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In continuation of our optimization with respect to the neural weights and updation and 

so on we are going to be looking at how we can also reduce the computation from the 

Softmax layer and then I have just added one more layer for the sake of understanding 

which is the Softmax layer. On obtaining the values in the output layer we are applying 

this Softmax here right; the Softmax is a normalized exponential function as given in this 

equation, alright.  

So, the normalization comes from the summation of all the word value that we have 

computed ok. So, each one will have the probability value here and the summation of all 

of these would lead to one this we know very well right. And this is a flat hierarchy; that 

means, we compute the probability for every word in the vocabulary once the output 

layer computation is complete, alright. So, the depth of this layer is 1 ok. So, keep this in 

mind and then here is where the error correction starts 

So, from here we actually update the context vectors, based on how much the value 

moved from the actual target and then update the h values and then the embedding vector 



values and we keep doing it until we finally, get an equilibrium where there is no more 

change that you can find ok. And then if you look at the Softmax layer at the bottom, so 

every time when you do them or when you compute the probability for each word, you 

will see this right, for every word this is being computed. So, assuming now that if you 

are going to be having a million words in your vocabulary, so we have to be doing this 

operation every time right, for every the probability has to be obtained using this 

equation right; that means we are going to be doing it one million times. So, we do the 

summation once and then taking the exponential for each and every output layer that we 

get will be done and that increases the computational complexity. 

So this is again a very good place for you to optimize your computation, alright. So, we 

try to reduce the computational complexities by taking sub-sampling, removing some of 

the samples that are not really contributing to the understanding of the word. And then 

we applied negative sampling wherein we add 5 words that do not come as part of the 

context in the case of skip-gram and then necessarily make them as 0.  

So, that the computation of the context vectors was done only for the positive context 

value and the negative samples; that means, we are doing only for 0.1 percent to 0.05 

percent or even lower depending on what is your what is the number of negative samples 

that we are looking at. So, the third one that we are looking at is improving the 

computational capabilities with respect to doing something with the Softmax layer ok. 

So, we are going to be looking at what we are going to be doing in the Softmax layer in 

from the next layer onwards. 
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So, before getting into how we can reduce it, let us keep those words in the vocabulary in 

a binary tree format ok. So, we are going to be looking at only the balanced binary tree, I 

am sure you know what binary tree is and a balanced binary tree is. The balanced binary 

tree is one where you will have a binary branch for every node and for example, for node 

4 we have 2 leaves node 5 and so on. So, if we start with a root node, you have 2 nodes 

and then for the second node we have 4 and 5, for the third node 6 and 7 so; that means, 

the binary tree is balanced. I am sure most of you know about it, this is just to refresh 

your memory ok. 

We place the words in the leaves ok; that means, all the words would be available in this 

form ok. And we know that how to reach each word from the root node ok. So, this is 

your root node and if you want to reach W3, I have marked that in red. So, you take a left 

reach node 2, take a right reach node 5 and then you get W 3. So, the path is unique for 

each and every word. So, this is one way of constructing the binary tree. So, how do we 

get these in this order? So, there could be multiple ways of doing it; one is we can take 

the vocabulary and then place them at random ok.  

So, there is no relationship between W and W2, it is just placed at random. So, another 

way is to look at the word net where the words are arranged in the IS-A relationship, I 

am sure you remember the IS-A relationship I spoke about in some other sessions earlier 

ok. So, for example, if you look at the color as one example, we can say red is a color, 



blue is a color and so on. So, these types of IS-A relationship is captured and the words 

are arranged accordingly. So, when you use an IS-A relationship the binary tree is 

unbalanced, it is not going to be a balanced binary tree as I have shown in the example 

here. 

And then we can use the frequencies of the words in the corpus. So, for the most 

frequently occurring word we can use a shorter path and then the least occurring words 

we can probably have a longer path in the binary tree, Again if you go with this approach 

the tree is not going to be balanced, it is an unbalanced tree ok. So, there are ways of 

arranging the tree; let us assume that we have arranged it in some form and it is available 

for use for the computation, for the sake of this lecture ok.  

As I mentioned earlier the path is very well known for any word and then at every step 

right from your start from the root node, so you want to make a left or a right. So, you 

make a binary decision at every node in order to reach the word. And then the length or 

the number of nodes that you have to cross is given by the relationship ok. So, this will 

give you the length of a balanced tree. So, as I mentioned earlier, the words can be 

arranged in any one of these ways, alright. 
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So, now let us take an example with 8 words, we want to find out the probability for each 

word ok; which is normalized as we had seen in the Softmax. So, the goal is to really 

find out whether we are able to get to the level of Softmax without having that 



complexity of Softmax, alright ok. The path is given here at the bottom. I am just going 

to make up some values initially and then see how this could be translated into the word 

2 VEC model, alright. Let us first start with the root node 1 and then I am trying to find 

out the probability of the word W3 ok. So, how do we find out, let us start with this first 

ok? So, when I start from node 1. So, I need to go to node 2 I traverse to the left and then 

I traverse to the right from 2 to 5 and then to the left to reach the value ok. 

So, let us first assume that the probability as 0.53 and then the rule for filling in the 

probability when you move from 1 to 3. So, it has to be balanced and the sum of the 

probability should be equal to 1. So, the value is going to be 0.47 here so; that means, the 

P n left plus should be equal to 1. So, this is the rule that we have to apply let us assume 

that we are able to find the probability of reaching from node to node 2 to 5 as 0.79; then 

the probability of reaching from 2 to 4 would be 0.21 ok, alright. So, if you start doing 

all of this to the left node starting from the root and then to the right at the end we will 

arrive at some values for each of those. 

So, if again the left and the right should add up to 1, in all those cases. When you want to 

find the value or the probability of this word W, what you do is you just multiply it 

multiply this one and this one ok. So, we are taking these 3 and we obtain the value 

which will be equal to the probability of the word W3. So, we need to finally, figure out 

whether the probabilities of all these words really add up to 1. So, if it adds up to 1, then 

we have really achieved the goal of what Softmax has achieved. And it is very easy to 

prove that it really actually computes the values of all the words and then if you add each 

one of them, in the end, you will end up with 1. 

So, in this case I have just listed in this table the values of W1 W2 and W8 here. And you 

can actually sum all of these and then find out whether it really gets through the level ok. 

And really it gets to that level so; that means, it is practically now shown that this layer at 

the bottom contains the normalized probability of all the words in the vocabulary ok. So, 

this is the instead of the one depth Softmax layer, now we have a hierarchical Softmax 

layer and it is defined by the multinomial distribution among all words ok. 
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So, what are the advantages of this? So, why should we really care about the binary tree 

and the hierarchical model, and here are some of the advantages you will see. One is 

instead of keeping a flat hierarchy, we now have a binary tree with some depth right; the 

depth will be proportional to the size of the vocabulary that you have, and then the path 

to reach every word is unique. We have seen that in the previous case correct, so every 

word has a very specific path,. 

So, as I mentioned earlier, it lays the words in the tree-based hierarchy words as leaves; 

and you will see that there will be V ─ 1 nodes for the left and right traversing ok. So, if 

we have 8 words you will have about 7 nodes in the tree, every node denotes the relative 

probabilities of the child nodes. So, we have, if you go back here every probability 

defines the relative probability of the child nodes alright. And then as I mentioned earlier 

every leaf represents the probability of the word. So, that is a normalized probability let 

us use the right word. 
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So, again explaining further into the advantages of the hierarchical Softmax; each node is 

indexed by a bit vector corresponding to the path from the root to the node ok. So, here 

we append 0 or 1 or 0 according to whether we are taking the left path or the right branch 

when we make a decision at the node, right. 

The normalized values are calculated without finding the probability of each word. So, 

instead of calculating the probability of each word using the Softmax, the normalized 

values are calculated without having to really compute that equation one that I had told 

earlier. It is done based on the product of all the probabilities that start from the root 

node to the leaf. And the entire vocabulary is partitioned into classes also, so if you look 

at this, so we can call this as the major class, right.  

So, this is a binary and then when you go to the last node you will see the words in 

classes. So, this is what we are talking about when we mention IS-A relationship or 

frequency, you know we can keep all the words that are related by IS-A relationship as 

one group, ok. For example, if you look at the colors right, there could be some RGB 

values related to the colors wherein; the closer ones which we can mention for example, 

we are representing the colors in about 16 different ways, right. 

So, the color 1 differs from the color 2 by a small fraction, color 3 and 4 they are close 

enough, but not very close to 1 and 2 or 5 and 6. So, in that way we can classify them 

and then arrange the tree in the classified fashion ok. Then what the network is going to 



do is, it is going to learn the probabilistic decisions instead of directly predicting the 

probability. So, since we are going to be traversing from the root node to the leaf. So, 

instead of computing the probability using the Softmax, now it is going to be learning the 

decisions to move from one branch to the or one node to the other whether it has to travel 

to the left or right; and then what is the actual or the relative probability that we need to 

look at and then finally, take the probability of the word in question ok. 
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So, when we do this operation. So, instead of having an O V which is the Softmax 

complexity, we are going to be having a  which is a lot smaller than what we 

achieved in the Softmax ok; from the Softmax of O the order we are going to be having 

this order. 

The path length is going to be 19.9 for a 1 million word vocabulary ok, and if you look at 

the order instead of 1 million where it is going to be 19.9 because we are going to be 

computing only one word at a time and not the entire vocabulary the probability of the 

entire vocabulary ok. So, that is where the computation complexity comes down 

drastically ok. The speedup is for a balanced tree, this is the speed up  and then we 

can use Huffman encoded-tree to help arrange the frequently occurring words in a place 

which is at a shorter distance. 

So, when you do that the computation even reduces further downright, on average it will 

be equal to this; but when you arrange them according to the Huffman encoded tree it 



will be a lot less than this as well ok. Because frequently occurring words will be kept at 

a place which is very close to the road and then the rest of the words should be you know 

placed according to this value ok. By using the Huffman encoding, we still get a lot more 

speed, you know that is in some cases it is shown it is about 50 X faster. 


