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Alright to summarize the SVD (Refer Time: 00:19) model as we mentioned earlier it's 

about reducing the dimension right. So, what we going to doing here is to find a new set 

of dimensions or attributes that capture the variability of the data. So, it does not matter 

how big is your term document corpus all right. You can then always reduce it in terms 

of the dimensions. For example, if you have document sizes about 2000 plus and then 

you have around 20,000 words as vocabulary unique words, you can represent that in 

terms of a matrix that is where you construct your TF, IDF as we discussed earlier. 

So, once we have done this and then in the transform domain what we are having is there 

is a left singular matrix, right singular matrix, and singular value matrix and we spoke 

about that earlier right. And then when you reduce the singular matrix size that is it some 

(Refer Time: 01:22) from 2000 to 200, we still would be able to reconstruct the original 

matrix with some small error right. So, that is what we had shown earlier especially with 

respect to the image. 



So, even though we had a high-resolution image after the transformation, we truncated 

the SVD to a smaller number and then we showed that by just slightly increasing that 

SVD (Refer Time: 01:53) from 10 to 20 instead of 700 and odd numbers. We were able 

to reconstruct that image very clearly with about 50 eigenvalue right. 

So, that is the power of this instead of having a very large dimension in the domain that 

we are looking at the image. We would be able to translate that into the SVD dimension 

or the SVD domain where the value could be reduced and then we would be able to 

reconstruct the original image with a very small number of Eigenvalues. So, we 

demonstrated with respect to the image. 

So, if you look at the image you know it is possible for you to reconstruct the image with 

a few patterns you know especially if you look at a grey level image or a black and white 

black and white image. There could be a certain kernel that we can always find or the 

pattern that you can always find and you can just mix and match those patterns to form 

an image. 

So, will that work in the case of a natural language text, how do you deal with that? You 

know there are patterns within the text that we have we should be able to reduce the 

dimension, but how do you deal with those small ones you know where the frequency of 

the word is only one or two say out of 20,000 words that you will find as vocabulary or 

unique words or tokens. Only about 100 or 200 of them would be having a very high-

frequency rest of them would be having very small numbers especially the vocabulary 

with the count of one of the words with the count of one would be having a large set. 

Will, that contribute anything to the; will that contribute anything in our case especially 

in the query modeling and terms of retrieving the document based on keywords or trying 

to classify the document based on the set of keywords? Do not we consider them as 

noise? And now will they really have some impact in in the dimension that we are 

talking about. Let us see how we can do with by taking some small example ok. As I am 

going to be talking about two examples to showcase that so, we want to identify the 

strong pattern in the data; so that is the idea right. So, if you look at the Eigenvalues, we 

know that it is in the descending order with respect to the magnitude correct. 

So, this contributes the maximum and then we know that this contributes to the lowest 

that is why we are able to cut and then reduce the dimension and we still have we are still 



reconstructing the original document with a minimal error right. So, we also know that 

the most variability is captured by the small set of values patterns among the terms are 

captured by the left singular values, we have the left singular value here right U and then 

we have the right singular matrix right. 

So, the patterns related to the documents are captured by this. So, if you have terms and 

document organization where each one or each cell in this matrix represents the word in 

that particular document correct and then the left singular one captures the term related 

features. The Eigenvectors associated with the largest Eigenvalues indicate the direction 

of the largest variance; so this captures the largest variance. If you take these matrixes 

right and then find the Eigenvectors associated with this one, you will find or the vectors 

would indicate the direction of the largest variance. 

So, again if you take the second one which is orthogonal to the previous one that we 

computed that will give you the rest of the direction not the rest of some direction and 

the third one will give you the next level forth one the next level and so on so forth. And 

then the last one will be the last one and probably would give you a very little or very 

small number of directions. So, we have seen this through the image demo. 
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So, now let us look at it through a text I am going to be showing two demos. So, I am 

opening it in the collab. 
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So, what I have in this demo is I have a set of documents these documents are coming 

from the kinematics problem statements ok. So, I have about 271 documents related to 

the problems in kinematics, and that what I am using it as my corpus. So, this you may 

also use it this available publicly you can use this ok. 

(Refer Slide Time: 08:23) 

 

So, here this is the location of the corpus I think there is the duplicate here we can 

remove this and then I am reading that corpus from the location using pandas function 

called read CSV. So, this reads the file and each document is separated by a new line and 



there is no header related to that and then I have a small preprocessing function that takes 

away all the numeric values and then it tokenizes after that. 

I am just creating a text initially which contains all the tokens related to 271 documents 

and then I create a dictionary with respect to the vocabulary of the words used there ok. 

And then if you go and then look at the document dictionary right, it is very important 

for you to do that; that is an important step. You have to find out how many words are 

there in the vocabulary, so we need to get the count of that. So, in this case, it is about 

900 plus and I have restricted the count to 700 see here, I am not using any stop words or 

any other mechanism in the pre-processing, I am just removing the numeric and then 

tokenizing that. 

So, out of 900 I am just saying let us keep only about 700. So, now, your document size 

is 271, the number of words is 700 and then convert the dictionary into a doc the bag of 

words ok, for every document in or every token in the text that we have created here. So, 

we are creating a bag of words right. So, that contains your document term matrix as 

well and then using that text that has already created by pre-processing, we also need to 

find out the term of idf right. 

So, that is our aim, so the entire matrix now contains the tf idf values. So, your column 

contains the documents, the rows or the words and every cell that you have in that matrix 

is a tf if it contains the tf IDF value ok. So, once you create the tf if now we can use an 

LSI. So, here I am using Gensim as the library. So, I do not have to write a lot of code in 

terms of creating the SVD and so on, maybe in additionally you may want to write five 

or 6 lines if you use (Refer Time: 11:46). So, in this case I relied on the Gensim library 

to do the job for me. So, there are several other libraries available you can try each one 

of them as well ok. 

So, what I have done is I have just created tf IDF and model and then I am using the LSI 

which will now create our U sigma and V right. So, here to show that the number of 

topics here refers to the sigma values or the k values that we are talking about in the 

Eigen matrix ok. So, I just kept it as one I have just taken only the top one here. 

So, you remember even in the image processing is started with the lowest one and then 

reconstructed the image and then see we added one more and then slowly as we add 



more and more, the image started becoming clear and clearer and clearer you know from 

a blurry picture to clearer picture within about 80 or 90 Eigenvalue. 

So, in this case, again I am doing the same thing I am starting with one and let us see 

what happens. So, in this case, what I am also doing is inside of classifying the document 

I am going to use the query function I am going to have three or four query parameters, 

in this case, I have four and then query the transform domain and finally, get the values 

in the domain that we are dealing with to find out what documents are (Refer Time: 

13:36) based on the query. So, so for you to do that the query has to be converted into the 

SVD domain right or the LSI domain. So, we first create that LSI model using the sigma 

as one and then using the dictionary a which contains the word id to the word and then 

using the tf idf. And then the query document contains car acceleration velocity far. 

So, now, I have to create a query in the LSI domain as well. So, again I create a 

dictionary of that and then create a vector for the query in the LSI domain that is 

available in this. And then there is a similarity function that is also available as part of 

the Gensim library and then it tells it goes and then looks at all the documents related to 

the query and then provides (Refer Time: 14:44) for each one of those ok. 

You remember the cosine (Refer Time: 14:48) that we computed earlier is a very similar 

fashion this constructs all the similar values and then keeps it and you can only list you 

know 5 of them, 10 of them, 20 of them in any order that you want to list them ok. So, it 

first gets you the similarities for the query, and then you sort it and then finally, print 

this. 
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So, in this case I have used my k as 1 you see that all it says that all documents are equal. 

So, it has not found anything, it is not very similar to what we saw in the image, is not it. 

So, there we saw at least some portions of the image being reconstructed recognize 

whereas in this case you know you can see all kinds of jumble even though you see a car 

is in the second one, but the similar similarity values are all equal that is not the right 

thing. So, let us now try to increase it by another and let us see what happens. 

(Refer Slide Time: 16:01) 

 



So, we can see that there are similarity value changes and we start seeing the query 

related a document right. So, car acceleration velocity far, so we have a race car the first 

one contains all the values related to that, second one third the speed of the car. So, there 

is a dragster also. So, what has happened here? So, it is able to find a document that does 

not have the word car you remember the idea of having the distributed embedding is to 

find similar terms. So, it is somehow able to find the dragster similar to the car ok. 

(Refer Slide Time: 16:53) 

 

And then we can see many car-related documents here even we can see a jalopy there 

and then there is a bike we saw somewhere. So, if the document that contains; the 

document that contains similar values as in the query is now listed I have just increased 

the sigma value by 2. So, by just increasing this to let us say 5 so, it is now, even more, 

sharpening the results better than what we saw earlier. So, you can now see that right, so 

lots of cars in front of the query ok. 
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So, if you go down here you will see the similarity value getting reduced and then 

towards the end just because it managed to find a few keywords, it gave very smaller 

values for those documents right. So, you can increase it to 10 or 15 let us say we will 

increase it to 15 and see what happens. So, it is changing it slightly, but we can see all 

the documents related to that are found ok. 

So, you also want to go through this and then look at the data change the query 

parameters and then see whether you are getting this value or not ok. So, you can look at 

the corpus closely, change the query parameters and then change these parameters as 

well and then find out how this particular application behaves ok. So, this is one example 

that I have shown where we have a tf IDF based term-document matrix. 

We used LSI and then in the reduced domain we tried to find the similarities between the 

query and the document; between the query and the query and every document in the 

corpus. 


