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Now, a little bit about some of the associative laws which are very useful in the design of 

neural networks. one is the law of similarity. these laws are fundamental laws attempted 

by Aristotle, it is very old; in terms of learning and memory. There are 4 fundamental 

laws, one is the law of similarity, the second one is the law of contrast, third is contiguity 

and then fourth is the fluency. we also have to relate this to what we have in the natural 

language processing, then only they are useful otherwise you know it is set another 

individual set of laws, ok. 

If two things are similar the thought of one will tend to trigger the thought of the other, 

ok. This is something that I am going to be talking about in future word2vec, but let us 

talk about the LSI that we have already learned. what does LSI do? Using the SVD it is 

able to really decompose the term-document matrix into 3 matrices, right. one is the left 

singular matrix we called it U and then we have a diagonal matrix where the elements 

are in the descending order it is the singular matrix and then another one which is of V, 

V this is the right singular matrix. 



And we mentioned that the elements or the rows of U represent the words, right. it is 

equal to the size of the terms that we had. For example, if the term for the wanted space I 

will use this, this is your document, right. the column tells you various features of your 

documents and then rows give you the features of your words. And then we mentioned 

that after transforming the original matrix into this latent domain U the rows of U 

represent the word vector. It is not the representation of the term directly, but it 

represents a lot of similar words as part of that that is why we call that the word 

embedding. 

So, in the same fashion the loss of similarity when we use one of these techniques either 

LSI or word2vec, we are able to capture a similar pattern. if you take one of the vectors, 

it should be able to tell you what are all other similar words that you have, related to the 

word that you have picked up. we will show one example later during the time this will 

become very clear, ok. in this case if you recollect or if you pick one word, the context 

related to the word is learned using the LSI as well as in the word vector, which will be 

talking about later. 

So, it will be able to tell you what are all the related words with respect to some cosine 

distance; this is very useful in the natural language processing where we can pick up the 

similar words with respect to its context. In another example, if you recollect the 

birthday of your friend in the class again, you are celebrating it. immediately the thought 

will come, whose birthday is next right? that is something we can roughly relate to the 

law of similarity. 

And then the law of contrast; seeing or recalling something may also trigger the 

recollection of something which is completely opposite, ok. If someway you know we 

are able to find instead of this similarity the antonyms of each word. For example, I have 

trained the network in such a way that when you give one word it will always give me 

the opposite of those words or the words that are opposite to that, ok. that could be the 

law of contrast.  

Law of contiguity. Things are even that occur close to each other in space or time tend to 

get linked together in the mind, ok. This funny example that I have quoted here, but I 

think it is true in many cases. This is one simple example. while walking back to your 

house when you find a snake in one corner of the street today, right and then if you are 



going to the same place every day from today onwards you always tend to look into that 

corner to see if you can find a snake again, ok. this you will call as the law of contiguity. 

And then the law of frequency is something we spoke about even in the prediction of the 

next word, right. In if certain sets of words are connected through the context and it is 

frequency is pretty high when you provide the first word it is able to tell you what could 

be the next word based on the frequency of the occurrences of those two words in the 

corpus. again the law of frequency is very useful in this case. if you look at this these are 

all patterns that we can use as part of the input to the system, right. 

So, we should be able to capture you know for example, the similarity words in the case 

of word2vec that is how we really train the network. we have a set of context, and then I 

want to find out the middle word given the surrounding word, I would use the laws of 

similarity in that the patterns are found using the laws of similarity, ok. The prediction of 

the next word or the probability of a given sentence could also be found using the law of 

frequency, ok. there is some association even though it is pretty old. We are able to map 

these patterns into or these laws into our existing problem in hand, ok. 
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So, what are the differences between the perceptrons? We are going to be calling the 

artificial neuron as the perceptron. It is biological and perceptron is a mathematical 

model. Here dendrites receive the electrical signal perceptrons receive the values as 

input, electrochemical signals between the dendrites and the axon. whereas we are going 



to have again there are certain weights for the example in the case of the perceptron, let 

us say this is your neuron we are going to be connecting with respect to some weights, 

ok.  

So, the strength of the signal is represented by these weights in the same way we had 

seen in the biological neuron. The electrochemical signals are not static; you know we 

keep learning, so they are not very static. Even in this case during the training process 

these weights keep changing. Once the training is complete the weights are static, ok. 
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So, I am going to give you a very high-level overview of what a perceptron is and what 

we can do with that you know using this simple architecture. in this case, we have a set 

of inputs or we can call it as the feature vectors whose sizes are h x 1, to x n, ok. And 

then we have a bias whose value is plus 1, which is connecting to the perceptron using 

the weights w naught. all the input feature vectors are connected to this element through 

the weights, ok. we call them as weights. the input is connected to the neuron through the 

weights. 

So, for the sake of explanation I have actually divided this into two spaces, one is the 

activation functions. Once the values are received, they are summed in this neuron they 

are linearly summed and then there are some values that we have obtained, ok. for 

example, the value could be between minus 5 to plus 5, depending on the weights that 

we have used as the weight that are connecting the input and the neuron. we want to 



actually translate the values between 0 and 1 or minus 1 and 1 or through some 

probability distribution where the values when they are summed would be equal to 1. 

there are so many ways we can do that. 

So, the activation function that it does is it smashes the values of this into a point in this 

space. See for example, if I have minus 5 and then the value becomes using the 

activation function, it gives you 0.01 and my threshold let us say my threshold is 0.5. If 

the threshold is greater than 0.5 then the value is equal to plus 1 otherwise it is going to 

be minus 1 as given by this decision function. the activation function squashes the value 

between 0 and 1 and the decision function actually looks at the values squashed by the 

activation function. And then makes a decision whether to provide plus 1 to it or minus 1 

to it depending on the threshold that we have set up. 

So, we have the feature vectors coming into the neuron and then the weights are 

connecting the input and the neuron. There is an activation function that smashes the 

value between two values and there is a decision function that translates the activation 

function value into two different values which we can use to take the case of the 

sentiment analysis.  

Assume that we are able to provide the input to the perceptron using a one-hot vector. 

Remember the one-hot vector and index of that particular element in that space will give 

you the word. For example, if it is the tenth element and my positive value is good. it 

will represent well. in this fashion I can keep feeding the feature vectors as input and the 

result would be expected as either positive or negative. for this I expect the perceptron to 

output as plus 1, and then for bad I expect the perceptron to output as minus 1. And then 

the activation function smashes the value between 0 and 1, and then the decision function 

decides whether it is positive or negative depending on the value it received from the 

activation function, ok. this is a very simple network that you have for perceptron. 

Again the mathematical operations that we are going to be performing here are very 

simple. the one is we have a bias that is connecting to it. this sum that you are looking at 

here would be x 1 w 1 plus x 2 w 2 to x n w n or it is written in a very simple notation. It 

is a sum of I equal to 1 to n, w I x i.  

So, this is a simple dot product that you have. And then you finally, add that with the 

bias and then give it to the activation function. We will talk about what that activation 



function is. When you provide the value completed to the activation function it maps it 

between two values. Let us say it is going to be mapping at between two values and these 

are all real values, and then based on what the values is the decision function either 

outputs plus 1 or minus 1 depending on what value this activation function has provided, 

ok. 

So, it is a very simple mathematical model and I want you to go and then take a look at 

NumPy. a lot of linear vector operations are or rather linear algebraic operations are 

performed in this library NumPy and you can very easily translate this into NumPy and 

do it, instead of you know writing loops of instructions to add this you can just use one 

single instruction to save np dot like this, ok. this is clear now.  

The input could be anything, right. It could be any real values or it could be a one-hot 

vector in the case of natural language processing. The output is going to be only two 

values, either plus 1 or minus 1 depending on what activation function these squashes, 

ok. it is a very simple example of a perceptron where there is only one element and this 

is good enough to linearly classify a set of vectors into two reasons, ok. 
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So, how do we teach the perceptron, or how does perceptron learn the weights? very 

simple. You know it is going to learn the weight, the weights are going to be your model. 

the first statement is it learns the weight. Let us see how it will learn the weights. They 

are adjusted until the output is consistent with the target output in the training examples. 



you keep changing the weights in such a way that the estimated output is very close to 

the target output. Since we know the relationship between the input vectors and the 

output vectors, we are estimating the model and the model parameters are here w and w 

naught, w is the weight connecting the input and the perceptron and w naught is the 

weight connecting the bias and the perceptron, ok. 

So, if we have iteration going from 1 to k, right. we need to keep eyes identifying the 

weight that you want to update. And this weight is proportional to, the new weight that 

you are going to be using to updates the weight connecting the input, and the perceptron 

is proportional to the error that is computed. This is your target and this is your estimate. 

intuitively you can very easily say that the next weight is given by or the new weight is 

given by the old weight, and there is one new parameter that I have here and here we 

have the error and the input that is connecting, ok.  

The parameter that we have here is called the learning parameter. The eta is the learning 

parameter, and it is adjusted to actually help you descend. If the eta value is very high the 

learning jumps in this fashion, if eta is very small it slowly and steadily reaches this. 

Normally, we do some kind of estimation for this you know by looking at the training 

samples and then see how the weights are adjusted and how the errors are jumping from 

one point to the other during the iteration. We keep adjusting this, ok. 

So, we look at the way the training goes and adjust this and then finally, settle down to 

some number, so until then we empirically change these values, ok. the eta parameter is 

updated based on the experience that you gain in the model estimation. normally it 

ranges from 0.1 to 0.01, ok, rarely it goes below this point. And you cannot just have eta 

equal to 1, 2 and so on. It will be very drastic for example, if you have the error surface 

in this fashion and if you have a big eta it might go wild in this fashion. It is very 

difficult to control that. ideally it should descend in this fashion, ok. it is very crucial to 

really set the right parameter for the eta.  
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So, when y minus y hat equal to 0; that means, there is no I would say approximately 

equal to 0. There is no prediction error that is when you know we normally set this to 1 

into e for minus 5, it is a very small value. during the training the weights contributing 

most to the error require adjustments, ok. 

I am going to ask you to do one exercise in this, where if supposing if my output or the 

target output is 1 and the estimated output is minus 1, ok. this is the estimated one, this is 

the target value, ok. when you have this set, so how will you update w? what is the kind 

of adjustment you make to w so that it becomes closer to 1? right now you know it is 

minus 1. when you do this operation the error equalss 2. in which direction you update 

the weights? Ok. This is the question for you. I like you to go and then refer to some 

books and figure out what could be the adjustment that you want to make. you know that 

we need to make some adjustments, but what kind of adjustment.  
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The same example I am sorry another example would be the target is minus 1 and y hat 

is 1, in which way you would adjust the weights? Either increase the weights or decrease 

the weights by certain fashion? We know that it is proportional to the error, right; in 

which way you would move the weights, ok. 
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So, this is a very simple algorithm for the perceptron. Let us assume that we have about k 

vectors and then there are n number of features that we have for each vector and then we 



have set the learning parameter to be 0.01 and then epoch count is t equal to 1 and j equal 

1. 

So, I have used a new word epoch here. The epoch is one complete presentation of the 

data set. For example, we have a let us say we are going to be doing the sentiment 

analysis where we have words representing the one-hot vector, right. we have about 500 

words that we want this system to learn either to be as positive words or negative words. 

I am providing a one-hot vector, ok, so about 5-600 of them. they represent one there. 

Take every word, compute the error, make the change until it satisfies the input-output 

relationship, and then take the next word, and keep going. that is one way. 
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In this case, I am presenting the entire 600 one hot vectors in one go, not in one go one 

after the other, and then start making the adjustment every time, ok. this is one epoch. 

This is one way of presenting the data set.  

We initialized the weights with random numbers, initialized the input layer with the first 

data, and calculate the out net output using this relationship. Calculate the error, update 

the weight based on this equation, ok, then repeat steps 1 through 9 or rather 7 through 9, 

till the error is less than the given threshold or a predetermined number of epochs are 

completed, ok. these are the 10 steps that you have to make the perceptron learn.  



So, again this is for you to find out what is the optimal eta size, should be should it be 

big or small or very small or very bigok.  
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So, in this session, we are going to be talking about the activation function. We spoke 

about the activation function in the perceptron case, where we mentioned that it will 

output a value between 0, 1, 1, or minus 1 to 1 or it gives you a probability distribution 

where the sum of each element would be equal to 1, right. 

So, let us see each one of them. There are several types of activation functions, one is the 

Hard threshold, the second one is a Sigmoid, third is the Hyperbolic Tanh function and 

then fourth one is the ReLu - Rectified Linear Unit and then there is another one called 

Leaky ReLu and the popular one in the natural language processing word is the Softmax 

which is usually used at the output layer. And the Sigmoid and Tanh usually used in the 

middle layers, ok. 

So, there is network architecture where there would be more than one neural element, ok. 

you will have input connecting to neurons in this fashion and you will also have multi-

class output in this fashion, ok. in most cases of the natural language processing you will 

have a minimum of 3, let us say 3 layers. We call this as the input layer, a hidden layer, 

and the output layer. In many neural networks you will find that the hidden layers are 

squashed using either Sigmoid or Tanh, and then the output is squashed by a Softmax.  


