
Applied Natural Language Processing 

Prof. Ramaseshan Ramachandran 

Department of Computer Science and Engineering 

Chennai Mathematical Institute, Madras 

 

Lecture - 89 

Hyperspace Analogue to Language 

 

(Refer Slide Time: 00:15) 

 

By now you know very well that word vectors are the most important and the 

fundamental one to natural language processing especially in the machine learning 

applications right. An especially downstream application that used natural language 

processing to recover some information or do some kind of a translation and all would 

require word vectors correct. If we have a very good set of word vectors for the 

vocabulary that we have, the downstream application is going to be doing very well. The 

application is going to be outputting some good and useful output for us correctly.  

So, in order to have a good output we need to start from the good fundamental at the 

bottom of the pyramid, which I am calling it as the word vector space right. So, that is 

what we input into the application either into the neural network or into any other 

standard non-neural based applications. We also know that natural language applications 

have not reached the stage of maturity. We are still improving, we are not at a stage 

where we can say that NLP has reached the stage of 100 percent with respect to the 



performance, with respect to the usability and. so on. If you know well that in the 

translation we are still at 32 percent right. 

So, for all this we require a good set of word vectors, I keep emphasizing that right from 

the beginning. So, we have been using various mechanisms to capture the word vectors, 

the first we know you remember we tried with the SVD where we try to capture the term 

documents. And, then using L S A we tried to decomposed into three different matrices, 

and then we try to capture the word embedding from the L S A application right. And, 

then later we moved on to the learning module using neural networks where we try to 

input one heart vector as the input for the neural net layer.  

And, then later captured the word embedding for that word using the context, that was 

available either through the CBOW model or through this Skip-gram model and so on. 

So, we have been using those word vectors in all the application so, far; the reason why I 

am again bringing this up is in order to improve the efficiency of the applications, 

downstream applications we require a good set of word vectors and the research is still 

going on in this subject. There are two ways of doing this, one is using a global model 

another one is using the local model.  

The local model is something that we had seen especially with the C BOW and Skip-

gram model, where we try to capture 7 words or 5 words at a time and then try to predict 

the central word or predict the context word and so on. Right, I am sure you remember 

all this, and there is another one which is called the global model. It tries to find the co-

occurrences of the words and then uses the counts of the co-occurrences to find out the 

semantics of these words or the meaning of the word or try to find out the similarity of 

words and so on.  

So, now, what we are going to be doing is we are going to be looking at again some of 

the methods which are called as global methods, and then try to see how word vectors 

can be built. And, find out whether those word vectors are better than the C BOW model 

or Skip-gram model. 



(Refer Slide Time: 04:09) 

 

So, I think here you know well right the word vector that we have seen earlier in week 5 

or 6, where we try to use the context words as the input especially for the C BOW model 

and then try to predict what was the central word right. Or, in the Skip-gram model we 

try to input the central word and then try to predict the context words at the output. 

So, we used these models rather than using subsampling negative sampling and 

hierarchical softmax to improve the efficiency of identifying the word vectors. I am sure 

you also know this part, and then we know that it uses the co-occurrences, but it ignores 

the frequency of co-occurrences of words so, which is a very important right. So, we 

want to really identify how many times that particular co-occurrence had occurred in that 

corpus that gives the importance of the context words and the central word that we have 

been talking about in this CBOW model and then Skip-gram model. 

So, those two models did not utilize the frequency of co-occurrences of the word, and 

then we utilize the small window size which is 5 or 7. So, that is what we call the local 

model. So, it is localized right. So, it does not know anything beyond that 5 words or 7 

words. So, every time it sees as a similar set up of or rather the same set of 7 words it 

still retrains that. So, maybe we can find mechanisms to eliminate the duplicates, but 

there is no concept of knowing whether the particular set has been trained or not in the C 

BOW model it continuously takes those 7 words and then keeps training the model ok. 



(Refer Slide Time: 06:06) 

 

So, now what we want to do is to find out if this contextual information that we find in 

the corpus could be used using the count of the co-occurrences of words you know this 

very well, I think I use this slide at the beginning of the lecture series where the context 

was given as this right. And, then we have several similar words that could be the last 

word for this sentence.  

So, I also mention that if we have this same context, but there are different kinds of 

words that we are using as the last word, we know that all these three words all these 

words are similar right. So, this is how we identified the semantics of the word trying to 

understand the meaning of the words and so on using the context that is available. 



(Refer Slide Time: 07:02) 

 

So, there are various approaches that are followed as I mentioned earlier LSA is one I am 

sure you know about this, I am not going to discussing this in detail. The second one is 

HAL it's Hyperspace Analogue to Language, and the third one is COALS its Correlated 

Occurrence Analogue to Lexical Semantic and then the last one which we will talk about 

is GloVe ok. 

And, I am sure you would have heard about this several time during the lecture I was 

using some of the GloVe vectors for demonstrating the sentiment analysis where I used 

50-word vectors and 100-word vectors; I am not sure which one I used there, but I 

utilized the glove vectors for identifying the sentiment right. So, we will talk about that 

as well and these are the model that utilized the local context as well as the count I 

especially these second, third and the fourth one ok. 

So, the first one utilizes the term document rest of them are going to be using in the term-

term document we will talk about how there was term-term matrix that can be formed 

and then how we can utilize the co-occurrence counts through that ok. So, we are going 

to be talking about this, in brief, all these 3 in the next few slides ok. 



(Refer Slide Time: 08:33) 

 

So, first before even starting that you know we need to figure out whether it is possible 

to that in a manual fashion right. So, only if you are able to do it in the manual fashion 

then it is possible for you to find out what type of rules that I have applied what should I 

do to automate this what can be automated, what cannot be automated all those things 

would be known clearly only when we try to do this in the manual fashion ok. 

So, now, assume that you have been given the entire dictionary of words and then there 

are so, many different buckets let us say about 20000 buckets and you have been given 

about 100000 words. What you need to do it or what you are asked to do is take one 

word from the dictionary and then place it in one bucket ok. And, then take another one 

from the dictionary and then find out if it is similar to what we have just placed put this 

word in this same bucket. 

So, in that way you would start filling all the buckets one after the other, and then at the 

end you will have various buckets that will contain similar words in the right. So, that is 

one way of classifying the words and then trying to semantically connect them using the 

similarity right. So, that is one way of doing it for the word vector. So, we can call that 

particular set of words as a word vector we still do not know how to really compute the 

numbers for each of those words, let us assume that we have some idea with respect to 

that and if you put all the words in the vector form that will constitute one-word vector.  



Supposing if we have about 10,000 buckets then we have about 10,000-word vectors for 

us, that is one way ok. For that we require human judgments right so, we can place those 

words in that fashion. Or another approach is supposing if you are given let us say the 

entire Wikipedia dump and then based on the word you have going to start in to fill all 

the buckets instead of the dictionary now replace that with the Wikipedia dump.  

Every word you start again putting them in one of the buckets and then start adding 

similar words in each of those buckets ok. So, that way there is a human touch to figure 

out how to put those similar words in the same bucket ok. So, here what we are saying is 

instead of the bucket we are calling it an axis. So, in each axis you are going to be 

putting the desirable words. So, you must first choose the axis and find a set of words 

that must be confined to that chosen axis ok. So, here the bucket is our axis. So, for 

example, you want to have an axis that going to be describing the size right.  

So, there is a bucket that is called size. So, what are all things that you will input into that 

bucket? So, for example, the ant is very small so, that will also go in there, the mountain 

also would go in there because it is big. So, with respect to that we are going to be 

moving those words into the respective axis. So, can we use lexical like co-occurrences 

to construct that semantic space? So, this space that contains those 10000 buckets or the 

10000 axes we would call that as our semantic space. 

So, is it possible to construct high dimensional distributed semantic space using this 

model? So, if you are able to do this in the manual fashion let us say using the Wikipedia 

dump, we should be able to do it with to extend using the automated fashion like that. 

So, for us what is going to be the helping hand is our context. So, based on the context 

we are going to be throwing one word after the other into the respective bucket. So, that 

similar words occupy all those ok. 



(Refer Slide Time: 13:09) 

 

So, let us see how that is achieved in HAL first ok. In the Hyperspace Analogue to 

Language or HAL what we are going to do is we are going to be taking a content there is 

a huge corpus and then start looking at 10 words at a time or n words at a time ok. So, we 

will define more than n means a little late [vocalized-noise. So, we are also going to be 

defining the window we know how we can create the words within a window right. 

So, taking a window of size 3 for a trigram or a 5 window size for a 5 gram and so on 

right; so, we can slide that 3 gram or n-gram across the corpus and then whatever comes 

within that window we take it and then start putting it into the model right. So, that we 

can later figure out how many times certain words occurred together and then we can 

make a count of that. Where     

 

So, in this case again we are going to be doing the same operation, but we are going to be 

having windows of size n we are going to be having 10 n neighborhood words right. So, 

if you create a window of this type, and then assuming that for this word I am going to 

be finding the neighborhood words let say about 10 of them ok. So, the word 1 is pretty 

close to the word here right what to us little far away and then 10 is far away from this.  

So, can we say that words which are closer to w I should get a higher weightage than the 

one which are further away from here? So, this is the idea that is being followed in the 



HAL model. So, that is what we call as the ramped window where the influence of the 

word that is further away from this word will be minimal when compared to the one 

which is closer to this. 

So, how do we define that say very simple like the idea would be to have an inverse 

relationship of this type let us say that a co-occurrence strength is defined in terms of the 

inverse relationship ok? So, in this case what will happen is the word which is closer to 

the wi will have let us say in this case a value of 10 and then 2 will have the value of 9 8 

7 and so, on. So, in this way we are also saying that those who are closer to the word 

would be considered as more similar word in that context than the one which is further 

away. 

So that is what we say here in this particular bullet point. So, the word wj1 immediately 

occurring next to wi will have a higher value than the word wjn separated by a distance of 

n from it ok. The co-occurring word strengths are distance and direction sensitive. So, in 

this case what these authors have also done is instead of just taking the or finding the co-

occurrence in this direction, for this word also finds the co-occurrence in the opposite 

direction. So, every word you will see there is a forward and a backward co-occurrence 

count ok. 

So, that is what we call it as it is not only dependent on the distance it is also direction 

sensitive. The term-term matrix is constructed with every cell representing the summed 

co-occurrence count for a single word pair. So, when we do that you start counting how 

many times certain words occur in that context if this occurred in the forward as well as 

in the backward direction then you start summing that up ok. So, we will see through an 

example how that could be done if the words have similar values in the same dimensions 

they will be closer together in space meaning that they share similar contexts you got it 

right.  

So, if you are if the words have similar values in the same direction ok. Supposing we 

have found some value for the word I and then we have done the same thing for another 

let us say a word i + 10 right and then if the values that are found for this w1 + 10 and wi 

if they are similar then we can say these two words are similar; that means, we are just 

looking at the counts and then say how similar of this counts for these two words. 



So, we try to use a normalized distance measure to find the similarity in this case the 

word vectors closest to a given word are considered as its neighbor. This i think you 

know very well so, I do not have to explain this or else. 

(Refer Slide Time: 19:00) 

 

Let us take one small example and then see how this could be computed. So, the idea is 

to compute the count of the co-occurrences in both directions ok. So, we are going to be 

taking this sentence along with the period at the n and then start counting how many 

times or start counting the strength of the co-occurrences for each of the words. So, let us 

start with the word periods let us start from this direction ok. So, for this one, the 

window is going to be 5 ok. So, we have going to have five because which is closer to 

the period barn is little away 1. 

So, if you look at the period and then start looking at the barn, the barn has the value of 4 

right, and then if you look at the fell it is pretty close to this it is next word so, the value 

is 5. And, then the horse is far away because it is not within that window of 5 so, it gets 

the value 0 then past is in the past will get the strength 2 and racing will get the strength 

1 right. And, then the will get three because it is the third word from the period ok. So, 

this is why if you look at this one, it is coming from the backward direction the rows are 

filled from for the words that are coming in the reverse direction. So, if you take a fell. 

So, if this is 5 4 3 2 and 1 you got it. 



So, in this way you can fill this table from the left from the right to left for the rows, and 

then for the columns if you want to fill the columns what you do is you start filling it 

from left to right. So, what you do so, in this case now we start from for this word one 

ok. 

(Refer Slide Time: 21:27) 

 

So, let us look at this for the column. So, let us for the word we have to start looking at 

the horse is at 5 so, 5 here. And then raced is 4 past is 3 the is 2 and then barn is 6, how 

is this 6 coming the 6 is coming first whenever you do from the left to right we get early 

of one here right. 



(Refer Slide Time: 22:22) 

 

And then for the word, if you consider this one and then we have 5 4 and then for the 

period we have. So, add the count of 5 to that. So, it gets the value of six OKs. So, when 

you do from the left to right there is a value for it and then when you do from right to left 

you get some co-occurrence values. And, then you do from left to right you get the co-

occurrence values and if you find a more than ones for example, the barn had occurred 

twice for the word the this is the first time and then this is the second time right. So, we 

are able to get a value of 6 in that fashion. So, in this way you fill the whole table and the 

table is not going to be asymmetric table 

Right because the counts are different from both directions and then in order for us to do 

this you know the authors are advising that we need to consider a conversational text. So, 

only if you have this type of text it is possible for you to have all kinds of mixtures in 

terms of the context and so on, then it is possible to have a good set of word vectors they 

prove it by looking at various corpus and then proving that the one that they have gotten 

from the news net is used net is a lot better than anything else. 



(Refer Slide Time: 24:01) 

 

So, they have considered for an experiment 160 million words from Usenet newsgroups 

and then they have taken the window size of 10. So, earlier I have taken the window size 

of 5, in this case they have taken the window size of 10 and then the word appearing with 

the frequency of 52 or more is considered as the vocabulary otherwise he would discard 

them right. 

So, you do not want to have a noisy or very large matrix to deal with. So, you discard 

some of the words from the mat. And then they have selected twenty target words at 

random from the frequency of word use in the zip law you know what this right. 

I am sure you would remember this right. So, they are using a Zipf’s law to eliminate the 

higher frequency ones and the low-frequency ones and then consider only the middle 

frequency words. And, then try to find out the word vectors to figure out whether they 

are really getting a good set of word vectors. So, what they are doing they take a target 

word and then using a normalized Euclidean distance. I am sure you remember this too 

they compute the distance between those two words; if they are small, then those two 

words are similar ok.  

So, we will see that in the table in the next slide the relationships appear to be both 

semantic and associative, high dimensional neighborhood surrounding each word is 

similar to a semantic field. 



 (Refer Slide Time: 26:08) 

 

So, I think we spoke about that earlier as well ok. So, we taking an example you know 

like what we mentioned earlier there using the Zipf’s law to pick up only those middle-

frequency words to find out whether I was able to get the words that are very similar ok. 

So, let us look at the table here and then these are the target words and then they try to 

find out the five nearest neighbors for the target words ok. They found juice as one of the 

neighbors and then butter vinegar bottles and cans, somewhat ok. 

I guess right and then if you look at the names of these series you have Leningrad Rome, 

there is a country here and then Dresden Azerbaijan and Tibet another country or on here 

then look at the lipstick the similar words are lace pink cream purple and soft and then let 

us look at this one cardboard here. Similar words are found to be plastic rubber glass thin 

and tiny ok.  

So, without getting into the complexity of any of these C BOW models or Skip-gram 

model just using the count of the co-occurrence words in both directions. They are able 

to show that you know it is possible to build such a word vectors high dimensional word 

vectors using some of the simplest of the ideas ok. So, another way they want to 

demonstrate was to use some kind of grey level values for each of the word vectors and 

then show how similar they are. So, in this case, if you look at the road and street ok. 

So, the word vectors that they have obtained for the road have been converted into grey 

levels and presented as squares here. So, if you see road and street they are somewhat 



similar I would not say they are 100 percent right, but they are definitely closer and then 

if you look at the words coffee and tea you can find the similarity again in this fashion 

ok. 

(Refer Slide Time: 28:52) 

 

In another experiment what they did was they took somebody parts pets and locations as 

the keywords and then try to see if those words are within a certain axis or within certain 

boxes. So, they try to plot them in this fashion, if you look at this one here you have the 

pets and then you have the body parts around here and then locations around here. So, 

within that axis that they have defined they are able to bring in bull, turtle, lion, cat, cow, 

dog, tooth interesting kitten, puppy, mouse and oyster as part of that axis. 

And then the body parts again are classified according to the similarities values ok. So, in 

my view I think this is a good example of how you can really utilize the co-occurrences 

values and build a word vector in the simplest of the way right. So, there is no 

complexity involved in this is a very simple automated way where you just start using a 

sliding window which is also ramped one. And, then start counting the number of co-

occurrences of the co-occurrence, co-occurring words and then finally, create a word 

vector and so on ok.  

So, in this case there are two kinds of word vector right. So, one is as you saw earlier. 

So, there is a word vector around here right. So, these are also word vectors ok. So, what 

I am going to do is I am not going to tell you which one they have considered. So, I am 



going to ask you to go on and read this paper and then find out. So, what is the word 

vector that they are talking about towards the end ok?  

So, at the end of the day you need to have a word vector and which one they have taken 

or did they combine it in some fashion or so on. So, we need to go on then read this 

paper and then figure out what mechanism they have used and paper is very easy to read 

it there is no complexity involved in this paper ok. So, I want you to go on and read that 

thoroughly to find out the answer to this question ok. 

(Refer Slide Time: 31:49) 

 

So, if you look at the HAL right, it actually captures information about word meanings 

through unsupervised analysis of texts. We are not really trying the system to say that 

this word is closest should be closer to this and. So, on like what we have done in this C 

BOW model right. So, we are not reinforcing that it is just a very simple unsupervised 

analysis of contour the word vectors are really meaning full ok. So, they are showing 

similar words in some fashion or not ok. so, based the earlier right.  

So, they initially thought that the vectors are going to be word vectors are going to be 

semantics as well as associative in nature and then based on the experiment they found 

that it is not they are more semantic than associative in nature HAL acquires word 

meanings as a function of keeping track of how words are used in the context correctly. 

So, based on the counting mechanism of the co-occurrences of words we are able to find 

out the meanings of the word. The term-term co-occurrence matrix carries the history of 



the contextual experience by using a moving window and weighting of the co-occurring 

words based on the distance. So, this is the mechanism used to obtain the strength of the 

co-occurrence. 

Again like any other neural net model it exploits the regularity of the language so, that 

we are able to capture the word vectors in the right fashion. you do not require a very 

complex mechanism to really capture word vectors. So, mechanisms of this type would 

really do a good job in terms of capturing the word vectors, it is better than the C BOW 

model or Skip-gram model supervised models are definitely better. Because, we keep 

reinforcing to the network saying that a learned this because this is related to this. 

So, we are making the system learned the relationship whereas, in this case we are not 

doing any of this it is just an unsupervised analysis. So, in terms of the performance this 

would be a little lower than the supervised model. So, can we make this better is it 

possible for you to get into another supervised or rather unsupervised model that can do 

better than this and pretty close to the Skip-gram model or C BOW model? 


