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Hello all, welcome to the lecture on Pandas Dataframes. 
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So, we have been looking at the pandas Dataframes in the previous lectures. So, let us 

have a quick recap on what we have done in the previous lecture. So, in the previous 

lecture we have seen about the data types the two broad main data types that are numeric 

in character which we will be working with often and what they represents and where we 

can use numeric and character data types. 

We have also checked the data types of each column to generally know about what are 

the data types we are going to work with for the analysis and we have also seen how to 

get the count of unique data types to get an overall idea about how many variables are 

there with different data types and we have also seen how to select the data based on data 

types. 

For example, if you want to perform any operations only on a specific data type we can 

also do that by selecting the data based on the particular data types. And we have also 

looked at the concise summary of Dataframe where we have got some information about 



the Dataframe with respect to what is the data type of each variables and how many non-

null values are there under each column and which also gave us the memory used by the 

Dataframe and then we checked the format of each column. 

And we found out that there are few columns that has not been read properly. So, we 

have gone back and looked at the unique elements of each column to get an idea about 

what is the reason behind variables being read with different data types which are not 

expected. So, these are the things we have seen in the previous lectures. 
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And in this lecture we are going to see how to import the data. In the previous lectures 

we found out that there were question marks and other special characters that are not 

being considered as blank while you. So, now, in this lecture we are going to import the 

data by considering all of those after that we are going to again look at the concise 

summary of data to cross verify whether there is any difference after importing the data 

by considering all those special characters or not.  

After that we are going to convert the variable’s data types because in the previous 

lectures we have encountered that some variables are of not expected data type. So, in 

this lesson we are going to convert variables to the expected data type and we are also 

going to look at the category which is object data type what is the effect being the 

category data type and what is the effect being a object data type. 



Next we are going to clean the column door since it has few strings to it like 5, 4 and 3. 

So, we are going to clean that to make the Doors columns perfect for the future analysis 

after that we are going to get the count of missing values to basically arrive at a solution 

on how we are going to go ahead with the missing values. So, now, let us try to import 

the data by considering the all forms of missing values. 
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So, now, basically before importing we need to know how missing values are being 

represented in the data set in order to make any reasonable decisions because you need to 

be really sure how the missing values are presented in your dataframe, whether it is a 

blank value or zeros or any question marks or with any special characters.  

So, but we have encountered in our data frame the missing values exist in the form of 

nan which represents the blank values. Double question mark and four question mark 

represents the missing values wherever they do not have any records for, but we do not 

have to worry about the blank values because python by default replace blank values 

with nan. So, now, we know what are the other forms of missing values we have in our 

dataframe.  

So, now, I am going to import the data considering the other forms of missing values in a 

dataframe. So, I am using the same command as earlier that is.read_csv from the pandas 

library and pd being the alias. So, the input being Toyota csv file and the index I have set 



at to 0. So, that the first column will be treated as the index column and I have added 

another argument called na_values.  

So, in the argument I have given double question mark and four question marks to 

basically say consider all these values as nan values. So, now we have seen how to 

import the data by considering all forms of missing values in your dataframe.  
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Now let us move ahead and get the concise summary of dataframe because I really want 

to see the difference after changing the question marks with nan values because ideally 

there are missing values. So, let us check that. So, this is the output that we got before 

replacing any special characters with nan. 

If you see I have highlighted kilometre and the horsepower column. So, kilometre 

basically had no missing values 1436, but after replacing all the special characters with 

nan the kilometres non null values have been decreased from 1436 to 1421 because all 

rest of the values actually being question marks, but that has not been treated as blank 

values rather it has been treated as just categories.  

So, that is why you see a drop in values; that is as 1421 and after that there is also the 

similar case with horsepower initially there were no missing values all the 1436 has non 

null values, but when we consider all the special characters with as nan it says 1430 non 

null values are there other 6 observations has missing values under horsepower column.  



So, this step is really important whenever you are performing any analysis if there are 

any other forms of missing values that is being encountered in your DataFrame you can 

make sure that you are replacing all those special characters with the default value. So, 

now, we have sorted out the issues where we replaced all the special characters with nan. 

We have to solve the other issue by converting variables data type to the expected data 

type. 
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Because in the previous lecture we have seen that some of the variables have not been 

read properly with the correct data type and we have encountered the reasons as well 

now it is time to change or convert the variables data type to the expected data type. And 

astype is the function which is used to explicitly convert data types from one to another 

and the syntax being astype of data type you can basically specify to which data type you 

want to convert it to and you use have to use your DataFrame name.  

So, here I am interested in converting the MetColor on the Automatic variable to object 

data type because those values represents just the categories to it, I am going to convert 

them to object data type. So, how I am doing here is I am accessing the MetColor from 

the cars_data and using the astype function, I am converting the MetColor to object by 

giving object inside the function.  

So, whatever I am doing here that should be reflected back to original variable that is 

why I have equated that to cars_data of MetColor. So, now, MetColor has been 



converted to object similarly you can try that for Automatic. So, I have done it here I 

have converted the Automatic variables also to object data type and I have reflected the 

changes to the original variable as well. 

Now, we have converted the MetColor in Automatic to object data type, but we have 

already seen there are two data types that the python can handle with respect to character 

data type. One is being category and another one is being object. We have already 

changed everything to object there is also another data type called category right. So, let 

us see what is the impact when we have these MetColor or any categorical variable as 

category or as object. 
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So, here is a slide which will illustrate the impact of variables being category and the 

impact of variables being object data type. So, nbytes is the command that is used to get 

the total bytes consumed by the elements of columns, we are going to look FuelType as 

object data type and FuelType as category data type.  

So, I am going to get the total bytes consumed by the elements with respect to object 

data type as well as category data type, for that nbytes can be used and the syntax would 

be n dimensional array.nbytes. So, it can be n dimensional array and you can use nbytes 

from it. So, I am using like I am accessing the fuel type from the cars_data frame and I 

have used.nbytes to get the total bytes consumed by the elements where the FuelType is 



being object. So, when the FuelType is being object it has consumed 11488 bytes, when 

it is of category. 

So, here if you check I have converted FuelType to category and then I am checking the 

total bytes consumed by the element of the column, but it has drastically dropped down 

to 1460 bytes. So, this is the advantage of keeping categorical variables as category data 

type instead of keeping them as objects. So, this will be really useful when you are 

dealing with a huge amount of data and you want to reduce the space that is being 

allocated to each and every variable or for each and every cell.  

So, in that case you would go for category data type for all the string values that you 

have in your dataframe, but in our case we are just dealing with a less amount of data. 

So, there is no need to explicitly convert the variable to category, but if you see we are 

going to go ahead and give the FuelType as object and the slide is just for the illustration 

purpose. 
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And we have changed the data type for few variables, now I want to recheck the data 

type of variables after all the conversions that I have made. So, I am again checking the 

concise summary of the DataFrame cars data using the.info command, if you see now all 

the variables are of expected data type. For example, kilometre is of float MetColor is of 

object Automatic color is of object. So, now we have to clean the column doors. 
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Because in the previous lecture we have seen that under the Doors column it has some 

string values to it. So, I just want to recap what we have seen in the Doors column, we 

have checked the unique values of variable Doors it turned out to have some unique 

values which are in numbers as well as in strings. So, those basically represents five, 

four, three in numbers. So, there might be cases where they have wrongly typed the 

numbers in terms of strings. 

So, now if you want to have a consistent values like if you want to only have numerical 

values like 2, 3, 4 and 5 you can always go back and change all the string values to 

numerical values by using a command in python. So, the command is replace that is used 

to replace a value with the desired value you can replace any numerical to string as well 

as string to numericals. So, the syntax would be DataFrame.replace. 

Inside the function I have used the value to be replaced and after that the second 

argument would be what is the value that you are going to replace it with. So, here I have 

problem in three strings. So, using a replace command I can replace all string values to 

numbers. So, let us take the string three first.  

So, I am accessing the Doors column from the DataFrame cars_data and by using.replace 

command. The first argument that I have used is the value that should be replaced that is 

3 and using which value that is the number 3 and I have used inplace is equal to true. So, 



the modifications done in the DataFrame will be reflected back in the DataFrame that 

you are working on. Similarly I have done it for all the other strings like four and five.  

So, now, I have replaced all the string values to numbers we do not want multiple values 

which represents the same meaning. Now, I have a consistent values like 2, 3, 4 and 5. 

So, now, this is not the only way where you can replace any value with the desired value 

there are several function that does the same one is using where. So, you can try out 

where function from numpy, but you can also use the where function on pandas libraries 

as well. So, you can try that out to replace all the string values with the numbers. 
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Now, it is time to convert the Doors to int65 because whatever levels you have added, 

whatever values you have replaced it with it will create it as a new set of values because 

python cannot differentiate between the existing set of values and the newly added 

values. So, it will basically create new set of categories for example, 2 3 4 5 again it will 

have 3 4 5 because that is the categories that we have added newly.  

So, in that case let us convert them back to integer64. So, that 2, 3, 4 and 5 become the 

integer data type that represents the number of Doors being 2, 3, 4 and 5. So, as we know 

that I can convert them back to integer 64 by using the command astype and I have 

reflected the changes to the original variable doors. So, this is to basically have the 

existing levels as it is if we replace any values that will get added as a new level rather 



than updating it in the original level. So, just to avoid that confusion I am reconverting 

them back to the integer data type. 

(Refer Slide Time: 14:56) 

 

So, now we are done with cleaning the Doors column. So, now, we have to check 

whether there are any missing values in your Dataframe or not. So, to check the count of 

missing values present in each column Dataframe.isnull.sum will be used basically isnull 

is a function which gives you an output in terms of Boolean values that is true or false. 

So, it will consider the whole Dataframe because you are applying the isnull on the 

Dataframe wherever you have missing values it will be represented as true, wherever the 

cell does not have any missing values it will be represented as false and I have used .sum 

to sum up all the true values because I am interested in getting the count of missing 

values present in each column. So, that is why I have used .sum after isnull. 

So, this is the input that I have given cars_data.isnull.sum() that will give me the missing 

values present in each column. So, under the price column I do not have any missing 

values, but if you see under age we have 100 missing values present under the age 

column. So, here is the output for the command isnull.sum.  

So, under the price variable we do not have any missing values, but if you see the age 

variable has 100 missing values and the kilometre variable has 15 missing values, 

similarly FuelType has 100, horsepower has 6 and MetColor has 150 missing values. So, 



now, we know that there are some missing values under each columns and the missing 

values are not same across all the columns because it is differing with each variables. So, 

we have to come up with the logic approach to see how we are going to fill those missing 

values or how we are going to deal with this missing values at all. 
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So, let us summarize whatever we have seen in this lecture we have imported the data by 

considering all the other forms of missing values as blank values by default python takes 

it as null. After imported the data we have got the concise summary of data where we 

have checked the difference after replacing all the special characters with nan values, we 

have also converted the variables to the expected data types.  

Next, we have seen what is the impact of having a variable with the data type category 

and having the variable of the data type object. And we have also cleaned that column 

called Doors where it had few strings to it and we have replaced all the strings to 

numbers. So, now, we also have an idea about how many missing values are present in 

each column. So, in the upcoming lectures we will be seeing about how to go ahead and 

deal with the missing values by imputing those.  


