
Applied Natural Language Processing

Prof. Ramaseshan Ramachandran

Visiting Professor at Chennai Mathematical Institute

Indian Institute Technology, Madras

Lecture - 12

Document Similarity-demo, Inverted Index, Exercise

(Refer Slide Time: 00:15)

So, now take a bigger example where we have a, we have about 10 terms and we have

about 12 documents. And then every element in this matrix represents our tf-idf. what we

are going to do is, we going to be looking at this and then try to find out which document

is closer to the other one.

So, this is a very important exercise in information retrieval at least for document sets

which are not very huge. we can actually, use this if the document is very small for you.

Again, if you look at this I keep repeating this, this one is your term vectors for

document one; that means, the document one contains the words to , some others

are missing, these terms are missing, we have 0 values here.

And then if you look at this one, term vector across the corpus. this is very important to

understand this structure and most of the term will be representing our term document in

this fashion.

(Refer Slide Time: 01:40)

So, how do I represent them actually, I am not sure whether I mentioned this in the

previous lecture, the tf-idf which I have spoken about could also be represented using

other weighted to-IDF; one mechanism is to consider tf and then the IDF here ok.

And then this would be replaced, not exactly the same this would be replaced as this ok.

If you replace the tf with respect to 1 plus log logarithm of term frequency and if term

frequency is greater than 0 and use this value and if it is 0, it is going to be 0. this is

again a very important representation of our terms in this tf rather a document term

matrix.

So, in our case, we have just used random generation of these numbers and I represent

them as tf-IDF, the plane of-IDF.

(Refer Slide Time: 03:01)

So, now what is required? we have a set of documents, we have collected the term

frequencies with respect to weighted term frequency using tf-IDF or the log of those

which I explained earlier. Now I want to find out, using a query how that particular

query is very close to some other documents and then rank them accordingly. When I

represent a query; the query is going to be again a composition of terms right. we can

consider that it has a document very similar to this. I can write a query here and then my

query can contain some values related to and then some values related to some

value related to and so on, ok.

So, this is how I construct this, and these terms if it is found we already have created a

corpus, we already have found some frequency related value for these queries and so on

this is that what I am replacing with. When somebody gives a query, find me a document

with terms 1 3 and 7. I go to the dictionary and then find out what values of what are the

values for these three terms and then replace them, and then I construct them as a

separate vector ok, like this.

So, I am now constricting the query, which is again very close to, is a closed

representation of the document; now it is possible for me to go and then find out, a how

these documents are related to this query and then probably rank them according to the

highest one which is closer to q would be the first and the lowest one would be the last in

that ranking order ok. We going to be using some proximate is called mechanism, to find

out how a query is related to this document.

(Refer Slide Time: 05:16)

It is usually done using certain formula let us look at some of them. I am sure, in the

earlier case of binary incidence matrix, the query returned a set of documents for that

particular set of keywords right, but it never gave you the rank. We definitely require the

rank, because we want to look at the document with the highest relevance first rather

than something with the lowest relevance. In the case of the binary incident matrix it is

not possible for you to get that rank in that order. you have to assume, that all documents

have the same ranks, but in reality we would like to have a rank for all, of those

documents.

So, we are going to be using some of those measures like Euclidean distance, Cosine

distance, Cluster similarity, and Jaccard similarity, I would be using cosine similarity for

the sake of showing some demo and so on. why is it not a good idea to use a and

? look at this ok. if you compute the distance right, a sum would be long like this in the

vector space. Let us assume that, this is your query and then some vector would be very

long, some would be very short like this. it is not going to really give you good measure

if the length is too long. it is not advisable to really go for distance measure for finding

the similarity of documents.

(Refer Slide Time: 07:08)

So, which measure, as I mentioned earlier that I am going to be using Cosine distance as

a similarity measure because it is a normalized correlation coefficient. Why is it

normalized? Because you are actually dividing the vector by the length of the vector; you

get a, unit vector there. it is normalized for all the vectors that you are considering; for

example, is normalized to the unit vector and then this also is normalized.

So, for the sake of representation I am going to be taking two words car and plane, right.

we have a query here, based on the term frequency and the length. we have got a query

in this direction, of length here. And then we have other documents representing car and

plane in various directions ok. we have here, here and here; is very close

to the plane because it may contain a lot of terms related to the plane than a car. it is

closely aligned to the axis plane and is very closely aligned to the car for the same

reason.

So, are the values, I am going to be finding these values. the rank is accorded, based on

how close this particular is, the document is, to q1. in this case we know visually we can

find out that d3 is close is; that means, we can rank it accordingly, d3 if you look at the

rank, d3 will come first and then d1 and then d2 right. This is how you find the similarity

measure between documents and the query, that you have just posted, and then using this

you can now rank the documents accordingly and then say ok. D3 is very close let us take

a look at the document d3 first before, looking at the other ones if I do not get enough

information in d3 ok.

(Refer Slide Time: 10:50)

As I mentioned earlier Cosine distance is preferred and it is very easy to compute the

score, using them ok. Let us look at a demo before, the demo I just want to mention the

few things. What I am doing right now, is I am posting all the demos in one space in

GitHub under Ramaseshanr ANLP.

Whatever I am showing you like a demo those, programs are available in this library this

is open-sourced, you can take a look at it, you can clone it, you can make changes to that.

And, if you suggest some new ideas into that, or you are want to add more programs to

this library your more than welcome to do, if there are any errors found you can also

mention or send a note saying that there are some errors and you would like to correct

them.

I can give you access. that you can do all the, changes in the code and then again submit

the code back to the open-source. This is something that I would like you to go and then

look at it and then add value to that if you want to or you can use this as a playground.

that we can play with the demos and understand the call, underlying concepts in all these

demos.

(Refer Slide Time: 12:29)

So now, let us go to the demo code.

(Refer Slide Time: 12:38)

So, instead of clicking and then going to the GitHub and then finally, going to the collab

dot research dot com, I have taken you directly to space. when you go to that GitHub

space, there will be a button that will allow you to come to this collab dot research dot

google dot com ok. it will open up that particular file. that you can run the application,

directly from this. I am going to run this, first ok.

(Refer Slide Time: 13:27)

So, what I have, I am just, I will first show the output then I will probably take you to the

code and explain what is going on there ok.

(Refer Slide Time: 13:47)

So, in this case what I have done is, I have used the same matrix that I have shown you

ok, the document term matrix, this is what I am using it as an input. And then when I run

this, what I get is this, here you have a matrix containing all the documents along the x

and y-axis; I have taken every document in that space and then try to compute the,

distance from that document to another document ok.

So, I have not used any query at this point in time. we will come to that little later. if you

consider document one, it goes and then finds out the angle between D naught and D1 D2

and D10. And then it will considered D 1 as the base document and then try to compute

all the angles between D1 and d naught, D1 and D2, D1 and D6 and so , on. in this fashion

if you look at the top site, you will have all the angles computed for all the documents

ok. I am going to be now considering only one document as the reference document.

(Refer Slide Time: 15:06)

And then try to see how closely those documents are related to that particular reference

document. in this case I am considering D naught as my reference document here. And

then I computed the ranks based on the distance, D1 is very close, D is 6 is the next one

and then D2 is orthogonal to D naught; that means, none of the terms are close to D

naught that is why it is not showing any relevant there. the most relevant documents for

me is D1 here. if we go and then look at pictorially, you will see that ok. D1 against d

naught because it is the same document dot product of the same will result in one of the

angles is 0 there.

And then the next one which is closer to D0 is D1, it is separated by an angle 4 degrees,

and then you have all the others and then if you look at D0 and D2 it is separated by 90

degrees. Let me take you to this space, where the code is available as an I showed earlier

right; D0 to D10 matrix here is computed by this.

(Refer Slide Time: 16:25)

So, first I compute all the angles, and then for the plotting sake and ranking sake I am

just using reference, document ok. I am just using a reference document here as 0 and

then trying to find out what is the distance measure or the similarity measure in the case.

Here, there are some elements that you will find for plotting. for plotting what you

require is, you need to find the end distance, so that we can draw that vector.

So, initial value 0 and then the end value is calculated by the vector length and then we

plot that x and y, and then I have made the annotation. that it is easy for you to

understand that and then at the end you have the rank-ordered in the sorted fashion. once

the values are computed for the reference document, you sort the, document with respect

to the reference document. A use case for printing the rank is, the ascending order,

alright. we have seen how these documents could be compared when the tf-IDF values

are available.

So, now, let us try to construct a query and then see how the similarities are measured

and then how the ranks are computed ok. in this case what I am going to do is, earlier

case you saw the document 0 as the reference and then we computed the rank. And now

if we are going to be considering, document 2 as our query, as I mentioned earlier right.

the query can be constructed with respect to the term, that is present in the queries and it

can be construed as a document as well.

So, now, let us considered D2 as our query, I am going to be changing my reference, we

already have completed all the angles, I am only going to change the reference document

as my query and make it as 2. And I am going to be running this program, to find out

how this distance varies with respect to query D2, that I have chosen ok. if you look at

the query, D2 query on itself is going to give you 0 as I mentioned earlier, because it is

the dot product, of the same will give you the value of 0, so you have it there.

And, then you have D2 at an angle D2 to D9 is 41, and then D1 and D0 are orthogonal to

document 2 ok. if you look at the rank here, at the query is closer to D9 and D8 and D6you

know if you look at the other angles they are 61 66 71 and so on; that means, the

document D9 and D8 are closer to D2 than any other document this place. in this way you

can actually play with these numbers, like the reference document or you can construct a

new query and then add as part of the matrix that you have here, in this and then try this.

So, make sure that you use the right range I have hot coded the ranges in this program.

you may want to avoid that hot coding and want to give some variables there, so that you

can find the actual sizes of the matrixes and then do the computation accordingly ok. For

the explanation's sake, I just put together some simple programs for you. you can go

ahead and then change this in the, Github that I have provided for you. this is the

example of how you can construct the similarity of document ok. Let us go back to the

presentation again.

(Refer Slide Time: 21:18)

So, we have just finished our cosine distance demo. And then one more thing we also

want to look at, when we try doing the similarity for huge document asset. we can create

one inverted index for all, the document that we have; for example, for the given two

documents that I have, you can construct a term frequency and a posting.

For every term you have a column ok. this is a column for you and then the term

frequencies for the, word ball across the document space, in this case this is going to be

4. And then the postings; the postings are nothing, but the documents where this

particular word is present. if I have the word ball present in document 1 2 8 and 9, I just

mentioned that.

So, if you want to do the comparison or the similarity of the documents with respect to

the query where you have the word ball is mention, you do not have to go through the

entire document space, you can look at these postings and then say document 2 has this.

let us go on and then look at document 2 and then find out how close the document with

respect to this a term that I have any query. in the same way, you can go and look at it.

So, this way you can reduce the computational time, you know instead of going through

the entire document set, you can only go to a small subset where that particular term is

present in those documents ok, alright ok.

(Refer Slide Time: 23:22)

So, this is an exercise for you, the exercise is you have to construct a tf-idf matrix, using

the log weighting that I had shown earlier for the corpus Shakespeare’s play. Then, you

need to construct a query vector containing some terms, see, for example, you pick a few

terms, at random in Shakespeare’s play and then construct that as a vector. And then use

the Cosine similarity, that I had shown in the demo and find out how these plays are

staged with respect to the rank.

So, this is one exercise for you and the program is already available. What you have to

change is, you only have to change the document term matrix that I have given with

Shakespeare’s play. This would be very useful, if you implement this small exercise.

