
Applied Natural Language Processing 

Prof. Ramaseshan Ramachandran 

Department of Computer Science and Engineering 

Chennai Mathematical Institute 

 

Lecture – 39 

Why Word2Vec? 

 

(Refer Slide Time: 00:15) 

 

So, this class will be looking at the word embedding using Word2Vec of I will be taking 

you through the concepts applied in Word2Vec this was developed by Google in early 

2013 or 14. And I will be taking you through the code as well as through the techniques 

and also through the mathematical equations on how word embeddings are created using 

neural network using two different concepts. Before we get into that I am sure you are 

familiar with the word embedding that we discussed earlier in the latent semantic 

indexing or latent semantic analysis, where we actually decompose a matrix into three 

components I hope you remember that right. 

When you decompose the matrix that consists of term document, it gives you three 

different mattresses. One is the left singular matrix other one is the right singular matrix 

and then the middle one we call it as the singular matrix right. And then if you look at 

the dimensionality of the matrix which is driven by the singular values in the diagonal 

elements of the singular value metrics, we would be able to reduce the size of the total 



mattresses by curtailing the size of the singular values, I hope you remember that as well 

right. 

So, in the same fashion we are going to be looking at the neural network to create a 

similar concept where we can create word embeddings. In the case of LSI the left 

singular matrix if you are using term context matrix as the input and then use the SED to 

decompose that into left singular right singular and singular matrix. The left singular 

would contain the word embeddings and then the right singular matrix would contain the 

context embedding and so, on right. 

So, if you really see how that happened to understand whatever I mentioned I will draw 

this in the matrix form this is your term and this is the context right. When you 

decompose this vec three different mattresses like this and then here this is your singular 

matrix where you will have lambda 1 lambda 2 and so, on, this is your left singular 

matrix which is giving you the word embedding; this one is your, and this is the context 

right context matrix. 

So, the metric sizes are defined by the number of elements in the left in this singular 

values. So, I can reduce this to a smaller number. So, that my size of the left singular 

value reduces and the context also reduces to match the size of the singular matrix ok. 

So, in that way I can just have the word embedding to be off sized. Let us say 100 

elements or 200 elements or 300 elements and depending on what is the kind of accuracy 

you want to have you can increase the size of the elements in the word embedding. So, 

we are going to be doing a very similar approach using the neural networks, and this 

course this session is all about this. 



(Refer Slide Time: 04:14) 

 

So, in this session, I will be talking about what is a continuous bag of words and then 

what is this skip-gram model, and then what is one-word learning, how what is the input 

layer that we are going to be using and then what is the hidden layer, what is this size, 

how is it connected to the input layer and then there is an output layer and then how the 

output layer is connected to the hidden layer. And later we will also see how those input 

hidden weights and the output hidden and the hidden output weights are modified based 

on the last function. 

And then we will see how and what is learned during the process of the training, later we 

will see why this model is extremely difficult to implement with respect to this size and 

then how we can reduce the computation complexity is using subsampling negative 

sampling and then hierarchical softmax and so, on and finally, will talk about the 

limitations of the Word2Vec right. 



(Refer Slide Time: 05:27) 

 

So, let us jump into the Word2Vec model. See the goal here is again very similar to what 

we saw in the LSI, we want to process each word in the vocabulary of words to obtain 

respect to numerical representation right. So, instead of just having it as a one-hot vector, 

I want to represent the word in terms of the vector which contains about 100 elements or 

200 elements 300 elements and so, on and let us see how we can get to that level. 

And then we want to be able to reflect the semantic similarities when we trade when we 

finished training the network, we want to be able to capture this syntactic similarity when 

we finished the training of the network or can we capture both in one shot. We will try to 

map the cruelty of each word to the respective vectors and then try to see how we can 

merge the vectors so, that its a combination of the respective vector. That is we are trying 

to combine multiple words that are similar and then push them as one vector ok. So, that 

is what we mean by the plurality here. 


