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Lecture - 28 

Model Assessment 

 

Good morning everyone. In the previous lecture we saw how to fit a linear model between 

two variables x which is the independent variable and y which is the dependent variable 

using techniques called regression and in this particular lecture, we are going to assess 

whether the model we have actually fitted is reasonably good or not. There are many 

methods for making this assessment; we will look at the some of these.  

So, what are the useful questions to ask when we fit a model? The first question to ask is 

whether the linear model that we have fitted is adequate or not is good or not? If it is not 

good then perhaps we may have to go and fit a non-linear model. So, thi`s is the first step 

that we will actually test whether the model is good or not. 
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Then even if you fit a model you may want to find out which coefficients of the linear 

model are relevant. For example, in the one variable case that we saw one independent 

variable the only two parameters that we are fitting are the intercept term β0 and the slope 

term β1. 



So, we want to know whether we should have fitted the intercept or not, whether we should 

have taken it as 0. When we have several independent variables in multi linear regression; 

we will see that it is also important to find out which variables are significant, whether we 

should use all the independent variables or whether we should discard some of them. 

So, this particular test for finding which coefficients of the linear model are significant is 

useful not only in the uni varied case, but more useful in multi linear regression where we 

want to identify important variables. Suppose the linear model that we fit is acceptable, 

then we want to actually see whether we can improve the quality of the linear model. When 

fitting linear model using the method of least squares, we make several assumptions about 

the errors that corrupt the dependent variable measurements. 

So, are these assumptions really valid? So, what are some of the assumptions that we make 

about the errors that corrupt the measurements of the dependent variable? We assume that 

the errors are normally distributed only this assumption can actually justify the choice of 

the method of least squares. We also assume that the errors in different samples have the 

same variance; now this is called the homoscedasticity assumption. 

So, we are assuming that the errors in different samples are also having the same variance. 

In general the these two statements assumptions about the errors that they are normally 

distributed with identical variance can be compactly represented by saying that ϵi ; the 

error corrupting measurement i is normally distributed with 0 mean and sigma square 

variance. Notice that sigma squared is same and does not depend on i which means it is 

the same for all samples i equals 1 to n that is the assumption we are made when we use 

the standard method of least squares. 

Now, we also assume that all the measurements that we have made are reasonably good 

and there are no bad data points or what we call outliers in the data. We saw that even 

when we are estimating a sample mean one bad data can result in a very bad estimate of 

the mean. 

So, similarly in the method of least squares; if we have one bad data point it can result in 

a very poor estimate of the coefficients. So, we want to remove such bad data from our 

data set and improve may be fit the linear model only using the remaining measurements 

and that will improve the quality of the linear model. So, these are some of the things we 



need to actually verify. These assumptions what we have made about the errors, whether 

they are reasonable or not if there are bad data can we remove them or not. 

And so, we will look at the first two questions in this lecture which is to assess whether 

the linear model that we have fitted is good and how do we decide whether the coefficients 

of the linear model are significant. 
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So, before we start we need to derive some properties of these estimates that we have 

derived. Remember that the coefficients of the linear model that we have fitted which is 

the intercept term β0 and the slope term β1; these are obtained from data from the sample 

of data that you have given. 

We have indicated that these are estimates and not the true values by putting this karat 

term on top of each of these symbols; which means that this is an estimate  β0̂ is an estimate 

of the true β0 and  β1̂ is an estimate of the true β1 which we do not know. However, we can 

prove based on the assumptions we have made regarding the errors that the expected value 

of  β0̂ will be=β0. What does it mean? If we were to repeat these experiment collect another 

sample of n measurements and apply the method of least squares; we will get another 

estimate of β0. 

Suppose we do this experiment several times and we will get several estimates of  β0̂; let 

me average all of them and the average value of that will tend towards the true value; that 



is what this expression means, that if we were to repeat these experiment several times the 

average of the estimates that we derive will actually be a very good representation of the 

truth. Similarly, we can show that the expected value of  β1̂=the true value β1; notice that 

β0 and β1 are unknown values. 

We are only saying that the expected value of β1 hat will be the true value and the expected 

value of β0 hat will be the true value and such statements are also known as if the estimates 

satisfies such properties, we also call these estimates are unbiased there is no bias in the 

estimate of  β0̂ or  β1̂. The second important property that we need to derive about the 

estimates is the variability of the estimates. 

Notice, we get different estimates of β0 hat depending on the sample that we have derived. 

And therefore, we want to ask what is the spread of these estimates of β0̂  and β1̂; if we 

were to repeat this experiment; we can show again through based on the assumptions we 

are made that the variance of β1 hat will be=sigma squared by Sxx; Sxx represents the 

variance of x or (x − x̅)2summed over all the samples; where as σ2 represents the variance 

of the error that corrupts the dependent variable y. 

So, sigma squared is the error variance, Sxx is the variance of the independent variable. So, 

this ratio we can show will be=the variance of β1̂. Similarly, we can show that the variance 

of β0  ̂ is σ2 which is the variance of the error, multiplied by this ratio the numerator is the 

sum squared values of all the independent variables; while the denominator represents the 

variance of the independent variable. In this the Sxx can be computed from data sigma, of 

xi
2 can be computed from data. 

But we may or may not have knowledge about the variance of the error which corrupts the 

dependent variable; that depends on the instrument that was used to measure the dependent 

variable. If we have some knowledge of this instrument accuracy; we can take the sigma 

squared from that but in most cases data analysis cases we may not have been told what is 

the accuracy of the instrument used to measure the dependent variable. 

So, sigma squared also have to somehow be estimated from the data; we can show that we 

can derive a very good estimate of sigma squared by this quantity that is described here 

which is nothing but the difference between the measured value yi and the estimated value 

yi hat which is obtained from the linear equation we have fitted the linear model. 



So, for every xi we can predict from the linear model what is the estimate of y𝑖̂ for every 

sample, then we can take the difference between the measured and their predicted value of 

the dependent variable; sum squared divided by n-2 that is a good estimate of sigma hat 

squared which is the error in the dependent variable. Now, why do we divided by n-2 

instead of n-n or n-1? 

Very simple y𝑖̂ was estimated using the linear model it has two parameters β0 and β1 which 

means the two of the data points have been used to estimate β0 and β1. And therefore, only 

the remaining n-2 samples are available for estimating this sigma square ok. Suppose, you 

had only two samples then your numerator would be exactly 0 because you have more 

than two samples you have variability and that variability is caused by the error in the 

dependent variable; that is one of the reasons that you are dividing by n-2 because two 

data points have been used to estimate the parameters β0 and β1. 

Now, this particular numerator term is also called the sum squared errors or SSE for short 

and so 𝜎2̂= SSE /(n-2). So, from the data after we have fitted the model we can compute 

this value and compute this SSE and obtain an estimate for sigma hat square. So, you do 

not need to be told the information about the; accuracy of the instrument used to measure 

the dependent variable, you can get it from the data itself ok. 

So, now finally not only we have got the first moment properties of β0̂, β1̂ as well as the 

second moment properties which is variance of β1̂ and the variance of β0̂; we can also 

derive the distribution of the parameter in particular β1̂ can be shown to be normally 

distributed. Of course, with because the expected value of β1̂ is β1; it is normally 

distributed with β1 the true unknown value of β1 as the mean and the variance given by 

sigma; if you substitute the sigma hat squared here, you can finally, show that this is 

nothing, but I am sorry. 

So, this is the unknown σ2divided by Sxx ok; sigma squared is essentially here we have 

derived this σ2 by Sxx is the variance of β1 hat. Now, if you do not know sigma squared 

you can replace the sigma squared with this sigma hat squared SSE by n-2 ok.  

So, once you have derived the distribution of the parameters; we can perform hypothesis 

testing on the parameters to decide whether these are significantly different from 0 and 



that is what we are going to do. We can also derive what we call confidence intervals for 

these estimates based on their distribution characteristics that is the mean and the variance. 
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Now, the first thing we will do is to develop confidence intervals; confidence interval 

simply says what is the interval within which the true value unknown value is likely to be 

with 95 percent confidence or 90 percent confidence. 

You can decide what size confidence interval size you need to have and correspondingly 

you can obtain the interval from the distribution. So, if you want 95 percent confidence 

interval also known as CI and its two sided because it could be either to the left of this 

estimated value or to the right of the estimated value. 

So, we are obtaining the 95 percent confidence interval for β1 from its distribution knowing 

its normally distributed with some unknown variance. So, that we can actually derive from 

the from this particular range which is the estimated value of β1; which is β1̂ ± 2.18 times, 

the standard deviation of β1̂estimated from the data. 

Notice, this is very similar to the normal thing which says that the true value will lie 

between estimate ±2 times the standard deviation. The reason why we have 2.18 instead 

of 2 is because we are no longer obtaining the; critical value from the normal 

distribution, but from the t distribution because σ2 is estimated from the data not known 

apriori. 



So, the distribution slightly changes it is not the normal distribution, but the t distribution 

and that is what we have pointed out here this  2.18 is nothing but the critical value 2.5 

percent critical value upper critical value with 12 degrees of freedom. Why 12 degrees of 

freedom? Because you have in this particular example, we had 14 points and we used two 

of the points for estimating the two parameters. 

So, n-2 is the degrees of freedom; which represents 12 in general depending on the number 

of data points this value 2.18 will change ok. So, that changes the degrees of freedom of 

the t distribution from which you should pick the upper and lower critical value. So, lower 

critical value is-2.18; the upper critical value is 2.18; 2.5 percent. So, the overall is 5 

percent this confidence interval represents the 95 percent confidence interval for β1. 

So, all we are going to state is that the β1 true unknown β1 lies within this interval with 95 

percent confidence; that is what we are saying ok. β1  ̂can be estimated from data so you 

can construct this confidence interval. Similarly, you can construct the 95 percent 

confidence interval for β0 from its variance. 

So, we are doing the same thing   β0̂±2.18 times; standard deviation of  β0̂ estimated 

from data which is what we call 𝑠β0̂
 remember  

𝑠β0̂
= σ2√

Σ𝑥𝑖
2

𝑛 𝑆𝑥𝑥
 

 which is nothing, but the square root of what we have derived in the earlier thing with 

sigma squared replaced by the estimated quantity; that is all this these two terms 

represents  𝑠β0̂
 𝑎𝑛𝑑  𝑠β1̂

. 

So, having constructed this 95 percent confidence interval; you can also use it for testing 

whether β0 is the unknown β0=0 or not or the unknown β1 is 0 or not which is what we will 

do. 
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So, let us look at why would we want to actually do this hypothesis tests. We have fitted a 

linear model assuming that you know that the there is a linear dependency between x and 

y and we have obtained an estimate of 𝛽1̂. 

Also we have also fitted an intercept term we may want to ask is the intercept term 

significant maybe the line should pass through 0,0 the origin. Maybe the y variable does 

not depend on x1 in a significant manner which means 𝛽1̂ is approximately=0 that unknown 

β1 is exactly=0. Although we have got some estimate for 𝛽1̂ non 0 estimate for 𝛽1̂. 

So, the null hypothesis what we want to test is β1=0 versus the alternative that β1≠0. If 

β1=0 it implies that the independent variable x has no effect on the dependent variable, but 

on the other if we reject this null hypothesis; we are concluding that the independent 

variable does have some effect on the dependent variable ok. 

So, this particular hypothesis test can be also re interpreted as the null hypothesis implies 

β1=0; which means what we are doing is only a fit of yi=a constant, whereas if we accept 

the or reject the null hypothesis; then we are actually fitting a linear model with β0 and β1 

present ok. So, the null hypothesis represents the fit of a reduced model which involves 

only the constant whereas, the rejection of the null hypothesis or the alternative hypothesis 

implies that we believe there is a linear model that relates y to x. 



So, between these two models we want to pick whether the reduced model is acceptable 

or maybe the full model is to be accepted and the reduced model should be rejected; that 

is what we are doing when we test this hypothesis β1=0 versus β1 ≠0. Remember β1 can be 

either positive or negative and that is why we are doing a two sided test. 

So, we can do it two ways we can actually reject the null hypothesis if the confidence 

interval for β1 include 0. So, notice that we have constructed the confidence interval for 

β1. So, this this term 𝛽1̂-2.18 may be negative and this maybe positive in which case this 

interval include 0 and then we have to definitely; we might make a decision that that β1 is 

insignificant and actually the true β1=0. 

On the other hand, if both these quantities if the interval is to the left of 0 which is 

completely negative or to the right of 0 which means both these quantities are positive; 

then this interval will not contain 0 and then we make the conclusion reject the null 

hypothesis that β1 equal 0 which means β1 is significant. 

So, from the confidence interval itself; it is possible make the reject or not reject the null 

hypothesis. So, we can extend this kind of analysis to even test whether β0 is 0 or 0. So, if 

the confidence interval for β0; this particular interval includes 0, then we say that the 

intercept term is insignificant otherwise we will say that the intercept term should be is 

significant and should be retained in the model ok. 

So, let us actually when we do a final example we; we will see this. There are other ways 

of performing this test and we will continue the we will do that also because that is very 

useful when we come to multi linear regression. In the uni variant regression we have only 

these two parameters but multi linear regression there are several parameters we will have 

one corresponding to each independent variable and therefore, there will be lot more 

hypothesis test you will do therefore, we will extend this kind of an argument to test for 

β1=0 or β1 ≠0 using what is called a F test which we will go through. 
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So, before performing this F test to check whether a reduced model is adequate or we 

should accept a full model; we will use some definitions for some squared quantities. 

Notice that let us say that we have the set of data; in this case, we have the example of the 

number of units that were repaired and the time taken in minutes to repair the units by 

different sales person and we had 14 such data points 14 such salesmen, who have actually 

reported the data. 

So, the red points actually represents the data and the best the linear fit using the method 

of least squares using all the data points; we got something that is indicated by the blue 

line. Now, suppose we believe that a constant model is good then we would actually fitted 

this particular horizontal line would be the best fit representing 𝑦̅. The best estimate of the 

constant model is the mean of y for all values of x; our prediction best prediction for yi is 

the mean value of yi which means x has no relevance; β1 is 0, so we will estimate the best 

constant fit for yi is this mean value ok. 

So, the red line represents the best fit when we ignore β1 the slope the blue line represents 

the best fit of the data when we include the slope parameter β1. Now let us look at certain 

sum squared deviation the deviation between yi and  𝑦̅ which is the red line; best fit of the 

constant this distance is yi- 𝑦 ̅and sum squared of all these vertical distances from the point 

to the red horizontal line; constant line that is what we call the SS total or sum squared 



total which also represents the variance of y; (yi- 𝑦 ̅)2 all that we have not done is divided 

by n. 

If we had divided by n or n-1 we would have got the variance of y, but this represents the 

sum squared errors in yi; when we ignore the slope parameter that is another way of 

looking at it. The distance between y𝑖 and y𝑖̂; so now suppose we assume that the slope 

parameter is relevant, then we would have fitted this blue line and for every xi let us take 

this xi; yi corresponding to this independent variable, the predicted value of yi using this 

linear model would be the intersection point of this vertical line with the blue line which 

is represented by the blue dot which is what we call  y𝑖̂. 

And therefore, this vertical distance between the measured and the predicted value is the 

sum squared errors is called SSE=(y𝑖- y𝑖̂)
2. And this is the total error if we include the 

slope parameter in the fit ok. So, the difference between these two quantities SS Total-SS 

Error will be equal to what is also called the sum squared residuals which is nothing, but 

the predicted value-the mean value 𝑦 ̅; sum squared over all the data points. 

Now, we can show that SST will always be greater than SSE because SSE was obtained 

by fitting two parameters. Therefore, you should be able to reduce the error may be 

marginally, but you will be always able to be able to reduce the error. So, SS total is the 

we will always be greater than SSE and therefore, this difference SSR will also be positive; 

all of these are positive quantities. 

Now, one can interpret SS total as the goodness of fit if we assume a constant model; we 

can interpret SSE as the goodness of fit of the linear model. And therefore, we can now 

use this to perform a test, literally intuitively we can say that if the reduction by including 

the slope parameter that is SST-SSE is significant; then we conclude it is worthwhile 

including this extra parameter otherwise not. This can be converted into hypothesis test 

formal hypothesis test and that is what is called the F test. 
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So, what we are doing is as I said that SS total is a measure of how good the reduced model 

is which is reduced model here implies a constant model whereas, SSE represents how 

good the linear model; if we include the slope parameter. 

So, we are asking whether the reduced model should be accepted which is the null 

hypothesis or should be rejected in favor of this alternative which is to include the slope 

parameter. So, as I said the F statistic for doing this hypothesis test is to compute the 

difference in the goodness of fit for the reduced model which is always higher-the 

goodness of fit SSE for the alternative hypothesis. 

So, this represents the sum squared errors for the reduced sort of model fit; SSE represents 

the goodness of fit for the alternative hypothesis fit. This difference if it is large enough as 

I said, then we can actually say may be it is worthwhile going with the alternative 

hypothesis rather than the null hypothesis. So, SSR which is the difference between this 

should be large enough. 

So, normalization what; what the denominator represents in some sense a percentage SSE 

is the error obtained for the alternative hypothesis. Remember because of the difference in 

the number of parameters used in the model; we have to take that into account. The 

numerator SST has n-1 degrees of freedom because we are fitting only one parameter. This 

has n-2 degrees of freedom because we are fitting two parameters; so the difference 

actually means its only one extra parameter. 



So, there is numerator which is SSR has only 1 degree of freedom which is n-1-(n-2) 

whereas, the denominator SSE has n-2 degrees of freedom because it has two parameters 

which is fitted. So, we are dividing the SSE by n-2; the number of degrees of freedom. So, 

average sum squared errors per degree of freedom that is what we are saying and that is 

your normalization SSR divided by this normalizes the quantity. 

And we can show formally that it is an F static because it is a ratio of two squared quantities 

and each squared quantity is itself a chi squared variable because it is a square of a normal 

variable. Therefore, this is the ratio of 2 chi squared and we have seen in the hypothesis 

testing the ratio of 2 chi squared variable is an F distribution with appropriate degrees of 

freedom the numerator degrees of freedom is 1, the denominator degrees of freedom is n-

2. 

So, if we want to now do a hypothesis test using this statistic F 0 we compare F 0 with the 

critical value from the F distribution. Notice F is actually a positive quantity, so we do one 

sided test; if we choose the level of significance as 5; 5 percent; then we choose the upper 

critical value from the F distribution with 1 and n-2 degrees of freedom and 5 percent level 

of significance or what we call the upper critical values probability is 5 percent 0.05. 

So, once we get this from F distribution; we got this threshold and if the statistic exceeds 

and threshold, then we will reject the null hypothesis and say the full model is better than 

the reduced mode. We will accept the full mode or we say the; we reject the reduced model 

in favor of the full model that. The slope parameter is worth including in the model we 

will get a better fit that is how we actually conclude. 

So, now there are several ways for deciding whether the linear model we have fitted is 

good or not. We could have used the r squared value we said that if it is close to plus one 

then we should that is one indicator that the linear model may be good it is not sufficient 

what I call sufficient to conclude but it is good indicator. We can also do the test for 

βsignificance of β1; if we conclude that β1 is not significant then maybe, then a linear 

model is not good enough we have to find something else or we can do an F test and 

conclude whether the including the slope parameter is significant. 

So, these are various ways by which we can decide that the linear model is acceptable or 

not or the fit is good. We cannot stop at this we have to do further tests, but at least these 

are good initial indicators that we are on the right track. 
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So, let us apply this to the example of repair of or the servicing problem, where we have 

14 data points and the time taken and the number of units repaired by different salesmen 

are given. 

So, in this case we have these 14 points which we have showed, we have fitted the data 

using r remember that lm is the function which we should call for fitting a linear model 

and here we are predicting the dependent variable is minutes and the independent variable 

is units and once we have fitted this using the R function; it gives out all of this output and 

it gives you the coefficient, the intercept term turns out to be 4.162; the slope parameter 

turns out to be 15.501 ok. 

But also it also tells you what is the standard deviation; estimated standard deviation of 

this parameter which is 𝑠β0̂
 of the intercept. We also tells you what is the standard 

deviation of this estimate for β1 which turns out to be 0.505 all of this calculated from the 

data using the formulas we have described. Now, once it has given out we can actually 

now perhaps construct confidence intervals and find out whether these are significant or 

not or itself actually tells you something whether these if you run a hypothesis test; whether 

you can we will conclude whether β0̂  is significant or  β1̂ is significant and that is indicated 

by what is called this P value that it has reported. 

So, if you get a very high value t value is represents the statistic which you have again 

described earlier. So, it has computed the statistic for you for β0 hat and the statistic for 



testing whether β1=0 or not and it has computed this statistic value and it has compared 

with the critical value the distribution t distribution with the appropriate degrees of 

freedom and concluded that the upper critical or the probabilities 0.239; which means if 

you get very high value for this anything greater than 0.01 or 0.05; it means you should 

reject the we should not reject the null hypothesis. On the other hand, if you get a very low 

value it means you should reject the null hypothesis with greater confidence you can reject 

the null hypothesis. 

So, in this case all its saying is if you choose a level of significance 0.001; you would not 

reject the null hypothesis, if you choose 0.05; you will not reject the null hypothesis, if you 

choose 0.01 as your level of significance, you will not reject the null hypothesis. So, that 

is what the star indicates at what level of significance will you reject it. Whereas, in the 

case of β1; you will reject the null hypothesis which means you will conclude that β1 is 

significant even if you choose very low significance value 0.05, 0.01, 0.001 or even lower 

value. In fact, upto 10-13 you will end up rejecting the null hypothesis. Very low type one 

error probability if you choose also, you will reject the null hypothesis. 

So, therefore you can concluding from these values that β0 hat is insignificant which 

means β0̂ =0 is a reasonable hypothesis, β1̂  is ≠0 is a reasonable hypothesis. Let us go and 

see whether this makes sense for this data. We know that if there no units are repaired then 

clearly no time should be taken by the sales repair person; which means because you have 

not taken any time for servicing because he has not repaired any units. 

So, this line technically should pass through 0,0 and that is what he has said, but; however, 

we went ahead merrily and fitted an intercept term but the test for hypothesis says you can 

safely assume β0 the intercept is 0; it makes physical sense also and we could have only 

fitted β1 that is good enough for this data ok. 

So, perhaps you should redo this linear fit with β0 0 and only using β1 and the; you will get 

a slight different solution and you can test again. So, another way of deciding whether the 

significant whether the slope parameter is significant or not is to look at the F statistic. 

Notice the F statistic is very high and this p value is very low which means you will reject 

the null hypothesis that the reduced model is adequate; implying that you should use β1, 

including β1 is very good you will get a better fit using β1 in your modeling. 



So, the high value of test statistic indicates that you reject the null hypothesis or a low 

value of p value for this F statistic indicates that you reject the null hypothesis even at a 

very low significance level. 
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You can also construct the confidence interval for β0 and β1 and from the earlier thing you 

say approximately it is estimate ±2.18 times the standard error and that is what is seen 4.1 

±2.18 times 3.35 and that turns out to give that gives the interval confidence interval-3.148 

to 11.472; that means, with 95 percent confidence, we can claim that the true β0 lies in this 

interval. 

Similarly, we can construct the interval confidence interval for β1̂  95 percent confidence 

interval and it turns out it is 15 ±approximately two times 0.5 which is 14 and 16.6. Now, 

clearly the interval confidence interval for β0 includes 0 and therefore, we should not reject 

the null hypothesis β0=0 ok. 

We should simply accept that β0 perhaps=0, whereas the interval for confidence interval 

for β1 does not include 0; so, we can reject the null hypothesis that β1=0 and the slope is 

an important parameter to retain in the model. Now, all this we have done only for single 

thing; we will be extending it to the multi linear case and we will also look at other 

assumptions; the influence of bad data and so on in the following lectures.  

So, see you in the next lecture. 


