
Applied Natural Language Processing

Prof. Ramaseshan Ramachandran

Department of Computer Science and Engineering

Chennai Mathematical Institute, Madras

Lecture - 54

Introduction to Recurrent Neural Network

(Refer Slide Time: 00:15)

So, in the 10th slide we going to just look at what I have not covered and then maybe

take that. So, this is the key aspect of this. So, we want to create an architecture that does

not impose a fixed-length limit all right.

(Refer Slide Time: 00:41)

So, what do we require to build such architecture? So, state and so, for now we have

never spoken about the word state right. So, now, we are going to be talking about the

state; states are very important.

So, for you to really go to the next state I need to know what happened in the previous

state. So, without the knowledge about the previous one I cannot move forward ok. So,

states are extremely important in the RNN also in the NLP as well right. In order to use

the previous state we need to somehow store it right.

So, we need a storage mechanism where these states are stored all right. So, this we

already have spoken. So, we should be able to provide a sequential input so, that the

model should be able to really take the sequential input of any length all right.

So, we also would see later that the RNNs do not just encode these similarities in

between words, but also between the pair of words, it also creates the similarity and also

finds out the analogy. For example, if you give the word Chennai is Tamil is the same as

London an English right. So, in this case go and went is the same as run and run. So, we

should be able to find the analogies in the recurrent neural network as well. So, we will

spend one half an hour or 45 minutes session on how to really capture the analogies in

the corpus.

(Refer Slide Time: 02:48)

So, as I mentioned earlier, it is almost similar to what we have seen, but there is one

small change that you will see here right this is a recurrent part.

So, there is a small loop in the hidden layer part. So, you know this is your input layer,

your hidden layer this is your output layer correct. So, we have introduced some small

states. So, why we have introduced it here? So, when you take the input and then create a

linear combination and then store it as a hidden value right. So, it really takes the essence

of the input and the weight vectors that you have trained so, far and that we want to

maintain that. So, we captured that in the previous state and then include this as part of

the new state.

So, that means we are incorporating whatever we have learned earlier in the embedding

layer and then incorporate that as part of the current state. So, we will see how this could

be done. So, this is one simple recurrent neural network where there is a small loop

introduced in the hidden layer. So, this is going to give us the time series ok. So, this is

going to give us the time series let see how it does.

(Refer Slide Time: 04:35)

So, in this slide we will see that the same neural network that I showed you earlier can be

unrolled; that means, I have the state of the previously hidden layer and I connect to this

state of the current hidden layer through another weight that I have created.

Ok. So, now, we are introducing one more parameter. So, earlier we had the embedding

weights, we had the context weights. So, now, we have one hidden layer to the hidden

layer there is one more parameter. So, now, if you want to learn; so, we need to learn not

only this but also this sorry this would be 3. So, these three parameters should be learned.

So, this really encodes what you have given as an input and combines that with the

weight vector right. So, this is the linear combination of these two and this is what is

stored as the previous state as well and then the state of the linear combination that we

had gotten earlier is connected to the current state through the weights which connect the

previous timestamp of hand the current timestamp of h through the weights here all right.

So, this is the memory part that we are talking about, we want to retain this so, that we

keep knowing what has happened in the previous time slides ok. Time slides even before

that time before that, say it from the start till the time equal to t we will have to capture

this and then maintain this in our memory right; that means, it has managed to maintain

the activation values of the time slides, activation values of h across the time slides that

we are having all right.

So, the updation of weights is very similar to what we had seen the only change that we

have is, this activation is calculated by combining these two and this. So, let me erase

those so, that become clearer.

So, this activation is computed using 1 and 2 ok. So, this is what we have like two in this

ok. So, and then the rest is the same as we had seen.

So, this activation based on the sigmoidal that you have used would be connected to the

context weights and then finally, you get an output layer, you apply softmax or

hierarchical softmax depending on how you want to optimize your network and then start

doing the process of training and so, on. So, when you do the training, we do not just

have this let me again erase all those points.

(Refer Slide Time: 08:31)

The backpropagation is not only on these and these weights, it has to be propagated to

these as well. So, this is a little hard when compared to what we had seen earlier and if

you have multiple time slices you will have more of this particular one. So, it will be

repeated. So, you will have one and there is. Equation os shown below

 = f(u +)

y1 =Vh1

This is t, t + 1, t + 2 and so, on. So, let us this is my box. So, every time so; that means,

the backpropagation is supposed we have only about three of these, it starts from here

and then we go back and do it. So, every time when you come from the output layer, you

have to update this, you have to update this based on y and V, you have to update this

based on Y , V , W and whatever you have earlier and so, on. I am not going to be

covering it in this session I will take up separate session to see how training can be

handled in the recurrent neural network bond ok.

So, it is just for the understanding of how the weights are calculated. So, we have ht is

computed using the function and then y t is computed using V and h t and where h t is

your input and ht -1 is this state of hidden weights at time t - 1 right ok.

(Refer Slide Time: 10:32)

So, there are. So, having understood how a recurrent neural net is constructed right.

When you look at the neural net which is a simple one, you have lots of options here

unlike in the previous case we can build the neural network using several ways for

example, I can just create one to one ok.

So, where I can use that neural net as a standard neural network for classification

purposes correct and then I can have one input to many outputs, I can use it for image

descriptions. So, I can keep feeding one word and then it can give me various options

connected to that particular word and then I can have many to one basically used in the

sentiment analysis right. And then we have many to many or we can use it for machine

translation.

So, I am talking about this one ok. So, there is an encoding part and there is a decoding

part and then there is a many to many combined differently. So, we can use it for frame

labeling of video sequences; many people have used this network for various

applications I have just listed based on the usage of this architecture for various

applications and also you will see that there is some more complex network that we can

build, this is another way of creating architecture.

So, there is the enormous capability in terms of change the architecture depending on

what you really want to do with this RNN ok. So, this is just to give you an idea of how

differently you can create recurrent neural networks.

(Refer Slide Time: 13:00)

This is a very simple feed-forward algorithm as I discussed this earlier. So, I am going to

skip this.

(Refer Slide Time: 13:08)

Again, you will see the various representation of this I just want to give you the various

representation of the same recurrent neuron, that appears in various papers research

papers and technical papers ok. So, this is one more representation of the same ok.

(Refer Slide Time: 13:32)

So, again the representation of a simple recurrent neuron in a different format is the same

as what we saw earlier here right.

