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So, I am going to be taking this Skip-gram Model as an example and I am going to be 

showing some small pieces of code. It is not complete code and I am going to be 

providing only the pieces of code for you as well your job is to really take this code, 

integrate and make the application run. So, I will not be giving all the details, every line 

of code, and so on, I will be giving only pieces of code for you this time not like last time 

where I gave you the full code ok. 

So, for any network to work so, you have to do some kind of initialization. We need to 

first set up our corpus. I am taking a very small corpus of about a hundred documents. It 

is very small it is in good enough to really identify all the word vectors in the right 

context this is just to show how it works ok. So, I will be initializing some parameters 

initial initially I set up the corpus, so that I can read all the documents and then I 

initialize the model parameters. In this case I am taking the context window I remember 

we will be having the context window where we will be looking at in this skip-gram 



model I will be inputting this and these are the context word the application is supposed 

to predict. 

So, I have the number of epochs and then the context window size and these are the 

initialization that you can provide when you start the program, and then you initialize the 

weights. As I mentioned earlier the initially to start with you have to have some weights 

associated with that. So, I am just using a random number using a uniform distribution 

between the values of minus 0.9 to 0.9. I initialize both embedding rates as well as 

context weights here using this ok. So, this is the second step that you have to do. 

So, you initialize all the parameters and then initialize your weights, and then we start the 

forward process. 
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So, what is the forward process? We know that now you need to identify the H. So, we 

have our X here and then we have our embedding matrix and then we need to find the 

hidden values ok. 

H=  

u=  

So, in the forward pass was what we do is we just you take the transpose of the weight 

matrix and then take a dot product, took it H and then what is the U? U use you the final 



value that is calculated using the hidden values and the context matrix, correct? This is 

one step before softmax all right. So, in one go I compute the forward pass ok. So, you 

know what is the input that you are providing and then once it is done H is calculated 

and now u can be calculated using H as well; initially these weights as I mentioned 

earlier are random weights. 

So, now, you compute y hat; y hat is your softmax values ok. So, using softmax you find 

they hat. So, we have H here and then you have the context matrix, and now we will give 

you U and then this results in y hat and then I return all the three values in one go ok. So, 

we have computed H, U and y hat in the forward pass, how easy it is rights. 
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So, then now you have to do the backpropagation. So, U is computed softmax is 

computed so, find the error. Now, we have the equations for your convenience I have 

provided these equations. So, we need to update the weights in the context matrix using 

this form right. So, for that you need to find the difference right. So, what is the 

difference that you want to compute and then later use the difference to find the new 

values? So, this is what we are doing here. 

So, we do it for the context matrix and then do it for the embedding matter, and then 

update the context weights. So, the new weights are updated using the old context term 

weights and then use a learning parameter, and then use the delta context weights which 



we computed earlier here, and get the new context weight. So, once the context weights 

are obtained we now go back to the embedding weights and then update it as well. 

Again, using the formula we are going to be updating the embedding weights. So, we 

have the old embedding weights here, and then use this same inner parameter, and then 

use the delta embedding weights that we computed earlier to find the new embedding 

weights here. So, this is your new value right. So, in about 5 lines we have done the 

backpropagation part right. 
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And, then how do you keep doing this right. So, we need to have the error parameter that 

needs to be minimized as given here and that will be incorporated as part of the training 

process and then every time when those weights are computed when the errors are 

computed, we want to find out whether the value of e minimizes ok. So, when it keeps 

going down and down so, usually you get something of this type ok. This is your error 

and this is the number of epochs. 

So, we need to keep looking at this. You know initially, it will be random you keep a tab 

on this right when you start doing the training part and then see how it goes sometimes if 

you have not done your implementations right it will be very erratic in this fashion or if 

the learning parameter is not appropriately chosen it will also not be in this fashion. So, 

sometimes it will calm down and then go up and then try to come down like this ok. So, 



make sure that you get something ideally in this fashion ok. So, this is something that 

you want to get at the end ok. 

So, here what we do is we just do the forward pass as I had shown earlier and then we 

keep computing the EI part for every word and then compute the backpropagation ok. 

So, this particulars instruction what it does is, it actually computes the error for every 

context word. You remember in the first slide when I was talking about we have the 

target right and then this is the predicted value and then we found the error all right for a 

bigram where we have only one target word and the context word. 

So, now, we have more than one context word so, that means, we will have more error 

values correct. So, let us say this is 1 this is for the first context word, target 2 predicted 

value 2, so, error 2. So, when you compute the error you do it for all elements or all the 

words ok. So, the size would be the same as T1, T2 and so on. So, in the same fashion for 

the second word you compute for example, initially we this is our target and this is our 

prediction even though we are only finding the difference for this, but we also find the 

difference for all the elements right and then they go here. 

So, in the same fashion for this word we calculate error 2 and so on. So, in this fashion if 

you have got 5 or 4 we need to compute the sum of all this. So, in this case what we do is 

we and then finally, we get one E from all this right. So, the E size also is the same as the 

size of our vocabulary. So, all differences are summed at the end and this is what is 

happening in this step ok. So, once it is done use the backpropagation to update all the 

weights. 

So, you remember in the backpropagation we are updating both the embedding weights 

as well as the context weights, I am sorry in the order of context weight and embedding 

weights and then compute the error for that particular epoch so, using this formula. So, 

we have given here and this is the error that you have to keep looking at. If this error 

goes down in this fashion smoothly you are doing good ok. So, if you have something in 

this erratic fashion something is wrong. 

So, do not start with a thousand epochs immediately, do not start with a one million 

vocabulary immediately; start small. Take about 10 words as vocabulary or 5 epochs and 

then start looking at this ok. So, make sure that your program is right, make sure that the 

error is slowly coming down then you can really take a bigger corpus, bigger vocabulary, 



and then increase the number of epochs and so on. So, while doing that keep playing 

with the learning parameter to see what is the right learning parameter for you as well ok. 

So, you got it? 

So, so when you look at it through the program you know sometimes it looks so simple. 

So, that is why I thought I will also take this route rather than just explaining the 

equations, rather than just giving them in the matrix form I thought I will also give the 

program so that you can follow that ok. 
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So, after completing the exercise of we now have embedding vector ok. So, each row 

represents a word vector for you supposing you have about 300 words ok; this is a word 

1 to 300. So, each vector will have let us say 300 to 500 elements depending on what you 

have chosen as the hidden value size. 

So, what I have done in this case is I have trained that very small corpus which contains 

a problem statement related to kinematics and then I trained the vector and each problem 

is about 1 or 2 lines consisting of about 20 to 30 words max I have taken one word and 

then I am just trying to find out what are these similar words in this. 

So, the kinematics problem there are problems where you are dropping a stone into a 

well and then the sound was heard after a few seconds how deep is well ok. So, like that 

there are several problems of that type. So, I just wanted to find out how this word deep 



is related to the words that are surrounding it or I just wanted to find out the words that 

really define deep in this given context ok. So, once the program reaches an equilibrium 

state we do not need the context weight part, we do not need that softmax, we do not 

need any of those, what we require is the embedding matrix ok. 

So, now I take one word deep as a word, and then I take the vector out of that and then 

run it through all the vectors, word vectors here to find the similarities. So, I use a cosine 

similarity, I am sure you remember that and then find out the values. And, then listed the 

top 10 or 15 of them to find out how close those words are in the given embedded matrix 

ok. 

So, you will see that heard, death, well, sound, peso that is a coin used and then hit, after 

how many seconds are you hurt, water. So, all of those words are related to deep in this 

case ok. So, it varies from 0.77, rather 0.8 to 0.4 ok. So, if you want still closer once you 

know you do not want beyond 5 or 4 this is how you got it. So, in this case what I have 

done is I ran through the word vectors through the entire set of words or the vectors that 

were found through the model and then found the similarity and then listed them in the 

descending order ok. 

So, you get this right now this is the most crucial part in the natural language processing, 

where you need to really create word vectors for the given context and the corpus ok. 

There could be a general-purpose of word vectors that you can also create by looking at 

the content available on the internet by taking close to 2 billion or 3 billion words. Say 

for example, extract close to 3 billion words from Wikipedia and then start training using 

this skip-gram model and so on. So, as I mentioned earlier the implementation that I have 

shown uses a skip-gram model all right. 
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So, so far what we have seen is how this model works right. We also have mentioned 

earlier that the size of the network really matters, correct. If you start looking at the 

larger corpus where you have more than a million-word as your vocabulary I am going to 

be having 1 million 1 hat vectors right and then every 1 hat vector will have 1 million 

elements and then correspondingly you have a 1 million into let us say if you restrict the 

hidden layer size to 300, 1 million into 300.  

And then if you go to the context side again you have the metric of matrix operation that 

you have to perform for the matrix of size 300 into 1 million and then we have U that is 

1 million elements, we have a softmax that is 1 million elements and then the difference 

that will be 1 million elements and so on right. So, look at the size as the number of 

words in the vocabulary grows. 


