Nearest Neighbor and logistic regression for example. 

It is also called as an instant based learning where the function is approximated locally. 

So, we will come back to this notion of local as I describe this algorithm. 
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Now, we might ask when do we use this as I started this lecture I mentioned it simplest of 

classification algorithms, very easy to implement and you will see when I explain the 

algorithm how simple it is. 

There is no explicit training phase and so on and there is no generalization for the training 

data and all that. It just that I give the data and then I just wait till they give me a new data 

point to say what class it should belong to. Of course, based on the algorithm itself I can 

also predict for the train data points itself what class they should belong to and then maybe 

compare it with the label that the data point has and so on. Nonetheless, I am not going to 

explicitly get some parameters out. 

And, when does one use this algorithm? This is a simple algorithm when there are 

complicated non-linear decision boundaries this algorithm actually works surprisingly 

well and when you have large amount of data and the train phase can be bogged down by 

large number of data in terms of an optimization algorithm and so on then you can use 

this. However, a caveat is you will see as we describe this algorithm when you have more 

and more data the classification of nearest neighbor itself will become complicated. 

So, there are ways to address this but when we say when the amount of data is log all that 

we are saying is since there is no explicit training phase. There is no optimization with a 

large number of data points to be able to identify parameters that are useless at later in 

classification. So, in other words in other algorithms you will do all the effort a priori and 



once you have the parameters then it classification becomes on the test data point becomes 

easier. 

However, since k and then is a lazy algorithm all the calculations are deferred till you 

actually have to do something at that point there might be a lot more classic lot more 

calculations if the data is large. 

(Refer Slide Time: 06:53) 

 

So, the input features for k-Nearest Neighbors could both quantitative and qualitative and 

output are typically categorical values which are what type of class does this data belong. 

Now, it is not necessary that we use k-Nearest Neighbor only for classification though that 

is where it is used the most you could also use it with very very simple extensions or simple 

definitions for function approximation problems also and you will see as I describe this 

algorithm how it could be adapted for function approximation problems quite easily. 

Nonetheless, as far as this lecture is concerned we are going to say the outputs or 

categorical values which basically says different classes and what class does this data point 

belong to. In one word if you were to explain k-Nearest Neighbor algorithm you would 

simply say k-Nearest Neighbor explains a categorical value using the majority vote of 

nearest neighbors. So, what basically we are saying is if there is a particular data point and 

I want to find out which class this data point belongs to all I need to do is look at all the 

neighboring data points, and then find which class they belong to and then take a majority 

vote and that is what is the class that is assigned to this data point. 



So, it is something like if you want to know a person you know his neighbors something 

like that is what is used in k-Nearest Neighbors. 
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Now, remember at the beginning of this portion of data science algorithms I talked about 

the assumptions that are made by different algorithms. Here for example, because this is a 

non-parametric algorithm we really do not make any assumptions about the underlying 

data distribution, we are just going to look at the nearest neighbors and then come up with 

an answer. So, we are not going to assume probability distribution or any other a separable 

ad assumptions and so on. 

As I mentioned before this k the number of neighbors we are going to look at is a tuning 

parameter and this is something that you select right. So, you use a tuning parameter, run 

your algorithm and you get good results then keep that parameter if not you kind of play 

around with it and then find the best k for your data. 

The key thing is that because we keep talking about neighbors and from a data science 

viewpoint whenever we talk about neighbors we have to talk about a distance between a 

data point and its neighbor. We really need a distance metric for this algorithm to work 

and this distance metric would basically say how what is the proximity between any two 

data points. The distance metric could be Euclidean distance, Mahalanobis distance, 

Hamming distance and so on. 



So, there are several distance metrics that you could use to basically use k-Nearest 

Neighbor. 
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So, in terms of the algorithm itself it is performed using the following four steps. Nothing 

is done till the algorithm gets a data point to be classified. Once you get a data point to be 

classified let us say I have N data points in my database and each has a class label. So, for 

example, X 1 belongs to class 1, X 2 belongs to class 1, X 3 belongs to class 2 and so on 

X N belongs to let us say class 1. So, this is you know a binary situation, binary 

classification problem. This need not be a binary classification problem. 

For example, X 2 could belong to class 2 and so on. So, there may be many classes. So, 

multi class problems are also very very easy to solve using kNN algorithm. So, let us 

anyway stick to binary problem. Then what you are going to do is let us say I have a new 

test point which I call it X new and I want to find out how I classify this. So, the very first 

which is what we talk about here is we find a distance between this new test point and each 

of the label data points in the data set. 

So, for example, there could be a distance d1 between Xnew and X1 ,  d2 between Xnew and 

X2, d3 and so on and dN. So, once you calculate this distance then what you do is you have 

n distances and this is the reason why we said you need a distance metric right in last slide 

for a kNN to work. Once we have this distance then what we do is basically we look at all 

of these distances, and then say I order that the distances from the smallest to the largest. 



So, let us say if dN is the smallest distance so, dN may be d5, d3, d10 whatever it is. So, I 

order them this is the smallest to the largest you can also think of this as closest to the 

farthest right because the distances are all from Xnew. So, the distance is 0 then the point is 

Xnew itself. So, any small distance is the closest to Xnew and as you go down it is farther 

and farther. 

Now, the next step is very simple if let us say you are looking at k-Nearest Neighbors with 

K equal to 3, then what you are going to do is you are going to find the first three distances 

in this and this distance is from XN, this distance is from X5 and this distance is from X3. 

So, once we order this according to distance and go from the smallest to largest once we 

started in this fashion then we also know what the corresponding data points are. So, this 

belongs this is the data point XN. So, this is the distance between XN and Xnew, distance 

between X5 and this. So, now, I have these three data points that I picked out from the data 

set. 

Now, if I want to classify this all that I do is the following. I find out what class these data 

points belong to. So, if all of them belong to class 1 then I say Xnew is class 1; if all of them 

belong to class 2 I say Xnew is class 2; if two of them belong to class one and the third one 

belongs to class 2 I do a majority vote and still say it is class 1. If two of them belong to 

class 2 and one belongs to class 1, I say it is class 2, that is it that is all the algorithm is. 

So, it says to find the class label that the majority of this K label data points have and I 

assign it to the test data point, very simple right. 

Now, I also said this algorithm with minor modifications can be used for function 

approximation. So, for example, if you so choose to you could take this and then let us say 

if you want to predict what an output will be for a new point, you could find the output 

value for these three points and take an average for example, very trivial and then say that 

is the output corresponding to this. So, that becomes adaptation of this for function 

approximation problems and so on. Nonetheless for classification this is the basic idea. 

Now, if you said K is equal to 5 then what you do is you go down to 5 numbers and then 

do the majority voting. So, that is all we do. 
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So, let us look at this very simple idea here let us say this is actually the training data itself 

and then I want to look at K equal to 3 and then see what labels will be for the training 

data itself and the blue are actually labeled. So, this is supervised right. So, the blue are all 

belonging to class 1 and the red is all belonging to class 2 and then let us say for example, 

I want to figure out this point here blue point. 

Though I know the label is blue what class would k-Nearest Neighbor algorithm say this 

point belongs to? Say, if I want to take K equal to 3 then basically I have to find three 

nearest points which are these three. So, this is what is represented and since the majority 

is blue this will be blue. So, basically if you think about it this point would be classified 

correctly and so on. 

Now, even in the training set for example, if you take this red point I know the label is red; 

however, if I were to run k-Nearest Neighbor with three data points when you find the 

three closest point they all belong to blue. So, this would be misclassified as blue even in 

the training data set. So, you will notice one general principle is there is a possibility of 

data points getting misclassified only in kind of this region where there is a mix of both of 

these data points. However, as you go farther away the chance of miss classification it 

keeps coming down. 

So, again in some sense you see a parallel saying if I were to draw a line here and then say 

this is all red class this is all blue class then points around this line is where the problem is 



right as they go farther away the problems are less. Nonetheless, notice how we have never 

defined a boundary line or a curve here at all right. The data points themselves tell you 

how this boundary is not. 

So, in that sense it is while it is simple it is also in some sense sophisticated because we 

never have to guess a boundary, the data points themselves define a boundary in some 

sense. So, I can actually effectively use this algorithm for complicated non-linear 

boundaries which you would have to guess a priori if we were using a parametric approach. 

So, that is the key idea here. 

A similar illustration for K equal to 5, now if I want to let us say a check this data point 

from the training set itself then I look at it is five neighbors closest 1 2 3 4 5, all of them 

are red. So, this is classified as red and so on. So, this is the basic idea. 
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Now, you do not have to do anything till you get a data point. So, you could verify how 

well the algorithm will do on the training set itself. However, if you give me a new test 

data here so, which is what is shown by this data point then if you want to do a 

classification there is no label for this. Remember, the other red and blue data points 

already have a label from prior knowledge; this does not have a label. So, I want to find 

out a label for it. 



So, if I were to use K equal to 3, then for this data point I will find the three closest 

neighbors, they happen to be these three data points. Then I will notice that two out of 

these are red. So, this point will get a label class 2. If on the other hand the test data point 

is here and you were using K equal to 5, then you will look at the five closest neighbor to 

this point and then you see that two of them are class 2 and three are class 1. So, majority 

voting this will be put into class 1. So, you will get a label of class 1 for this data point. 

So, this is the basic idea of k-Nearest Neighbor. So, very very simple. 
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However, these are some of these the things to consider before applying kNN. So, one has 

to choose the number of neighbors that one is going to use the value of K whether 3 5 7 9 

whatever that is and the results can quite significantly depend on the parameter that you 

choose particularly when you have noise in the data and that has to be taken into account. 

The other thing to keep in mind when using kNN is that when you do a distance between 

two data points X 1 and X 2 let us say and, let us say there are n components in these. The 

distance metric will take all of these components into picture. So, since we are comparing 

distance then that basically means every attribute for this data in this data point we are 

comparing distances. 

The problem with this is that if for example, there are a whole lot of attributes which 

actually are not at all important from a classification viewpoint, then what happens is 



though they are not important from a classification viewpoint they contribute in the 

distance measure. So, there is there is a possibility of this features actually kind of spoiling 

the results in k-Nearest Neighbor. So, it is important to pick features which are which are 

of relevance in some sense. So, the distance metric actually uses only features which will 

give it the discriminating capacity. So, that is one thing to keep in mind. 

The other the problem is these are these are handle able, these are rather easily handled, 

but these are things to keep in mind when you look at these kinds of algorithms and also 

particularly this being the first course on data science I am assuming for most of you these 

are kinds of things that you might not have thought about before. So, it is worthwhile to 

kind of think about this do some mental experiments to see why these kinds of things might 

be important and so on. 

Now, the other aspect is scaling. So, for example, if there are two attributes, let us say in 

data temperature and concentration and temperatures are in values of 100 concentrations 

are in values of 0.1, 0.2 and so on when you take a distance measure and these numbers 

will dominate over this. So, it is always a good idea to scale your data in some format 

before doing this distance, otherwise while this might be an important variable from a 

classification viewpoint it will never show up because these numbers are bigger and they 

will simply dominate the small number. So, feature selection and scaling are things to keep 

in mind. 

And, the last thing is curse of dimensionality. So, I told you that while this is a very nice 

algorithm to apply because there is not much computation that is done at the beginning 

itself. However, if you notice if I get a test data point and I have to find let us say the five 

closest neighbors there is no way in which I can do this it looks like, unless I calculate all 

the distances. So, that can become a serious problem if the number of data points in my 

database is very large. 

Let us say I have 10000 data points and let us assume that I have an algorithm k-Nearest 

Neighbor algorithm with K equal to 5. So, really what I am looking for is finding 5 closest 

data points from this data base to this data point. However, it looks like I have to calculate 

all the 10000 distances and then sort them and then pick the top 5. So, in other words to 

get this top 5 I have to do. So, much work right. So, there must be smarter ways of doing 



it but nonetheless one has to remember that the number of data points and number of 

features one has to think how to apply this algorithm carefully. 
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So, the best choice of k depends on the data and one general rule of thumb is if you use 

large values for k then clearly you can see you are taking lot more neighbors. So, you are 

getting lot more information. So, the effect of noise on classification can become less. 

However, if you take large number of neighbors, then your decision boundaries are likely 

to become less crisp and more diffuse right. So, because if let us say there are two classes 

like this then for this data point if you take a large number of neighbors then you might 

pick many neighbors from the other class also. So, that can make the boundaries less crisp 

and more diffuse. 

On the fifth slide flipside if you use smaller values of k then your algorithm is likely to be 

affected by noise and outliers. However, your decision boundaries as a rule of thumb are 

likely to become crisper. So, this is these are some things to keep in mind.  
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And, as I mentioned before it is important to remove relevant features and scaling is also 

an important idea. So, if you choose your features carefully then you would get better 

classification with kNN. 

So, with this we come to an end of this lecture on k-Nearest Neighbors and following this 

lecture there will be a case study which will use k-Nearest Neighbor that will be taught by 

one of the teaching assistants and after that I will teach a lecture on k-means clustering. 

Thank you and I look forward to seeing you again in a future lecture. 

Thanks. 


