Applied Natural Language Processing
Prof. Rameseshan Ramachandran
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Lecture - 35
Logical OXR

(Refer Slide Time: 00:15)

So, how do I solve the logical XOR problem? We know, | think we had seen earlier that
it is not possible to solve the logical XOR problem using a perceptron. It is not linearly
separable because the values are here and here, right. So, we need to be able to figure out
a way to solve the problems where the boundaries cannot be a straight line and you

cannot separate the class by just a straight line. So, what is the way forward?

So, in this case, and you add one more neuron, ok. Now, it becomes a hidden layer. We
have the input layer, we have a hidden layer and we have an output layer, ok. So, in this
case again there is only one, even though it is a binary class in the XOR, single
perceptron cannot solve it. So, we try to add one more neuron and see whether it is

possible to solve this, ok. So, let us use this one. Let me clear all this.



(Refer Slide Time: 01:40)

Let us use this network. Assume that we have already found these values of the weights,
ok. In this case the bias has no value because it is always multiplying and then by 0, it is
not going to have any effect. So, you can ignore this if you want, ok. In many cases
instead of having a separate bias value as we had shown earlier, it will become part of
the input. So, we can consider this as x naught. So, every input will be added with the

bias value.

(Refer Slide Time: 02:15)




So, in this case if you use the standard computation model that we had described earlier,
ok. So, here h 1 equal to x 1 w 11, ok. So, we call thisas w 11, w 12, w 21, w 22. So, for
h 1 the weights are the x 1 is contributing its value through w 11, ok. So, that is why we
have it here. x 2 is contributing the value to h 1 through w 21 and then the bias is
contributing its value through b into wb 2, right. So, you can compute h 1 and h 2 in this
fashion for every input that you are providing, ok. So, in this fashion h, 1 could be
computed and then y could be computed using let us call thisasv 1,v 2,y isequal toh 1
v 1 plush 2 v 2 and if you have some contribution from the bias if it is not equal to 0, we
can add that.

So, in this case since it is 0 we are not going to be considering this. We can actually
ignore, ok. So, we can fill this up. So, our output would be like this, right. So, when you
compute the values of this you will see that the h 1 is translated into this form, ok. So, h
1 and h 2 if you notice are the representatives of the input parameters. And then, notice
that in this case there is an input space and there is a hidden space, and this is the output
that you are computing and then it is also the expected output, right.

You can notice that from the input space to the hidden space there is a change. What
change that you find? The values that you have here, for 0 1 and 1 0 have become 1 0
and 1 0 in this space, ok. It is very similar to what we saw in the LSI where we use the
SVD, right from the term-document matrix using your let us call this as x. So, here you
have the terms and here you have the documents, right. So, this is the input space that we
had given to the LSIs. When you use the SVD what happened was we have U sigma and

V transpose, right. It was decomposed into three different matters, this you know.

If you look at U the number of rows in U is very same as what you had in the original
matrix X, right. So, that is why we used to call the elements of U which are
representatives of our terms, and then we can either truncate the U based on your sigma
size, right the rank of that or we can leave this. So, you can | can have let us say about 50
elements, and it will still represent term 1, term 2, term 3 and so on, right. And if you
have more precision yeah have it extended to 100, or you want to have the entire position
then you want do not want to lose anything you can keep the entire a vector or the row

vector, right. So, this is our embedding that we were talking about.



But if you look at the actual values from the x, right. t 1 used to represent the term a
frequency or t f, | df values and so on from individual documents. Now, in this case the t
1 is translated into a different space altogether and no longer represents only the terms in
documents, right. So, this part you understand, right. In the same fashion if you look at
this x are the input space isthe 00,01, 1 0 and 1 1. So, when you move it to the hidden
domain it is translated into 0 0, 1 0, 1 0 and 1 1. So, it is now a shrunk space, right and
then those values that output one has been shrunk into one piece, ok. You see what is
happening here, right.

So, what happens if | increase this to one more? So, how will this look like? Right; so,
try to increase the count of the hidden neuron by 1 and then see what happens to this
table, ok. You see this, right. So, now we are able to shrink the space of the input into a
smaller space using h 1 and h 2 and we are still able to create a boundary in the space of
hidden layer. So, there is an input space that you can talk about. Let me erase some of

these to show you that part.

(Refer Slide Time: 09:17)

So, our input spaces x 1, x 2. We have 1 here and then this is our 0 and we have 1, right.
So, this is our input space. So, in hidden space we have h 1, h 2. So, what happened
here? We have a 0 oops, right 1 0 is like this and then 1 1 is that is way, correct. So, we
have one value here. So, it is easy for you to now separate these two out in this space,

correct. So, there is a change from the input space to the hidden space and then the



hidden space we are able to really do the boundary, rather we are able to really compute

a boundary that separates these values in a linear fashion, ok.

So, for us to get to the level where there are non-linear conditions we are going to be
increasing the hidden unit and it will depend on the size of the application. For example,
in many cases when you go down the lecture series you will find the hidden space would

be around 100, 200 or in some cases its even 500 and so on ok.

(Refer Slide Time: 11:31)

» Input space is transformed into hidden space v

» Hidden layer represents the input layer

» Learns automatically the input representation and patterns
» (0,1) and (1,0) are merged into one in the h-space

» Patterns yielding similar results are merged into one

» Dimensionality reduction

» Are hidden layer neurons joining piecewise linear representations to create
non-linear boundaries?

So, I have provided all the intuition that we have spoken about in this particular slide, ok.
So, you may want to read this and then understand this cleanly. So, the last one is a

question for you or try to answer this question.



