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Lecture – 57 

BPTT – Forward Pass 

 

In the last session we saw the architecture of the recurrent neural network, we saw some 

small examples of how we can use RNN to solve certain problems in the natural 

language processing. Today we will look a little deeper into the RNN and see how it 

works and so on all right ok. 
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So, in this class, I will be talking about backpropagation through time if only call it as 

BPTT and then we will look at the derivatives and then see how we can backpropagate 

the errors and then train the network in the recurrent neural network and then we also 

look at what is meant by perplexity. Later we will look at exploding and vanishing 

gradient, we also look at a small technique in terms of clipping the gradient to solve the 

exploding gradient problem. 

Then later we introduced a new mechanism by which we can solve certain problems 

exposed by recurrent neural networks,  we call it a LSTM or Long Short Term 

Memory cell. We will see the forward pass and then how we can use LSTM to address 

some problems that we face in the RNN. We also take one small example in terms of 



generating a sequence through LSTM and then later we look at another modification of 

the RNN called gated recurrent unit. We will see the diagram of that and then see how it 

works and then close this session right. 
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Probably I have to read lot more to understand this rather than just listening to the 

listening to this lecture also go on then take a look at recent papers and their papers 

published in this particular topic to see how they really are addressing, the vanishing 

gradient problem in the backpropagation through time and so on. 

So, we will just look at some of the important things that you would see in all the neural 

networks and it is going to be refreshing this again to you. We are going to be looking at 

some activation function and their derivatives it is right. So, we use the activation 

function to control the values of the hidden layers, output layer values, and so on you 

remember that. And then we also take the derivative when you want to do the 

backpropagation we take the derivative and then take the values back and forth so, that 

we can train a neural network.  

So, we have seen a few activation functions; one is a sigmoid right and then we also saw 

tan h or hyperbolic tangent. We were looking at 2 different mechanisms of finding errors 

and then trying to use that to reduce the error during the backpropagation; one is using 

the cross-entropy and then the second one is the mean square here right. 



So, all of them should have the derivative so, that you should be able to continuously do 

the backpropagation in order to train a network. So, why are these functions chosen? 

These functions are continuous in nature and they are differentiable. So, if you do not 

have a differentiable function you cannot use it as an activation function. So, that is the 

reason why we choose some of these functions as the activation function.  

 

So, for example the sigmoid is equal  to      

So, if you want to take a derivative of this it is equal  σ (x)(1- σ (x))  ok. And then if you want to   

differentiate the hyperbolic tangent function it gives you 1 minus tan square hit gives you 1  

minus hyperbolic tan square x right so, it is continuously differentiable. 

If you take the sigmoid it goes from 0 to 1 if you look at the hyperbolic tangent it is from 

-1 to 1 right. So, you have so, I have to draw it cleanly here it should be like this right. 

So, you have a good amount of space where you can differentiate it cleanly right in both 

these functions all right. So, that is the reason why we look at the activation function 

which are differentiable, it is very important to have a continuous function for you to use 

in the activation for you to use it as an activation function. 
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Then let us look at the derivatives of this you know we saw it as a formula let us look at 

it through the graph then you will understand it even more better. We have this sigmoid 

right like this and then we have the derivative in red. 

So, you can see that if you see the derivatives are available in these regions for you and 

then if you look at the hyperbolic tangent function you have the derivatives again in this 

region. So, ideally if you have all the values in these places you are going to have a 

derivative for backpropagation and so on ok. So, we aim to keep our values in these 

places ok all right. 
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So, once we have a good continuous function we can use it for our forward pass to really 

change the value between either -1 to +1 or 0 to 1 depending on whether you choose tan 

hyperbolic tangent function or sigmoid function ok. 

So, now let us look at the forward pass in the recurrent neural network. So, I have given 

a very small and simple model for you to understand. So, we have the input coming in as 

xt at time slot t and then the input values are conditioned by the matrix w that connects 

the input and the hidden units, and then we have the hidden units getting the value by 

using the dot product of W and xt. 

And then we have an st that represents the state of this neuron hidden neuron which is 

computed using the xt  and then we have a matrix connecting or the weight connecting 



the state of the hidden neuron on the output neuron ok. So, we have a net value computed 

here that is called zt and then we do a softmax and then get our classes right and then 

later we find the error between the value that we computed and the gold value that we 

have added as the standard or the target output ok. 

So, the difference is computed using sthem that and the gold value that we have set 

earlier ok. So, now, look at the equation that we have so, let me take off these. So, h t is 

computed using W x t and U is the one that connects the previously hidden layer and the 

current layer right. So, or we can say it as a previous state and the current state. So, this 

one represents the previous state of the hidden unit and then this represents the current 

state of the hidden unit.  

So, we have some value that is coming from the previous time slides that we have to 

incorporate into this. So, how are you going to do that? First we will find the state of the 

current one ok. First what we do is we find the current state of h t using the input and the 

W and then sum it with the U the one that is connecting the previous state of the hidden 

neuron and the current state and taking the previous state value of the neuron hidden 

neuron right. 

So, by doing that you get the value of h here so, we compute the value of the current 

state of the hidden neuron using these 2 right ok. So, what next? So, once we have 

computed the current state of the hidden neuron. So, we use hyperbolic tangent function 

to get the state of it ok. This state is translated between minus 1 and plus 1 using a 

hyperbolic tangent function here ok. 

So, in all these you should also you know not just think in terms of the variables here, 

but look at in terms of how the matrix or vectors look like when you move from the input 

to the h t and then what happens in the state and then when you multiply with the vector 

with the matrix again to get the z t you know you just look at it or visualize it in terms of 

the matrix in your mind when you do that.  

And then also when you use an activation function there you know that the values are 

mapped onto the values between minus 1 and plus 1 if use at tang hyperbolic tangent or 

they are mapped between 0 and 1 if you use a sigmoid. So, it is nothing more than the set 

of values between 0 and 1 or minus 1 and plus 1 ok. So, you just keep that in mind 

whenever you do this. 



And then we compute the value of z that is the state of the net output time slice t using 

the weights connecting the state of the hidden unit here and the output neuron right. So, 

now, we compute E z t using V and s there ok. So, we got that and then later we obtained 

the computed output using softmax. So, what softmax does is again it maps the value that 

you obtain in the z t between 0 and 1 right. So, it also distributes the value in such a way 

that the sum of all the values would be equal to 1.  

So, you can say that this is also doing the job of a sigmoid write the values are going to 

be between 0 and 1 in this case too, but with the only one condition all the values when 

you sum up they become equal to 1. So, that is the only condition otherwise it acts like a 

sigmoid function all right. So, once the output is computed we now have to find the error 

right. 
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So, we know the target so, we also call it as the gold standard which would be let say y t 

and we have y hat t now and we need to find the error and then minimizing this error is 

going to really give you the equilibrium state, you know when you start minimizing it 

and then when the value no longer changes you understand that the network has reached 

the state of equilibrium. That is the very ideal situation, but we stop at some point 

usually you know when the value between the previous state error and the current state 

error is equal to a very small value we stop that. So, that is the way we compute the error 

here. 



So, once we compute the error now we have to push the value back through the network. 

So, that the error is learnt the weights the error is learnt what is the meaning of that when 

we say we are learning the values of V W and U are adjusted, those are the parameters 

that we are going to be looking at in terms of reducing the error of the entire network. 

(Refer Slide Time: 15:01) 

. 

So, when we say Et  θ; that means, it includes U, V and W. So, this is for only one small 

set ok. So, here we have considered the neurons in the hidden layer in the horizontal 

fashion when you unroll it right. 
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It is also possible that you can have neurons stack one above the other, meaning there are 

multiple layers between the input and the output. So, here there is only 1 hidden layer I 

can have more than 1. So, and then I can x through this. So, when you create something 

like this you have when you unroll you are going to be like ok. So, this is how you can 

actually add more layers to that network ok. So, what is the advantage of adding more 

layers to the neural network?  

Remember we showed that in the x R problem by just adding one more neuron in the 

hidden layer. So, we are able to solve the non-linear problem using 2 neurons a variable 

to solve the x R problem by adding one additional neuron in the hidden layer unit. So, by 

adding more and more so, you are actually increasing the capability of the neural 

network to solve problems which are a lot effort to address using the normal operations 

ok. And let us see how we get to that place ok. So, this is one simple network where we 

are able to compute the error using the forward pass here. 
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So, then we have to do the backpropagation we have to find the value by which we want 

to update the V, we want to find the value by which we want to update the W and then 

we want to find out the value or some delta value using check and update this. And then 

you are not only having this you have more of this on your side right and then you have 

to take those values across as well when you make the updation in each of these weights. 



Let us look at first the complexities of this and then in terms of the size and then move 

on to the backpropagation part ok. So, let us assume that we have t words in the 

vocabulary; that means, we are going to be providing the words one word at a time and 

there going to be T words it is the total number of words in the corpus I am sorry not in 

the vocabulary ok. So, that will be given one at a time. So, we have t words in that, Xt           

represents the input word at a time t and D w that we have here is the dimension of the 

word vector suppose you are inputting the x t in terms of the word right. 
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There are 2 ways you can do it, one is you can actually input the word vector. So, when 

you input the word vector the vector will have some elements. So, usually as I mentioned 

earlier you can take 50, 100, or 300. So, the dimension of this would be 300 in some 

cases or 50 in some cases and so on depending on what you want to do all right. And 

then if you are considering a 1 hot vector then this size of xt will be equal to the 

vocabulary size right. Why is it so? 
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If you are considering 100 word vocabulary, so each word will be represented by the 

index right, and then for the first word number 1 will be 1 rest will be 0. So, we will have 

100 elements in that so, this particular value will be equal to D V if we use 1 hot vector 

ok. So, keep that in mind all right. 

So, next is the one that connects the hidden unit and the input vector. So, the size would 

be. So, we have decided the size either it will be D w or D v and h is the number of 

neurons in the hidden layer will be given by this number. So, this is a matrix that 

contains D w into D h elements right and all other them are in the real space and then U 

is another matrix that is coming in from the hidden unit to the hidden unit.  

So, which will be a square matrix, which will be of size D h ₓ D h. Then v is another 

matrix that connects the state of the hidden unit and the output neuron and that will be 

equal to V ÷ R × Dh. So, since we are connecting it from the hidden layer the size will be 

that one of the sizes will be Dh the other one will be equal to the vocabulary size right. 

So, since we are using the softmax so, it is going to be spreading the entire probability 

across the words right so; that means, we are going to have the size of V there. So, this is 

what we have, and then s t minus 1 is the output of the non-linear function that comes 

from the previous state. The output that we have here will be of size R is this clear. So, 

this is the size that we are talking about the values of a V, W and U are shared across. So, 

you will have only 1 U, 1 V and 1 W throughout the implementation all right. 
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So, give you an idea of how big it will be let us take some small example, if you assume 

the size of the word vector to be 100 and the number of hidden neurons as 500 and the 

vocabulary size is 10,000 ok. So, the weights connecting the input and the hidden units is 

going to be of this size 500 into 100 and then this size of the or the state size would be 

equal to 500 into 1 and then U would be 500 by 500 and then V would be 500 into 10000 

and the yt value would be 10000. 

So, this is only for 1 unit that we are talking about this right. So, when you do the when 

you unroll this you will have several of y‘s correct for every time slot there will be any t. 

This would not change, this would not change these things would not change, but there 

will be a change in this. 


