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Let us now see how the hidden layer values are computed. In this case, the network is 

fully connected, the input to the network is a one-hot vector as I mentioned earlier.  
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Again W is the weight on the input hidden layer side and then W dash is the weights on 

the hidden layer to the output layer side. When we compute the hidden values in the 

hidden layer, we use a dot product to get that right. So, this is represented in the vector 

form right now, so the bold letters we have the vector representation.  

As I mentioned earlier in the earlier session use linear algebra packets, so that you can 

directly compute this instead of going through the loop method ok. So, in this case, what 

happens is you have the hot vector like this and then you have the weight vector. And 

what you want to find is your h right. So, let us say this is 5 by 1 and then we want to 

have the weight victor which is of size, we want to have the hidden layer of size let us 

first define that as 3 by 1. Then what is going to happen is this is going to be a 5 by 3 

matrix right. 

So, what you do is you just do the W transpose into X that is 3 by 5 into 5 by 1 will give 

you 3 by 1 here ok. So, when you do this operation, what happens is it actually copies the 

row in the weight vector and then places them here ok. Since all the values are here, so it 

does not matter whatever value that you have in the weight, it only takes the row 

corresponding to the value of 1 in the one-hot vector and copies that particular row into 

the hidden layer is ok. 

So, now what we going to do is, we going to be creating some more representations ok. 

So, we have done the calculation of h using this model. So, now, we have the other side 

from the hidden layer to the output. So, we apply a similar mechanism to compute u j, u j 

is equal to the v w j dash transport and h. So, you remember there is a hidden layer, and 

then there is an output layer and then we have another weight matrix right. So, this is 

computed.  

So, we want to do the dot product of these two and then create the output layer right. 

And this is what is shown here. U j is computed by taking these values and then using the 

W is I j and we get the output values as u j. And the size of this would be equal to 5 by 1 

ok. Clear with this? So, we have computed first the hidden values. And then from the 

hidden values to the output, again we have a matrix here. So, we have computed this and 

then using this, you are going to be computing another set here right.  

So, let me use one more layer to clearly explained what happens. In this output layer, the 

values are computed. And then later we apply the softmax to get these values ok. And 



 

 

this is what is shown in this equation ok. So, that output values are computed before 

applying the softmax and u j represents that output values ok. So, in this case v w is the 

vector representation of the input word that we have provided as the one-hot vector and 

then v w j is the jth column of the w. So, in this case here j the column. So, you have this 

matrix here and then we are taking the jth column of the ok. 
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And then later what you do is as I mentioned earlier in the output layer, we are going to 

be applying the softmax that is where we are going to get the real values of the predicted 

word correct. So, the real value would be computed using this . 

So, these are all these indexes that I will be using. And each one would be having the 

value from 1 to v. Just to distinguish between the input, the output and the predicted 

elements, we will be using three different indexes here ok. 

So, we are going to be predicting the value of yj using this model. So, in this case, we go 

to get 1 vector of size v ok. And then we want to find out what is the actual error, what is 

the actual value predicted. And then if the actual value predicted is the same as what is 

input, then there is nothing much, we can do the system has learned it. If there is a 

difference, we will take the error and then do the backpropagation algorithm ok. So, it is 

very similar to what we had seen earlier. Again I am going to repeat this one more time.  

So, we will compute the values in the hidden layer using this formula right. And this is 

nothing but just a copy of one of the rows corresponding to the input hot one-hot vector. 



 

 

And then it from the hidden layer to the output layer, we have j, using that value we are 

going to be computing the output values and  is our output value ok. And then each 

column of the   is used for the computation of this u j values ok. And then later in 

the output layer, we apply the softmax, so that the probability is distributed across the 

vocabulary z all right. 
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So, the next question is how do we really update the weights? So, this is very similar to 

what we had seen in the backpropagation model. There is no change in the way we are 

operating right now. The only change that we are going to be introducing is bringing a 

different error mechanism ok or bring in a different model for the error and use it for 

making the corrections in the weights as we move along right. So, we have the value that 

is computed. Supposing, if this is the target and we have yj, I want to make sure that this 

value is minimized ok.  Is given equation 

 

 



 

 

So, using yj we are going to be minimizing the error and then backpropagate the error 

into the weights, and then keep repeating that until it becomes very close to 0 or certain 

condition that we have defined ok. So, in this case, as I mentioned earlier there is a 

separate index created for the softmax layer as well that is called j *  ok, yj * ─ T is 

going to be our error value. So, we want to be able to minimize that error right. 

So, minimizing the error is the same as maximizing the probability of that predicted 

word. So, we are going to be using a different scale here in terms of the errors. We are 

going to be using loss function which is called the cross-entropy measurement. So, why 

do you want to use this mechanism? So, if we look at the log p x or the predictive value 

that we have here it is very well scaled ok. Selecting the step size to move forward in 

terms of the error correction is easier in this. And then when we introduce the probability 

and then when you start multiplying them you know the values become smaller and 

smaller as we progress and sometimes it leads into the underflow. 

So, instead of multiplication, now we try to get into the logging framework, where the 

multiplication becomes an addition to right, so that is the reason why we want to have 

this. The one more advantage also, it provides a good measure of error distance. For 

example, if the value becomes 1 ok, so the error value would be which would be equal to 

0 ok. So, we normally do it y into this. So, if this is if there is an error value which is not 

equal to 1, which is smaller than 1, this value will be larger. So, it gives us a good visual 

feeling with respect to how the error is getting reduce, so that is the reason y also we use 

the cross-entropy measurement for error reduction. So, we can also see that it is a very 

special case of cross-entropy measurement between two probability distributions here all 

right. 
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So, how do we now update the weights? So, we update the weights using the partial 

derivative that we have seen. So, we know that the error in the predicted value is given 

by y minus t j which is equal to e j and this is what we want to minimize correctly. So, e j 

is our prediction error. So, we want to be able to find out with respect to the   that 

we find between the output and the hidden layer right. So, when we want to do that, we 

use the chain rule which goes like this   
 

 

 

So, now, we want to update the weights. How do we update the weights? So, now, we 

have some learning parameter as we had mentioned earlier in the previous 

backpropagation network in the same case, we will have a learning parameter and we 

will have the value between 0, 1, 2 some depending on the network weights and all that 

ok. So, in this case, we are going to be computing the new weights using our old values 

ok. So, once this is computed, now we have a new set of a matrix in the hidden to the 

output layer correct. So, based on the error reduction mechanism, the values have 

changed all right. 
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So, in the same fashion, we should be able to reduce the waste between the input and the 

hidden weight. So, we have moved from the error from the output layer to the softmax 

layer and then propagated the error back to the weights. And now the weight vectors are 

changed. From the changed weight vectors, now we have to move that backroom to the 

input to the hidden layer so that the values there in the input of the hidden layer weights 

are also changed ok. 

 

So, again taking the derivative with respect to h1, we get the value of EH i. We are going 

to be taking the derivative with respect to wk1 which is nothing but the input to the 

hidden layer weights right, so that we are going to be changing. For us to change that 

weight, so we need to differentiate that or do the partial differentiation with respect to 

wk1,and we have the error and we have to change it with respect to this right. Using the 

rules, chain rule, again we will rewrite this equation in this fashion and then find the 

values that we want to use to update the input weight ok. 

So, since this is known and then if you do the partial differentiation with respect wk, 

what you will get is the input value right. And then the weights are updated using the old 

values and the here that we have computed which will be multiplied by the learning 



 

 

parameter in this case ok. There is this clear? All right. So, let us move on to the next 

one. 
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So, these are some of the insights that you will have. The prediction error propagates the 

weighted sum of all words in the vocabulary to every output vector right. The change in 

the input vector is defined by the output vector which in turn is updated due to the 

prediction error correct. The model parameters accumulate the change until the system 

reaches a state of equilibrium, which means, the model parameters are those which are 

computed using the error propagation.  

And finally, when there is no more change that can be accommodated, these freezes that 

that is when the model parameters are created and ready for testing our model. This 

particular bullet point is meant for the same word learning in terms of learning the same 

vocabulary words and then creating the word vector form, but in our case this is not true. 

The roles in the input-hidden layer store the features of the words in the vocabulary ok. 

So, once the training is completed, what we have is the embedding of that particular 

vocabulary that we try to learn ok. 
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So, let us now look at some of the operations that we had seen earlier in terms of the 

matrix form. So, what I am going to be doing is, I am going to be really drawing those 

matrices, so that whatever equation that we get seen and whatever error propagation that 

we try to define using the equation will become very clear ok. So, what we let us take 

one small example actually I have notes taken for this so that I do not make any mistakes 

while repeating this. So, I am going to be copying those values from the notes here. 

Let us say we have the words that we want to train ok. So, this is the sentence that I want 

to train. And then if you want to look at the corresponding one-hot vector let us say we're 

going to be taking this word, it is going to be like this correct. So, this is going to be our 

one-hot vector corresponding to we. So, this is of size 6 × 1. And then let us say that we 

are going to be constructing a matrix of size 6 × 10. So, this is just an example.  

So, I am just taking a matrix of size. So, this is our wk1 in the earlier case remember. So, 

if you look at this, we will have about I am going to draw only 1 row here ok. So, we 

have 6 rows in this. So, the corresponding row will be just copied as I mentioned earlier 

into h ok. So, when we do the linear combination of this, this will be copied into this. So, 

this would be 10 × 1. So, how do you obtain this? You take a transpose of this and then 

do a dot product with this input value and you get this 10 × 1 matrix ok. So, this is our 

input to right. 



 

 

So, what is the next step? Using this we use another to create our output correctly. So, 

we use this the matrix size is the same it is 10 × 6 ok. So, we have 10 elements in this. 

And then doing a dot product of this would give you the output. Since the size of the 

output will be very same as the input which will be equal to 1 ok. So, in this case since 

we are using a bag of words, for the input word v this network should learn love right. 

So, we have some values 6 values are computed. And then for this will take a softmax ok 

and then the softmax will do the property distribution between 0 and 1 for all the values. 

And we need to find the corresponding context word right ok. 

So, let us see how that happens. So, in this case let me draw the softmax here. So, after 

this, we compute the softmax again of the same size 6 × 1 ok. So, we have computed this 

softmax for this and this softmax will again give you 6 values. So, let us assume that this 

value is what you want to predict right. So, it would have given values for each of this 

since the initial values of the weights are random, we cannot expect this word to have the 

maximum value. So, it will have some random values because of the weights that we 

have created in these two cases ok. So, now, once this is computed, we want to find out 

the error between the predicted value and the target value. 


