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The first exercise in terms of really converting the standard word term-document matrix 

into a transform domain, we are going to be using a singular value decomposition. 
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So, this is going to be our first exercise in terms of transforming the term-document 

matrix into a transform domain. So, we are not going into the details of how this 

decomposition happens within this singular value decomposition. So, we will only take 

the outcome of this and then move from there ok. So, in a singular value decomposition 

we will have some mechanism in terms of factorizing the original matrix. When you 

factorize that original matrix, it becomes into three different matrices ok. 

So, this is your original matrix, we can call it a term-document matrix. So, when you 

transform this or decompose that into three matrices that you have, one is U and then the 

second one is sigma, the third one is V transpose. You let us assume that A is a matrix of 

size M by N and when you transform U becomes M by K and then a diagonal matrix 

sigma is of size K by K and then the V transpose is of K by N. So, if you look at this we 

have M by N is transformed into M by K, K by K and K by N. So, it becomes M by N. 



So, when you do the multiplication of these matrices it is again equal to a, which will be 

in the same size as the original matrix. 

So, here the decomposition of a given matrix or a term-document matrix is given in this 

particular as to size. So, he we call U as the left singular matrix, we call V as the right 

singular matrix and sigma as our singular values ok. So, the row vectors of U form an 

orthogonal set ok. The rows of V transpose form an orthogonal set ok, sigma is your 

singular matrix and it is a diagonal matrix and if you look at the values it will be like 

where sigma 1 is greater than sigma 2 greater than sigma 3 and so on ok. So, this is what 

you will see inside this structure of the matrix once decomposition happens.  
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This slide is about singular values. So, as I mentioned earlier it is our diagonal matrix, 

singular values are arranged in the descending order, the highest order dimension 

captures the most variance in the original data set or the most information related to the 

term-document matrix. The next higher dimension captures the next higher variance in 

the original data set, singular values reflect the major associative patterns in the data and 

the ignore smaller and unimportant influences.  

So, what this means, if you look at these singular values the topmost one will have the 

highest value; that means, it a contains all information related to the document matrix 

and it has captured the entire or the maximum variance or the most variance within the 

term-document matrix in the transform domain. 



And then if you look at the second one, it captures the next set and if you try to find out 

how these axes are aligned, the sigma 1 and sigma 2 are aligned totally in a different axis 

set. So, if I consider only one element of that sigma 1 would be if you look at sigma 1, 

sigma 2 would be here ok. So, the same way sigma 3 is and so on and so forth. So, it is a 

very crude representation of how you would like to visualize these sigma terms ok. So, 

we need to really take an example and then showcase this.  
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So, before that you know let me go to one demo and then see how it works, and then we 

go back to the definitions and meanings of that formula. So, what I have done is I just 

taken in order for us to understand how this works, I have written a very small program. 
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So, in this program what I am doing is I am just taking an image this image is available 

as part of the Python libraries ok. So, I am this is the original image that I am looking at 

and then I am just using a NumPy to do my SVD and then I am taking these sigma 

values from the first 10 to the first 40 and then see how really they are contributing to the 

structure of the image during the reconstruction process. So, I have done the SVD here 

and the values are available in the U, the left singular matrix and this is singular values 

and then right singular vector right. 
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And this is my original image. The reason why I am taking the images is very easy to 

visualize and then see how when you reduce the sigma size, how we are able to still 

reconstruct the original image you remember the first element of the singular matrix 

captures the most variance. 

So, is it really possible to just use only one so that I can reconstruct the image it is not 

possible? So, I have just taken the first ten and so, in this case I need to tell you the size 

of the image, the size of the image is 768 pixels or rows and then 1024 columns. So, this 

is my resolution to the image that I have here. So, the first one is our original image and 

then I take that image it is a gray level image and then I do an SVD and then reconstruct 

the SVD after truncating the sigma values let us assume that I am taking only the first 10 

sigma values; that means, I have to take only the 10 rows of the left singular vector and 

then 10 columns of the right singular vector ok.  

So, when you take those and appropriately shape them and reconstruct the image back. 

So, when you reconstruct the image as I mentioned earlier the multiplication of the 

matrices U, S and V give you about the original image. So, in this case, I am taking the 

so, if you look at the U shape, S shape and so on, it is 716 plus 768 that is your U and the 

diagonal elements are given by the S which is 768 and then our right singular vector the 

vector sectors 768 by 1024 ok. So, in this case what I am doing is I am just taking only 

10 values ok; that means this is 10. So, this is 10 and this will be 10. 

So, in the end, I will be reconstructing as 768 by 1024, but my sigma sizes are reduced 

and my column sizes are reduced this becomes 10, this becomes 10 I return the rest of 

the shape so that at the end I will have 768 by 724. So, I have just taken the first 10 

sigma values. 
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So, look at the image you know some important features of the image is captured 

correctly you can see the nose, some shapes in the eyes, the important part of the 

between the two eyes are also captured in some fashion, these are not very clear even 

though we can make out a bit. So, I increase the size of the singular values to 11, you can 

see there is a small change happening every time and increase the singular value by one 

more number ok. 

So, slowly I will move them slowly so we can appreciate the change that is happening. 

See the ears have come out, the eyes are now coming out little clearer than before, the 

noses have come out well slowly I am just increasing the singular value size from 10 to 

21 now, 22 let me go down to 30, see we almost have a good image reconstructed with 

just about 28 values of our singular matrix correct. So, instead of having a 768, I have 

restricted that size to 28 and I am still able to reconstruct the good image of this type. 

So, as I increase the size, you can see the clarity increases; that means the singular values 

that you are seeing after 35 are making smaller improvements in the image structure so, 

how is it really working ok? So, this is the last one the 39th one, you can see the image is 

almost reconstructed to a reasonable clarity even those you know the grass is the grass 

that you see here, they are clearly the hair patterns are somewhat clear, the eyes or clear 

even the lights on the eyes or very clearly shown so on.  



So, what is happening inside this ok? So, if you look at this image, it is made up of a 

gray level picture and then there are certain patterns inside the image that we do not 

visually see, but the system has captured those patterns. 

So, it captured a lot of patterns and rearranged them in the transform domain and the 

patterns with maximum variance are kept at the first element of the diagonal matrix. And 

then as you go down the path of the singular value matrix, more and more patterns 

emerge, and then since they are orthogonal to each other, they are superimposed on top 

of whatever was done in the previous reconstruction and so on.  

So, every time when you increase this singular value, more patterns appear which did not 

appear in the previous set of singular values and so on. So, in this fashion if you go back 

and then look at what has happened in the transform domain, the patterns are really 

captured and those with the maximum variants are made available in the top 10 or 20 

singular values and as you go down the path after 100, do you not see any change in the 

picture; that means, you do not really require the entire size of these singular values to 

really reconstruct the image if I go back to the previous one or the original size ok.  

So, I do not require 768 to really reconstruct the entire image; that means I have reduced 

the size of my singular values and also reduce the computational complexity so that I do 

not do a lot of matrix multiplication beyond a certain number. So, by looking at this you 

know from above, we see that the dimensionality of the original domain has been 

reduced in the transform domain and the patterns which are very similar or captured and 

probably put in the same axis so that you do not have too many dimensions like 768 axes 

for each one of the pixels or if you look at it, it is 1024 into 768 axes you should have 

had, but instead, we are able to cut short that number of dimension to a very small 

number and at the same time the patterns are also captured as part of that.  

So, if you apply the same model to the natural language, singular value decomposition 

will capture similar patterns and capture the most variants in the topmost singular values 

and the least ones will be kept at the bottom of the topmost. So, in the same fashion if 

you have a huge matrix of size 10 billion documents by 1 million words, you probably 

do not have to have those many values to reconstruct the original term-document matrix, 

you probably you require only a smaller number equal to 100 to 200 sigma values in 

order for you to reconstruct the original term-document matrix ok.  



Let me go back now, a singular value slide one more time. So, we know that it is a 

diagonal matrix we saw that, they are arranged in this descending order. The highest 

dimension captures the most variant we saw that right. 
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So, as I mentioned that it is a better method to capture this similarity between the 

documents or the similarity of patterns within an image ok. So, as I mentioned earlier, 

when you do the reconstruction of the matrix you know we you know remember we 

reduce the dimension from 768 to 10 ok. So, the difference between the original matrix 

and the reconstructed matrix should be very minimum, I think we saw in that case as 

well right when you do the L 2 norm of the matrices, the delta is very small, we are able 

to visually see that there is not a lot of errors in the reconstructed image. So, the same 

thing we expect that we expect in the term-document matrix as well ok. 
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It is very similar to fitting this; I think some of you are very familiar with the regression 

methods where you want to fit various points to a line. So, in this case, I think it is a 

height versus weight graph ok. So, and then the values are taken from various people and 

then your line has to be drawn that fits all the points in this ok. So, when you do that 

what happens is the distance between this point and this point is always minimized so 

that you know this line is formed. So, whenever you want to form the line, all the 

distances of the point these are the points to the line should have a minimum value when 

you consider all of the points in this particular set.  

So, we are trying to fit a line which gives you an approximate fitment for any point in 

this given space. So, in the same fashion or what you can say is once this is found, we 

say that all these points lie in this line right, we approximated those points; that means, 

now we there is no separate representation for each of these points in different axis 

correct. So, now, they are all represented in one single dimension and all those could be 

accommodated in that particular line. In the same fashion when you look at SVD is 

doing something very similar to this.  

The documents which are very similar would be brought into one place since the size is 

huge their going to be talking about the hyperplane. So, when you look at the hyperplane 

which is a very crude representation of that. So, all these documents would be brought 

into this even though you might see some documents would be here, here and so on. So, 



we approximate it and then put them and call those documents as similar documents, 

they occur in the same different hyperplane ok. 

So, SVD is doing something very similar to that so it is trying to bring in all the 

documents which are similar in some hyperplane of this type and the similar words that 

you find in the vocabulary would also be brought in to the same axis that we have so; 

that means, in the case of SVD, the number of axes with respect to the word that I have 

used in the original matrix would be reduced in this fashion.  

So, meaning similar words let us say similar set 1, word 1 2 would be in this axis, and so 

on ok. So, not only SVD would help you in terms of reducing the dimensions, but it also 

tries to find similar words and similar documents and put them together in the respective 

places ok. 
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 And there is some more important formula that you have to remember. I have listed 

some of them which would we would be using, if you use the A transpose A-ok. So, we 

know that this is our A, this is our A, this is our A transpose. So, it becomes V sigma 

square V transpose ok. So, in the same fashion when you do A transpose, it becomes U 

sigma square V transpose I am sorry this should be U and then when you do a U 

transpose A, you get a sigma V transpose, you see how the transformed domain really 

reacts to various element ok.  



So, what is the most important thing that we are looking at when you do the term-

document matrix, we want to find out the similarity using a cosine distance or we want to 

find out how the word sorts how similar words are coming together in the same axis and 

so on. So, let us look at one example where we want to find out a query that is given ok, 

let us say some values are there for the query.  

I just want to find out how this query can be used and then later we can find out how this 

particular one could be close to the document that we have in the transform domain. 

Since the query exists in the domain of the term-document matrix, we have to convert it 

into the transform domain using a formula like this and then applying that particular 

query using our these our cos theta right. So, in this fashion, you can find out the 

distance in the transform domain as well ok. 
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So, with this, I conclude this lecture, what I would do next is I will actually take a term-

document matrix in the next class and then really explain you the important steps that we 

go through when we do the SVD and then how a query can be constructed in the 

transform domain and how it can be applied to find similar documents and then later we 

find out how the same technique can be used for topic modeling and so on so forth.  


