
 

 

Applied Natural Language Processing 

Prof. Ramaseshan Ramachandran 

Department of Computer Science and Engineering 

Chennai Mathematical Institute 

 

Lecture - 41 

One word learning architecture 

 

 (Refer Slide Time: 00:15) 

 

So, now let us see how we can prepare the training data right. This is the most crucial 

part of any natural language process application right. So, when I give that sentence is 

given. So, we are given a very cleaned up sentence here. So, there is no need to do a lot 

of preprocessing with respect to removing certain literals or numbers or whichever are 

not required for the understanding of the word ok. In this case, we are going to be using a 

5 window size and we will be capturing the training samples using that. So, when we 

start with that 5 gram, so what happens is there is a start symbol in the beginning right, 

so that when if this becomes the central word. So, there will always be a start symbol and 

an end symbol like this ok. 

So, we start capturing the words that are surrounding the central word ok. So, now, I 

wish you as one. So, and then we are capturing the bigrams of each of those in this case. 

And then wish many. So, we have you and many as the context word for the wish. So, 

we are ignoring these start symbol for the moment here. So, when you move the 

windows slowly across right, the central word changes and the corresponding context 



 

 

word also change. So, for this case, you are the central word, wish, and you more, you 

happy correct. 

So, again move the windows slide the window to the next word. Now, many are your 

central word and you have many you, many wish, many more, many happy. So, in this 

way you keep moving the window across the entire corpus and then form the bigrams of 

all those words and then create a training sample ok. So, do not worry about the 

repetition of certain bigrams in this case ok, there will be repetitions, when you start 

processing a large corpus. So, we do not need to really worry about this point in time. 

So, in this case, what you are going to do is we know which one is the central word when 

we take it, the first one is always the central word right. So, this is going to be input into 

the neural network. Let us say if you are looking at the CBOW model, so I will use 

which I will take the corresponding one hot vector related to this and then use that as the 

input for the network. So, you understand how this is created right, how this training data 

is created ok. 

(Refer Slide Time: 03:29) 

 

So, again I am just giving the same network model, but in a different style so we have 

not this is a bowtie model. This is the input layer of size V. So, x I would be x equal to x 

1, x 2 to x v that would be the size of the input. Supposing, if you have 1 million words 

as the vocabulary, then the number of elements in the input layer is 1 million ok. Hidden 

layer size is smaller than the input layer size, we can go up to the value of 300 or if you 



 

 

want still further finite a distinction, you can go up to 500 OKs, so that means, a hidden 

layer will have 500 elements and we will be connecting 1 million to 300 or 500, so that 

many weight that you will see so that means, this is 1 million into 500 that means, we 

will have you will have 500 million connections going. 

In the same fashion, since the input layer and the output layer size is going to be the 

same, both will have the same V dimension. If you are using 1 million, this also would 

be 1 million. Again the number of elements in the matrix W dash here would be 500 by 1 

million OKs, so that is the size of that. Let us not worry about the size at this point in 

time, let us only worry about how we can really make this neural net functional ok. 

As I mentioned earlier there will be only one input we will be provided at a time. So, one 

word will be input and the weights are initially randomly created and then the hidden 

layer is computed by using a dot product of the input layer and the weight vector. And 

then later the weight the output values are computed by again doing the dot product of 

the hidden layer elements and the weight vectors on the output layer side. So, this is the 

simple representation of the one word learning neural network using the bag of words ok. 

(Refer Slide Time: 06:21) 

 

So, as I mentioned earlier, so we are going to be using a one-hot going to be using a one-

hot vector as the input element. And then you know well that the values in the one-hot 

vector would be equal to 1 only once in the entire vector for a given word ok, the rest of 



 

 

the values would be 0. So, it also gives you the index of that word in the vocabulary list. 

So, this defines how the one-hot vector is given. 


