
Applied Natural Language Processing 

Prof. Ramaseshan Ramachandran 

Department of Computer Science and Engineering 

Chennai Mathematical Institute 

 

Lecture - 46 

Reduction of complexity-sub-sampling, Negative sampling 

 

(Refer Slide Time: 00:15) 

 

So, how do we really reduce the complexity of that? So, now, we need to start from the 

training samples right. So, this is the source preparation that I had shown earlier, if you 

look at this there are many bigrams that are repeating ok. 



(Refer Slide Time: 00:35) 

 

Let me show some examples, these are examples the words like the or the pairs of happy 

returns. Do not give much information about the words happy and return correctly. The 

context is not good enough in the bigram model. So, in the same fashion if you expand it 

to trigramcorrectly there could be some combination, where the context words will not 

give you any meaning to the target word that you are looking at. Or the target word will 

not give you any meaning to the context that you are looking at. Some words we can 

remove at random; similarly some pairs reappear with the order of the words switched 

ok. 

So, you will find some of the words here as well for example, so here right, the words are 

switched. So, we can actually reduce this instead of keeping those two as the training 

sample we can reduce it to one. So, in this fashion if you find these kinds of duplicates 

even the words are switched within the bigram or trigram or five-gram that you are 

looking at for your context you can remove them. And then certain words like you know 

the combinations like of them do not really give any meaning to the processing the same 

word same here ok. 

So, in the model this is just a simple example we do not normally use bigram for doing 

this training, we normally go with you know at least five words window correctly; so, 

this is called subsampling. So, when you remove these words from the samples, you get 

a smaller subset and then you use that smaller subset to train the networks. You know 



because of the size that increases along with the number of vocabulary you have right, so 

we have to somehow reduce the training samples. 

So, this is one way to reduce the training sample. We can also remove certain words 

from the vocabulary based on the frequency. Suppose if some words you know appear 

only once in the entire corpus, that is not going to give us any context correct; so, we can 

probably remove that word from there ok. Again some as I mentioned earlier some of the 

words that appear as context words, could be discarded if they do not give any contextual 

information to the central word that we are talking about ok. 

(Refer Slide Time: 03:37) 

 

So, now what I have in this slide is a real example that used in a C program. This is 

actually a C program written by Google to really demonstrate their word 2 vec model; 

this is implemented using Skip-gram. So, here they have used some subsampling 

mechanisms to remove the infrequently occurring words ok. So, if you really understand 

C; I would like you to go through this and then see how really they are utilizing the 

mechanism to really reduce the number of samples for the training alright. 



(Refer Slide Time: 04:38) 

 

So, there is another mechanism by which you want to minimize the computation right so 

that is called a negative sampling. I keep repeating this several times the computations of 

this model is very huge when the vocabulary size is very large ok. So, each and every 

weight updation costs money. So, we need to be able to reduce the number of operations 

in the entire backpropagation model. So, those are the ideas, which we are now using to 

reduce the number of computations this is one subsampling is one. 

(Refer Slide Time: 05:27) 

 



The second one is a negative sampling. So, why should I update all my weights every 

time when that does not really make any impact in the learning ok? So, which are those 

weights that I should not really bother about ok? 

So, when you look at that right, the earning that happens only for the context words and 

the input word correct. The rest of the words there are some errors that happen and they 

really do not impact the training when we train the set of context words. And the target 

words or when you use them in the skip-gram model when you use the input word and 

try to predict the context word rest of the words do not really contribute anything to this. 

So, can we really curtail the updating of the weights, by only choosing a certain number 

of weights to be updated and so on; so that is where negative sampling comes into play. 

So, in this case for every training cycle of input we update every weight right; that is 

what we have been doing. And then Softmax function computes the sum of the output 

neuron values, so it's again a huge computation for us right. 

And then the cast of updating all the weights in the fully connected network is very high. 

So, is it possible to change only a smaller percentage of weights ok? So, that is where 

negative sampling comes into play and let us see how this is done. So, how do we really 

solve the problem that we have mentioned earlier right? So, now, select only a small 

number of negative words, I will talk about what that negative word ok; while updating 

the weights these samples output zero while the positive samples will retain the value. 

For example if we have about five values that we want to retain, we call them positive 

samples. And then we select five more values and then make them as 0; because we want 

them to be 0. The number of operations that we are going to be performing is going to be 

only on these positive values and the negative samples right. So, when we do that we 

reduce drastically the computation, instead of computing every weight in the embedding 

as well as the context matrix, we are going to be only changing a certain number of 

weights. And this is what is given here. 

While updating the weights, these samples output zero while the positive samples will 

retain the values. During the backpropagation, the weights related to the negative and the 

positive words are changed and the rest will remain untouched for the current update we 

do not touch any of the other weights; we only change these five or ten weights that we 

have chosen. So, this drastically reduces our computation is not it instead of updating for 



example, if you look at 1 million vocabularies by 300 hidden values, we have about 300 

million weights to be updated every time correct that is for embedding weights as well as 

for context weights leave alone your Softmax computation and so on. So, we have 

reduced drastically by only choosing a certain number of negative words. 

So, these negative words are nothing but words in the vocabulary itself. But these words 

do not really contribute anything to the context word; they are not one of those context 

words, they are chosen through some mechanism and they are taken and those weights 

are updated. 

(Refer Slide Time: 10:00) 

 

There are several mechanisms that are available and this is one mechanism. So, we want 

to be able to pick up only those most frequently appearing words as one of those 

negative samples ok. This I am sure you would know, it is the probability of a given 

word in the corpus right. So, we are applying some mechanism, which really boosts the 

probability of less frequent words and then reduces the probability of highly appearing 

words in the corpus. 

 

And then there is another mechanism that you do is once you compute the probability 

and then find out how many times a particular word appears in the entire vocabulary. So, 



you have the frequency table as well. Using that frequency table you can find out how 

many times you want to repeat certain words in a table. 

For example, you create a unigram table of size of the vocabulary; and then pick up the 

most frequently appearing word and then copy them in the unigram table several times 

according to the frequency of the words. And then use this formula to pick a word or the 

number of words that you want to use as the negative sample you got it. So, this is how 

you use the find the negative sample and then use it in our computation of updating 

weights. 

(Refer Slide Time: 11:47) 

 

So, as I mentioned earlier the number of weights is phenomenal right for the computation 

we want to be able to reduce that. For example, the word 2 vec given by Google uses 1 

billion words and it contains about 30,000 to 40,000 words as vocabulary. And to train 

the network or to generate the word vector it takes about 40 minutes or 1 hour depending 

on your computer power. 


