
Python for Data Science 

Prof. Ragunathan Rengasamy 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 32 

Logistic regression 

 

(Refer Slide Time: 00:23) 

 

In this lecture I will describe a technique called Logistic regression. Logistic regression is 

a classification technique which basically develops linear boundary regions based on 

certain probability interpretations. While in general we develop linear decision boundaries 

this technique can also be extended to develop non-linear boundaries using what is called 

polynomial logistic regression. For problems where we are going to develop linear 

boundaries the solution still results in a non-linear optimization problem for parameter 

estimation as we will see in this lecture. 

So, the goal of this technique is given a new data point I would like to predict the class 

from which this data point could have originated. So, in that sense this is a classification 

technique that is used in a wide variety of problems and it is surprisingly effective for a 

large class of problems. 
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Just to recap things that we have seen before we have talked about binary classification 

problem before just to make sure that we recall some of the things that we have talked 

about before. We said classification is the task of identifying what category a new data 

point or an observation belongs to. There could be many categories to which the data could 

belong, but when the number of categories is 2 it is what we call as the binary classification 

problem. 

We can also think of binary classification problems as simple yes or no problems where 

you either say something belongs to a particular category or no it does not belong to that 

category. 
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Now, whenever we talk about classification problems we have described this before we 

say it data is represented by many attributes x 1 to x n. We can also call this as input 

features as shown in the slide and these input features could be quantitative or qualitative. 

Now, quantitative features can be used as they are.  

However, if we are going to use a quantitative technique, but we want to use input features 

which are qualitative, then we should have some way of converting this qualitative features 

into quantitative values. One simple example is if I have a binary input like a yes or no for 

a feature. So, what do we mean by this? So, I could have yes let us say a 0.1, 0.3 and then 

another data point could be no 0.05 - 2 and so on.  

So, you notice that these are quantitative numbers while these are qualitative features. 

Now, you could convert this all into quantitative features by a coding yes as I and no as 0. 

So, then those also become number. There is a very crude way of doing this there might 

be much better ways of coding qualitative features into quantitative features and so on. 

You also have to remember that there are some data analytics approach that can directly 

handle these qualitative features without a need to convert them into numbers and so on. 

So, you should keep in mind that that is also possible. 
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Now, that we have these features we go back to our pictorial understanding of these things 

just for the sake of illustration, let us take this example where we have this 2 dimensional 

data. So, here we would say x is x1, x2 variables let us say x1 is here x2 is here. So, its 

organized into data like this now let us assume that all the circular data belong to 1 category 

and all the stored data belong to another category. Notice that circle data would have 

certain x1 and certain x2 and similarly started I would have certain x1 and certain x2. 

So, in other words all values of x1 and x2 such that the data is here belongs to 1 class and 

such that the data is here belongs to another class. Now, if we were able to come up with 

hyper plane such as the one that is shown here we learn from our linear algebra module 

that to one side of this hyper plane is a half space this side is half space and depending on 

the way the normal is defined you would have a positive value and a negative value to 

each side of the hyper plane. So, this is something that we are dealt with in detail in 1 of 

the linear algebra classes. 

So, if you were to do this classification problem then what you could say is if I get a data 

point somewhere here I could say it belongs to whatever this class is here. So, let us call 

this for example, we could call this class 0 we could call this class 1 and we would say 

whenever a data point falls to this side of a line then it is class 0 and if a data point falls to 

this side of the line we will say its class 1 and so on. 



However, notice that any data point, so whether it falls here it falls here we are going to 

say class 0, but intuitively you know that if this is really a true separation of these classes, 

then this is for sure going to belong to class 0. But as I go closer and closer to this line 

there is this uncertainty about whether it belongs to this class or this class because data is 

inherently noisy. So, I could have a data point which is true value here; however, because 

of noise it could slip to the other side and so on.  

So, as I come closer and closer to this then you know the probability or the confidence 

with which I can say it belongs to a particular class can intuitively come down. So, simply 

saying yes this data point and this data point belongs to class 0 is 1 answer, but that is 

pretty crude. So, the question that this logistics regression and services can we do 

something better using probabilities.  

So, I would like to say that the probability that this belongs to class 1 is much higher than 

this because its far away from the decision boundary. So, how do we do this? Is a question 

that logistics regression addresses. 
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So, as I mentioned before the probability of something being from a class if we can answer 

that question that is better than just saying yes or no answers right. So, one could say yes 

this belongs to a class a better nuanced answer could be that yes it belongs to a class, but 

with a certain probability as the probability is higher, then you feel more confident about 

assigning that class to the data. 



On the other hand if we model through probabilities we do not want to lose binary answer 

like yes or no also. So, if I have probabilities for something I can easily convert them to 

yes or no answers through some thresholding which we will see in the logistics regression 

methodology when we describe that. So, while we do not lose the ability to categorically 

say if a data belongs to a particular class or not by modeling this probability. On the other 

hand we get a benefit of getting a nuanced answer instead of just saying yes or no.  
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So, the question then is how does one model these probabilities? So, let us go back and 

look at the picture that we had before let us say this is x1 and x2. Remember that this hyper 

plane would typically have this form here the solution is written in the vector form, if I 

want to expand it in terms of x1 and x2 what I could do is I could write this as  

p(x) = 𝛽0 + 𝛽11𝑥1 +  𝛽12𝑥2. 

So, this could be the equation of this line in this 2 dimensional space. Now, one idea might 

be just to say this itself is a probability and then let us see what happens. The difficulty 

with this is this p of x is not bounded because its just a linear function whereas, you know 

that the probability has to be bounded between 0 and 1. So, we have to find some function 

which is bounded between 0 and 1.  

The reason why we are still talking about this linear function is because this is the decision 

boundary. So, what we are trying to do here is really instead of just looking at this decision 



boundary and then saying yes and no + and -. What we are trying to do is we are trying to 

use this equation itself to come up with some probabilistic interpretation that is a reason 

why we are still sticking to this equation and trying to see if we can model probabilities as 

a function of this equation which is the hyper plane. 

So, you could think of something slightly different and then say look instead of saying 

p(x) is this let me say  log(𝑝) =  𝛽0 + 𝛽1𝑋1 in this case you will notice that it is bounded 

only on one side in other words if I write log(𝑝) =  𝛽0 + 𝛽1𝑋1 will ensure that p(x) never 

becomes negative. 

However, on the positive side p(x) can go to ∞ that again is a problem because we need to 

bound p(x) between 0 and 1. So, this is an important thing to remember. So, it only bounds 

this one side. So, is that something more sophisticated we can do. 
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The next idea is to write p(x) as what is called a sigmoidal function; the sigmoidal function 

as relevance in many areas. So, this is a function that is used in neural networks and other 

very interesting applications. So, the sigmoid has an interesting form which is shown here.  

Now, let us look at this form right here. I want you to notice two things; number 1 is still 

we are trying to stick this hyper plane equation into the probability expression because that 

is a decision surface. Remember intuitively somehow we are trying to convert that hyper 



plane into a probability interpretation. So, that is the reason why we are still sticking to 

this β0 + β1X.  

Now, let us look at this equation and then see what happens. So, if you take this argument 

β0 + β1X. So, that argument depending on the value of x you take could go all the way 

from -∞ to ∞ right. So, just take a single variable case if I write let us say β0 + β1 just 1 

variable X not a vector.  

Now, if β1 is positive if you take x to be a very very large value this number will become 

very large if β1 is negative if you take x to very very large value in the positive side this 

number will become -∞. And similarly if β1 takes the other values you can correspondingly 

choose x to be positive or negative and then make this unbounded between -∞ to ∞. 

So, we will see what happens to this function when β0 + β1X is -∞ you would get this to 

be 𝑒−∞ divided by 1 + 𝑒−∞or you can just think of this as very large number. So, in that 

case the numerator will become 0 and the denominator will become 1 + 0. So, on the lower 

side this expression will be bounded by 0. 

Now, if you take β0 + β1X to be a very large positive number, then the numerator will be 

a very very large positive number and the denominator will be 1 + that very large positive 

number. So, this will be bounded by 1 on the upper side. So, now from the equation for 

the hyper plane we have been able to come up with a definition of a probability which 

makes sense which is bounded between 0 and 1. So, its an important idea to remember. 

 By doing this what we are doing is the following, if we were not using this probability all 

that we will do is we look at this equation and whenever a new point comes in we will 

evaluate this β0 + β1X. And then based on whether its positive or negative we are going to 

say yes or no right. 

Now, what has happened is instead of that this number is put back into this expression 

and depending on what value you get you get a probabilistic interpretation that is a 

beauty of this idea here. You can rearrange this in this form and then say  

𝑙𝑜 𝑔 (
𝑝(𝑥)

1 − 𝑝(𝑥)
) =  𝛽0 + 𝛽1X 



the reason why I show you this form is because the left hand side could be interpreted as 

log of odds ratio which is an idea that is used in several places. So, that is the connection 

here. 
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Now, we have this probabilities and remember if you were to write this hyper plane 

equation as the way we wrote in the last few slides 𝛽0 +  𝛽11𝑥1 +  𝛽12𝑥2. The job of 

identifying a classifier as far as we are concerned is done when we identify values for the 

parameters β0, β11 and β12. So, we still have to figure out what are the values for this. 

Once we have a value for this any time I get a new point I simply put it into the p of x 

equation that we saw in the last slide and then get a probability right. So, this still needs to 

be identified. And; obviously, if we are looking at a classification problem where I have 

this on this side and starts on this side, I want to identify these β0, β1, β11 and β12 such a 

way that this classification problem is solved.  

So, I need to have some objective for identifying these values right. Remember in the 

optimization lectures I told you that all machine learning techniques can be interpreted in 

some sense as an optimization problem. So, here again we come back to the same thing 

and then we say look we want to identify this hyper plane, but I need to have some 

objective function that I can use to identify these values.  



So, these β0, β11 and β12 will become the decision variables, but I still need an objective 

function. And as we discussed before when we are talking about the optimization 

techniques the objective function has to reflect what we want to do with this problem. So, 

here is an objective function looks little complicated, but I will explain this as we go along.  

So, I said in the optimization lectures we could look at maximizing or minimizing. In this 

case what we are going to say is I want to find values for β0, β11 and β12 such that this 

objective is maximized. So, take a minute to look at this objective and then see why 

someone might want to do something like this. So, when I look at this objective function 

let us say I again draw this and then let us say I have these points on one side and the other 

points on the other side.  

So, let us call this class 0 and let us call this class 1. So, what I would like to do is I want 

to convert this decision function into probabilities. So, the way I am going to think about 

this is when I am on this line I should have the probability being equal to 0.5 which 

basically says that if I am on the line I cannot make a choice between class 1 and class 2 

because the probability is exactly 0.5. So, I cannot say anything about it.  

Now, what I would like to do is you can interpret it in many ways; one thing would be to 

say as I go away from this line in this direction I want the probability of the data belonging 

to class 1 to keep decreasing. The minute that the probability that the data belongs to class 

1 keeps decreasing that automatically means since there are only 2 classes and this is a 

binary classification problem, the probability that the data belongs to class 0 keeps 

increasing.  

So, if you think of this interpretation where as I go from here. So, here the probability that 

the data point belongs to class 1 let us say is 0.5, then basically it could either belong to 

class 1 or class 0. And if it is such that the probability keeps decreasing here of the data 

point belonging to class 1 then it has to belong to class 0. So, that is a basic idea.  

So, in other words we could say the probability function that we define before should be 

such that whenever a data point belongs to class 0 and I put that into that probability 

expression I want a small probability. So, you might interpret that probability as the 

probability that the data belongs to class 1 for example. And whenever I take a data point 

from this side and put it into that probability function then I want the probability to be very 



high because I want that is the probability that the data belongs to class 1. So, that is a 

basic idea.  

So, in other words we can paraphrase this and then say for any data point on this side 

belonging to class 0, we want to minimize p(x) when x is substituted into that probability 

function and for any point on this side when we substitute these data points into the 

probability function we want to maximize that probability. So, if you look at this here what 

this says is if this data point belongs to class 0 then y i is 0. 

So, whenever a data point belongs to class 0 anything to the power 0 is 1; so this will 

vanish. So, in the product there will be functions of this form which will be 1 - p of x i and 

because y i is 0 this will become 1. So, this will become something to the power 0 1. So, 

this term will vanish and the only thing that will remain is 1 - p(xi). So, if we try to 

maximize 1 - p(xi), then that is equivalent to minimizing p(xi). 

So, for all the points that belong to class 0 we are minimizing p(xi). Now, let us look at the 

other case of a data point belonging to class 1 in which case y i is 1. So, 1 - 1 0; so this 

term will be something to the power 0 which will become 1. So, it kind of drop out. So, 

the only thing that will remain is p(xi) now yi is 1, so power 1 it will be just left with p of 

xi. And since this data belongs to class 1 I want this probability to be very large. So, when 

I maximize this it will be a large number.  

So, you have to think carefully about this equation there are many things going on here; 

number 1 that this is a multiplication of the probabilities for each of the data points. So, 

this includes data points from class 0 and class 1. The other thing that you should remember 

is let us say I have a product of several numbers, if I am guaranteed that every number is 

positive right then the product will be maximized when each of these individual numbers 

are maximized. So, that is a principal that is also operating here that is why we do this 

product of all the probabilities.  

However, if a data point belongs to class 1 I want probability to be high. So, the individual 

term is just written as p(xi), so this is high for class 1. When a data point belongs to class 

0 I still want this number to be high; that means, this number will be small. So, it 

automatically takes care of this as far as class 0 and class 1 are concerned.  



So, while this looks little complicated this is written in this way because its easier to write 

this as 1 expression. Now let us take a simple example to see how this will look. Let us 

say I have class 0. I have 2 data points x1 and x2 and class 1. I have 2 data points x3 and x4. 

So, this objective function when its written out would look something like this. 

So, when we take let us say these points belonging to class 0, then I said the only thing 

that will be remaining is here. So, this will be 1 - p(x1), for the second data point it will be 

1 - p(x2), then for the data third data point will be p(x3) and for the fourth data point it will 

be p(x4). So, this would be the expression from here.  

So, now, when we maximize this then since p of xs are bounded between 0 and 1 this is a 

positive number; this is a positive number; positive number positive number and if the 

product has to be maximized, then each number has to be individually maximized; that 

means, this has to be maximized. So, it will go closer and closer to 1 the closer to 1 it is 

better. 

So, you notice that to x4 would be optimized to belong in class 1 similarly x3 would be 

optimized to belong in class 1 and when you come to these 2 numbers you would see that 

this would be a large number if p(x1) is a small number. So, p(x1) basically means that x1 

is optimized to be in class 0 and similarly x2 is optimized to be in class 0. So, this is an 

important idea that you have to understand in terms of how this objective function is 

generated. 
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Now, one simple trick you can do is take that objective function and take a log of that and 

then maximize it. So, if I am maximizing a positive number x then that is equivalent to 

maximizing log(x) also. So, whenever this is maximized that will also be maximized. The 

reason why you do this it makes the product into some makes it looks simple. So, 

remember from our optimization lectures we said we are going to maximize this objective. 

So, we always write this objective in terms of decision variables and the decision variables 

in this case are β0, β11 and β12 as we described before.  

So, what happens is each of these probability expressions if you recall from your previous 

slides will have these 3 variables and xi are the points that are already given, so you simply 

substitute them into this expression. So, this whole expression would become a function 

of β0, β11 and β12 right. 

Now, we have come back to our familiar optimization territory where we have this function 

which is a function of these decision variables this needs to be maximized and this is an 

unconstrained maximization problem because we are not putting any constraints or β0, β1 

and β2. So, they can take any value that we want. And also the fact that the way the 

probability is defined this would also become a non-linear function. So, basically we have 

a non-linear optimization problem in several decision variables and you could use any non-

linear optimization technique to solve this problem.  

And when you solve this problem what you get is basically the hyper plane. So, in this 

case its a 2 dimensional problem. So, we have 3 parameters now if there is an n 

dimensional problem if you have let us say n variables. So, I will have something like 𝛽0 +

 𝛽11𝑥1 +  𝛽12𝑥2+.. + 𝛽1n𝑥n this will be an n + 1 variable problem there are n + 1 decision 

variables. These n + 1 decision variables will be identified through this optimization 

solution. And for any new data point once we put that data point into the p(x) function that 

sigmoidal function that we have described, then you would get the probability that it 

belongs to class 0 or class 1.  

So, this is the basic idea of logistic regression. In the next lecture I will take a very simple 

example with several data points to show you how this works in practice and I will also 

introduce a notion of regularization which would help in avoiding over fitting when we do 

logistics regression. I will explain what over fitting means in the next lecture also. With 

that you will have a theoretical understanding of how logistics regression works and in a 



subsequent lecture Doctor Hemant Kumar would illustrate how to use this technique in 

our on a case study problem. 

So, that will give you the practical experience of how to use logistics regression and how 

to make sense out of the results that you get from using logistics regression on an example 

problem.  

Thank you and I will see you in the next lecture.  


