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So, in the 10th slide we going to just look at what I have not covered and then maybe 

take that. So, this is the key aspect of this. So, we want to create an architecture that does 

not impose a fixed-length limit all right. 
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So, what do we require to build such architecture? So, state and so, for now we have 

never spoken about the word state right. So, now, we are going to be talking about the 

state; states are very important. 

So, for you to really go to the next state I need to know what happened in the previous 

state. So, without the knowledge about the previous one I cannot move forward ok. So, 

states are extremely important in the RNN also in the NLP as well right. In order to use 

the previous state we need to somehow store it right.  

So, we need a storage mechanism where these states are stored all right. So, this we 

already have spoken. So, we should be able to provide a sequential input so, that the 

model should be able to really take the sequential input of any length all right. 

So, we also would see later that the RNNs do not just encode these similarities in 

between words, but also between the pair of words, it also creates the similarity and also 

finds out the analogy. For example, if you give the word Chennai is Tamil is the same as 

London an English right. So, in this case go and went is the same as run and run. So, we 

should be able to find the analogies in the recurrent neural network as well. So, we will 

spend one half an hour or 45 minutes session on how to really capture the analogies in 

the corpus. 

(Refer Slide Time: 02:48) 

 



So, as I mentioned earlier, it is almost similar to what we have seen, but there is one 

small change that you will see here right this is a recurrent part. 

So, there is a small loop in the hidden layer part. So, you know this is your input layer, 

your hidden layer this is your output layer correct. So, we have introduced some small 

states. So, why we have introduced it here? So, when you take the input and then create a 

linear combination and then store it as a hidden value right. So, it really takes the essence 

of the input and the weight vectors that you have trained so, far and that we want to 

maintain that. So, we captured that in the previous state and then include this as part of 

the new state. 

So, that means we are incorporating whatever we have learned earlier in the embedding 

layer and then incorporate that as part of the current state. So, we will see how this could 

be done. So, this is one simple recurrent neural network where there is a small loop 

introduced in the hidden layer. So, this is going to give us the time series ok. So, this is 

going to give us the time series let see how it does. 
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So, in this slide we will see that the same neural network that I showed you earlier can be 

unrolled; that means, I have the state of the previously hidden layer and I connect to this 

state of the current hidden layer through another weight that I have created. 



Ok. So, now, we are introducing one more parameter. So, earlier we had the embedding 

weights, we had the context weights. So, now, we have one hidden layer to the hidden 

layer there is one more parameter. So, now, if you want to learn; so, we need to learn not 

only this but also this sorry this would be 3. So, these three parameters should be learned. 

So, this really encodes what you have given as an input and combines that with the 

weight vector right. So, this is the linear combination of these two and this is what is 

stored as the previous state as well and then the state of the linear combination that we 

had gotten earlier is connected to the current state through the weights which connect the 

previous timestamp of hand the current timestamp of h through the weights here all right. 

So, this is the memory part that we are talking about, we want to retain this so, that we 

keep knowing what has happened in the previous time slides ok. Time slides even before 

that time before that, say it from the start till the time equal to t we will have to capture 

this and then maintain this in our memory right; that means, it has managed to maintain 

the activation values of the time slides, activation values of h across the time slides that 

we are having all right. 

So, the updation of weights is very similar to what we had seen the only change that we 

have is, this activation is calculated by combining these two and this. So, let me erase 

those so, that become clearer. 

So, this activation is computed using 1 and 2 ok. So, this is what we have like two in this 

ok. So, and then the rest is the same as we had seen. 

So, this activation based on the sigmoidal that you have used would be connected to the 

context weights and then finally, you get an output layer, you apply softmax or 

hierarchical softmax depending on how you want to optimize your network and then start 

doing the process of training and so, on. So, when you do the training, we do not just 

have this let me again erase all those points. 



(Refer Slide Time: 08:31) 

 

The backpropagation is not only on these and these weights, it has to be propagated to 

these as well. So, this is a little hard when compared to what we had seen earlier and if 

you have multiple time slices you will have more of this particular one. So, it will be 

repeated. So, you will have one and there is.  Equation os shown below 

 = f(u + ) 

y1 =Vh1 

This is t, t + 1, t + 2 and so, on. So, let us this is my box. So, every time so; that means, 

the backpropagation is supposed we have only about three of these, it starts from here 

and then we go back and do it. So, every time when you come from the output layer, you 

have to update this, you have to update this based on y and V, you have to update this 

based on Y , V , W and whatever you have earlier and so, on. I am not going to be 

covering it in this session I will take up separate session to see how training can be 

handled in the recurrent neural network bond ok. 

So, it is just for the understanding of how the weights are calculated. So, we have ht is 

computed using the function and then y t is computed using V and h t and where h t is 

your input and ht -1 is this state of hidden weights at time t - 1 right ok. 
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So, there are. So, having understood how a recurrent neural net is constructed right. 

When you look at the neural net which is a simple one, you have lots of options here 

unlike in the previous case we can build the neural network using several ways for 

example, I can just create one to one ok. 

So, where I can use that neural net as a standard neural network for classification 

purposes correct and then I can have one input to many outputs, I can use it for image 

descriptions. So, I can keep feeding one word and then it can give me various options 

connected to that particular word and then I can have many to one basically used in the 

sentiment analysis right. And then we have many to many or we can use it for machine 

translation.  

So, I am talking about this one ok. So, there is an encoding part and there is a decoding 

part and then there is a many to many combined differently. So, we can use it for frame 

labeling of video sequences; many people have used this network for various 

applications I have just listed based on the usage of this architecture for various 

applications and also you will see that there is some more complex network that we can 

build, this is another way of creating architecture.  

So, there is the enormous capability in terms of change the architecture depending on 

what you really want to do with this RNN ok. So, this is just to give you an idea of how 

differently you can create recurrent neural networks. 
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This is a very simple feed-forward algorithm as I discussed this earlier. So, I am going to 

skip this. 
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Again, you will see the various representation of this I just want to give you the various 

representation of the same recurrent neuron, that appears in various papers research 

papers and technical papers ok. So, this is one more representation of the same ok. 
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So, again the representation of a simple recurrent neuron in a different format is the same 

as what we saw earlier here right. 


