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Hello again. In the last lecture we spoke about the goal of the Natural Language 

Processing, we saw what type of corpus that we need ideally in order to perform some 

natural language processing. And, then what kind of application that we could develop 

when we have a corpus for the training purpose and so on so forth ok. So, in this lecture 

we are going to continue to work on the same, but we are going to dive deeper into what 

kind of terminologies, or what kind of technique that we are going to be using in order to 

perform some operations on the corpus. 

So, the first one is going to be the incidence matrix. So, I am going to give a little bit of 

theory first before we go into the details of what incidence matrix with respect to our 

corpus means ok. So, I am going to read out what is there on the slide right now. This is 

the definition of the incidence matrix. Let G be a graph with n vertices and m edges. 

Then the incidence matrix of size n by m is defined by the relationship x it is equal to 1 if 

there is an edge connecting I and j it is 0 otherwise. So, this is also called a vertex edge 



incidence matrix. And, it is denoted by capital X capital G ok. So, this is going to be 

fundamental to certain operations in the corpus. 

So, we need to know a little bit about this, before we dive deeper into the corpus 

representation of this. 
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A graphical representation of the same definition is given here as an example. So, we 

have 4 edges and 4 vertices 1 2 3 4 and there are edges e 1 e 2 e 3 e 4 here right. So, what 

we have marked here is for e 1 edge it connects 1 and 2. So, you will see e 1 having a 

value of 1 2. So, if you go to the 3 and 4 edges is not related to that. So, we have a 0 here 

right. 

So, in the same fashion if you look at e 2, it connects 1 and 3. So, you have a 1 marked 

for this vertex and this. So, in the same fashion if you look at e 3 and e 4; e 4 is 

connecting the vertex 1 and 4 right. And, e 4 is connecting the vertex 3 and 4 ok. So, 

now, we know what is the incidence matrix. 
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And, let us see how we can translate this into our corpus. So, now, what I am doing here 

is I have taken the plays, Shakespeare plays in particular as my corpus and I have listed 

the play names here ok. And, I have used the tokenization algorithm and found all the 

words in all the places that I have listed here. So, they are listed along with this ok. 

So, every word is listed in this. So, let us take an only certain name that we know very 

well and then see how we can fill this up. So, when I take the word Antony, then I want 

to find out whether this name appears in all the plays. So, here the one that we have mark 

means the name has appeared in Antony and Cleopatra. 

So, the name again appeared in Julius Caesar, it does not appear in the Tempest, Hamlet, 

and Othello, in the same fashion for every word we fill in the matrix as 1s and 0s. So, 

what do you see in this you see lots of 1s and lots of 0s ok? So, in a corpus of the size of 

an internet size and considering you have about a trillion document which is listed as in 

the plays and the vocabulary listed along this axis, and not all words appear in every 

document correct. 

So; that means, the words that appear in the document would be represented by 1 and in 

those document where it does not appear, they are all represented by 0; that means if you 

have a 1 billion word vocabulary and 1 trillion documents most of the cells would be 0; 

that means, we have a sparse matrix there. So, that is the situation when you consider a 

huge corpus. 



So, in this case we have taken a very small corpus. So, we will find still many 0s in this 

matrix as well. So, again if you look at this term document binary incidence matrix, what 

this is you called as a term and this is your document ok. 

So, we have filled in the document with 1s and 0s whenever the word or term is found in 

that particular document again we do this for the second one, the third one, fourth one 

and how many of our document that you have you do the same operation. So, again I am 

taking the idea of what we described in the theory, we have created a matrix, which is 

called a term document binary incidence matrix ok. So, this is how you create. So, if you 

want to find out how this is done you want to know more about this you may want to go 

to the reference that I have given in the slide, that reference number 3 ok. 

So, the reference is available at the end of this presentation. So, we know this right I 

have I also want to explain this word term. The term here means a word or a combination 

of words or sometimes could be 3 you know it a phrase referencing a term a word can 

also represent a term. So, I would use this word interchangeably in terms of word or term 

and throughout the lecture ok. Let us move on what can I do with this? So, I have created 

a matrix. So, I need to perform some operations on this matrix. So, what kind of 

operation I can do on a binary matrix? 

So, you know now that these are all binary representations. For example, Antony is 

represented as a binary vector along this direction right. A Brutus is represented as a 

binary vector along this direction, Cleopatra is represented as a binary vector along this 

direction. So, now, we have binary values. So, now, it is possible for you to perform 

some binary operations on this ok. 
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So, in the previous slide we had shown how a binary incidence matrix can be constructed 

for a term document corpus right. So now, we want to find out if we can perform certain 

queries on these on this particular matrix. For example, I want to form a query about 

Brutus and Caesar and not Calpurnia. So, I want to find the documents where Brutus is 

found, and Caesar is found and not Calpurnia. So, one way to do is go look at each one 

of those and then find out where Brutus is found, and Caesar is found, and not Calpurnia 

right there is one here. 

So, if I have a very small set of documents, I can do this in a manual fashion assuming I 

have about a trillion documents, I want to perform this operation it is similarly not 

possible to do that. One way to do this operation is first to take the Vectors, Brutus, 

Caesar, and Calpurnia, and then perform the operation. So, in this case we have Brutus, 

Caesar, and Calpurnia and here we have asked for not Calpurnia. 

So, what you do is you do the not of this operation of this vector ok. You take the vector 

axis for Antony, as is for Brutus, and then complement Calpurnia, and then perform the 

operation. Now, you can do a bitwise and operation what you get is 10010. So, what 

does this represent? So, one represents here the document, the 0 represents this the last 

one represents Othello. So, by doing this operation, now I am able to perform a simple 

query where Brutus and Caesar and not Calpurnia is for ok. 



So, in this way I can perform binary queries along with the document and retrieve 

documents where these terms are found or not found ok. This is one of the examples of 

the information retrieval problem. So, by applying this to various other documents using 

binary representation, it is possible for you to do the information recovery ok. So, let us 

move on to the next one.  
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So, now what we have seen is after tokenization words come into play. So, the basic 

purpose of NLP is to identify the meaning of the word that is formed in the corpus. So, 

what is the next step? The next logical step would be to find out how many times a 

particular word has occurred in a document or in a corpus. If you look at the previous 

case, there is no representation of the number of occurrences of a given word Antony. 

So, it is all it is saying is whether that particular word is present or absent in the given 

document that is all it says it does not say how many times it occurred and so on. So, the 

next operation logical operation would be to find out, how many times that particular 

word had occurred in a given document or in the entire corpus. So, for us to know that 

we need to understand that, the word is the atomic in nature for the purpose of natural 

language processing ok. 

So, this is the atomic unit, the word is your atomic unit and that is your alphabet in the 

natural language processing terminology. So, we use the term as I mentioned earlier the 

collocated that they occurred together or co-occurring words, they also can be considered 



as atomic. For example, I do not want to separate New Delhi as 2 different words I want 

to call New Delhi as 1 term. 

So, that is atomic for this purpose of natural language processing. This is is why I am 

going to be using the word term in most situations. So, it is not just enough if you 

represent the presence or absence of the word, we also want to represent it in terms of 

some numerical quantity ok. So, we want to find out what types of numerical 

representation a word can have ok. 

So, we will move from here to find the word count, word count with respect to the 

document, word count with respect to the corpus and so on. So, before that I will small 

definition here, we consider a vocabulary of size N for the corpus, V is defined as a 

unique set of words that you find in the entire corpus ok. 

So, this is what you find in a dictionary. So, V is nothing, but my dictionary of words 

where no word is repeated ok. Some words are found in V appear in documents 

collection of D 1 to Dm; that means, I have a set of documents which I represented as D 

1 to Dm. And, they could vary from 1 billion to 1 trillion OKs. 
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Let us now define our first interesting term in the statistical processing of the corpus. I 

will read out from this slide again the term frequency is defined as the number of 



occurrences of a term t I, in a document di belonging to a corpus d 1 to dm. So, this is 

denoted by t f t comma d ok. 

So, note this suffix of these 2 OKs. So, the idea is to find out how many times a 

particular word occurred in a given document. Suppose, if the word occurred 100 times it 

will be represented t f d is equal to hundred in the plain fashion ok. 
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So, let us take a very small example demo, where we will be finding the number of 

occurrences of a given term. So, this is a python program I am using the platform called 

NLTK, you will be able to find the details about what NLTK is and how we can install 

and how we can perform certain operations on the corpus that are found in the NLTK 

and so on on the internet. It they are very well defined and you will be able to install it 

yourself on your own ok. 

So, I am using an NLTK for the purpose of this demo in this slide. So, what I have done 

here is I have written a very small program. This program actually uses a corpus called 

Bryant stories dot text, which is available from the NLTK platform. I am going to be 

using a stop word removal because certain words are not very important to me for the 

purpose of processing. For example, in the article the prepositions do not make any sense 

they do not give any meaning when you want to perform a certain statistical operation on 

the corpus. So, I want to remove them first. So, my list contains only certain vocabulary 

ok. 



And, also I want to remove all the capitalization of the word so, that the capital word of 

R u n and run mean the same, otherwise these two will be considered as two separate 

words. So, in that case I need to perform the lowercase operations on all the words in the 

given corpus. 

So, for that, you know what I have done is I made some import classes. I am importing 

first the nltk library and then I am using the probability library of nltk, wherein I have the 

frequency distribution defined. I am using the library from the corpus where stop words 

are defined. It should be possible for you to define your own stop words to or add 

whatever is available, whatever you want to add to the existing stop words ok. 

So, the first thing that I do is I am just using the corpus and get all the words in the 

corpus as I mentioned earlier right. So, we do not have to really write your fundamental 

code in terms of tokenization, the platform does a lot of job for you. So, if you 

understand what exactly it does it will be very useful to you. So, in this particular 

statement actually reads the corpus Bryant stories dot text. And, then tokenize I each of 

the words and then put them in the collection words ok. And, then I am actually looking 

at whether the word is alpha or not, there could be some number there could be 

alphanumeric characters and so on so forth in the given corpus, I want to only look at the 

English vocabulary. 

So, I want to find out whether a given word is an English word, then add it to my 

collection otherwise I ignore them. So, this particular statement goes through the entire 

collection of words that we have captured in this. And, then converts or creates a small 

subset where only the alpha words are captured ok. 

And, then after capturing only the alpha word I am going to be removing all these stop 

words. So, not in the stop words; that means, every word which is in this stop word will 

be removed and only those which are not in this stop word collection will be added to the 

word count here ok. And, then I perform a frequency distribution of all the words that I 

have captured in the previous instruction ok. 

So that means, my frequency distribution is again an array that contains the word and the 

frequencies of each of the word ok. And finally, what I am printing is I am printing the 

most common words that are found. So, I can print all of them it is going to be a huge 

collection I am restricting that to number 10 and printing them ok. 
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Let us see what actually is the result? So, when I ran through the corpus, what I have got 

for the raw count of 10 words here ok. The little the word little appeared 597 times ok. 

And, then the word came appeared 100 and 91 times the king appeared 100 and 41 times 

ok, the day appeared 100 and 7 times. 

So, it is a raw count of words in the given corpus alright ok. So, in this next statement 

running from a 20 and 21, what I have done is I have made some changes to what I did 

earlier right. So, earlier we only printed the word and the count. So, now, I am doing 

some waiting on it. So, now, I am printing the same thing the word and then, but the 

frequency is now divided by the size of the vocabulary. 

So, that is the only chain that I am making here. So, this is very useful in terms of 

normalizing the values you know by providing a raw count you know it does not really 

give me a normalized picture whereas, in this case I am adjusting the frequency to the 

document length. So, they get normalized. 

So, it gives me some additional weighted terms which I can use it for processing. So, we 

will talk about why we are doing it when we really perform certain operations. So, please 

remember that. So, we have to not only use we can not only use the raw count axis we 

can also perform some waiting on the frequencies of the words. 
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There are multiple ways we can represent we saw earlier that a word can be represented 

either as a Boolean, whether it is present or absent represented with respect to the 

frequency. We can adjust it with respect to the length of the document and we can also 

do the log weighting of that so, that you can convert the frequency using the given 

formula. So, we can represent the frequency in various ways. So, these are all the 

different multiple weighting factors that we can apply to the term frequency. 
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So, what are the disadvantage of or other disadvantages of having a raw frequency, you 

know all terms are given equal importance right. The common term you know if I had 

not used this stop word will have more occurrences than any other word, but it will have 

no relevance to the document with respect to querying and so on.  

So, it may not be suitable for classification when common words appear in the 

document. So, if of and they appear so, any number of times they are not going to really 

help us in terms of classifying the document in a particular fashion ok. 
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We move on to the next terminology which we will keep using in the natural language 

processing is a bag of words. A bag of words is nothing, but a collection of words. For 

example, if you have a basket and then you strip each word you know given corpus and 

then move it into the basket one after the other right. So, and then one, when you move 

what you have, is only the collection of words there is no order anything of that sort is 

available ok.  

So, that particular operation is called creating a bag of words for a given corpus. So, this 

is useful when you want to perform a classification task. There is no order in the bag, 

you know you can any pick anything from the bag any word that appeared in the corpus 

might come, it does not come in any ordered sequence ok. 



So, it represents a quantitative measurement for a given document. We create multiple 

bags and then shred those words from the given document and then move them into bag 

1 bag 2 and bag 3 and bag 4 and so on. And, then if you look at the frequencies of words 

in each of those bags. If a certain set of words appeared in bag 1 and bag 3, then we can 

say that bag 1 and bag 3 are somewhat related ok. This name you can classify documents 

using the bag of words ok. 
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Let us move on to the next definition. This is again performed on the document so, 

where we want to find the lexical variety. So, this is called us type-token ratio. So, what 

do we do here? So, we find out what is the type with respect to the total number of 

words? The type is nothing, but your vocabulary the unique set of words ok, you have a 

total count of the number of words in a document and then you have a unique set of 

words right. When you create a ratio out of V and T n what you get is a TTR ok. So, this 

gives a very unique ratio, which tells you what is your lexical density in terms of 

vocabulary? 

For example, if you are used a very small subset of vocabulary the value would be very 

small. If, you used a large collection of vocabulary, then the value would be large the 

TTR value would be very large. Why do we need this? It would be useful in terms of 

finding out how we are really improving our vocabulary on a regular basis. For example, 

you want to track a child’s vocabulary acquisition on a regular basis, you would be able 



to use this particular ratio to find out whether the child is really improving the ratio of 

TTR by adding more and more vocabulary to its (Refer Time: 27:33). 


